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A PRIORI ERROR ESTIMATES FOR APPROXIMATION
OF PARABOLIC BOUNDARY VALUE PROBLEMS*

R. E. SHOWALTER+

Abstract. The L2-error estimates are established for the continuous time Faedo-Galerkin
approximation to solutions of a linear parabolic initial boundary value problem that has elliptic
part of order 2m. Properties of analytic semigroups are used to obtain these estimates directly from the
LZ-estimates for the corresponding steady state elliptic problem under hypotheses only on the data
in the problem (initial condition, elliptic operator).

1. Introduction. We obtain estimates for the error resulting from a continuous
time Faedo-Galerkin approximation of the linear parabolic boundary value
problem

(1.1) u’(t) + Au(t) 0," > O, u(O) Uo,

where A is a realization in LZ(G) of an elliptic partial differential operator of order
2m. These estimates are best possible: the rate ofconvergence is the same as that for
the Galerkin approximation of the corresponding (variational) elliptic steady state
problem whose exact solution is the initial condition, u0.

These estimates for the rate of convergence are well known; our contribution
here is that they are obtained from hypotheses on the data in the problem--the
regularity properties of the elliptic operator, an approximation assumption on the
rate of convergence in the corresponding elliptic problem and the initial condition
--and without the usual ad-hoc assumptions on the solution u(. of the problem.
The proofs depend on the existence-regularity theory for the evolution problem.
See [1], [2], [12] for related results.

An exposition of the well-known results for the steady state problem is given
in 2, where we briefly discuss the approximation of solutions and the interpola-
tion of various estimates associated with these regular elliptic boundary value
problems. Section 3 begins with a description of the regularity properties of the
solution of the abstract Cauchy problem (1.1) where -A is the generator of an
analytic semigroup of contractions. We use the notions of interpolation theory and
fractional powers of the operator A to relate the growth of u(t) in various norms as

0 + to the (regularity of the) initial condition, u0. After these preliminaries, the
error estimates are proved and stated as our Theorem.

2. Elliptic operators: Interpolation and approximation. Let Vand H be Hilbert
spaces for which V is a dense subspace ofH and the injection is continuous. Denote
the inner product and norm on H by (.,.) and I" I, respectively, and the norm on V
by I1" I[. Let a(.,. be a continuous bilinear form on V which is coercive: there is a
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number c > 0 such that

(2.1) a(v, v) cllvll 2 v e V

The triple {a(-,.), V, H} defines an unbounded operator A on H with domain
D(A) by

a(u, v) (Au, v), u e D(A), v e V,

where D(A) is the set of all u e V for which the linear form v a(u, v) is continuous
on V with the (weaker) norm of H. From (2.1) it follows that A is an injection of
D(A) onto H, and D(A) with the norm

Ilvlla IAvl, v e D(A),

is a Hilbert space (with the obvious inner product). Further, D(A) is dense in H,
and the identity map from D(A) into H is continuous" there is a number c > 0
such that

(2.2) IlVlla >- cxlvl, ve D(A).

Fractional powers of operators such as A have been constructed and discussed
by many authors. (See the bibliographies of [3], 6], [10].) For each , 0 < < 1,
there is an operator A which is a closed linear injection with dense domain D(A)
and range H. D(A) is a Hilbert space with norm

v A IA%I, v e D(A).

and A has properties appropriate for the 0th root of A. Under hypotheses more
general than those above on A, T. Kato proved the following [5].

Let A be an unbounded operator on a Hilbert space H with properties
like A on H. If T L(H, Hx) and T 6 L(D(A), D(A )), where L(X, Y) denotes the
Banach space of continuous linear maps of X into Y, then for each 0, 0 < 0 < 1,
we have T L(D(A), D(A 0)) with the estimate

(2.3) iiTlltwao),OA?) < C2 iTll-0L(H,H )ll Z ))L(D(A),D(A

This is an interpolation theorem which we can apply with T A I on H
D(A) H to obtain from (2.2) the estimate

(2.4) Iavl >= clvl, 0 <= 0 _< 1, v e D(A).
There are various equivalent methods of constructing from a pair of Hilbert

spaces-Ho and H, with H0 dense and continuously embedded in H, a family
of intermediate spaces [Ho, H]o, 0 < 0 < 1, and we refer to [10] for references.
Such spaces have an interpolation property like (2.3) for bounded operators, and
we have (e.g., [9])

[D(A), H]o O(A-), 0 <_ 0 <_ l,

with equivalent norms, for the operator A on H constructed above.
In order to construct an elliptic differential operator, we let G be a bounded

open set in N" with smooth boundary c3G locally on one side of G, and define for
integer m >__ 0 the Hilbert space Hm(G) of(equivalence classes of) functions v L2(G)
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=- H(G) such that each (distribution) derivative DPv of order [Pl -_< m belongs to
LZ(G). The inner product on Hm(G)is

D’u(x)DPv(x) dx" lpl 5 m}
and the norm is given by v m--(U,U]I/2([8]),m Let V be a closed subspace of
Hm(G) containing the space C(G) of infinitely differentiable functions with
compact support in G. Take H LZ(G), so V is dense in H, and prescribe a bilinear
form on V by

apq(x)Dqu(x)DPv(x) dx’lPl, Iql - m},
where the coefficients apq are smooth functions on G and the coercive estimate
(2.1) holds. The unbounded operator A determined by the triple {a, V,H} is
given by

(2.5) Au {(- 1)lplDP(apqDqu)’lpl, [ql <- m}, u D(A).

To determine D(A), we define

V= {v H"(G)" Bv O on c3G, O _<_ j __< p 1},

where 0 __< p __< m and each Bj is a normal boundary differential operator of
(normal) order mj < m [4], [10]. We choose additional boundary operators to
augment this set and then obtain by Green’s formula a collection {Bj’p <= j <= m

1} of normal boundary operators with m __< mj < 2m, p __<j __< m 1. (See,
e.g., [10, II. 9] for details.) Assume that the partial differential operator (2.5) and
the boundary operators {Bj’0 =< j __< m 1} constitute a regular boundary value
problem on G. Then D(A)= {v H2"(G)’Bjv 0 on ?G, 0 __< j =< m- 1} and
we have the estimate

(2.6) IAul C3 13 2m, 13 e D(A),

where c3 > 0.
We apply the interpolation theorem to our regular boundary value problem.

Considering the identity map of H H and D(A) HZm(G), we obtain from the
estimate (2.6) and the identity [HJ(G),Hk(G)] H(G), I-(1- )j + k, the
estimates

(2.7) [hk/E’ul >= c411ullu, u e D(A), 0 <= k < 2m.

If the boundary value problem is k-regular, k _> 1, that is, Au H"(G) implies
u H2"+"(G) with

IlZull,. >_ c)llull2,,+, 0 -< r =< k,

then we obtain the estimate

(2.8) IZ +’/2"ul >= c’ ul12./,

where powers of A larger than one are defined by composition or, e.g., as in
[3, II. 14]. Finally, we recall that Grisvard [4] characterized the domains of the
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fractional powers by D(A) {v6H2m(G)’Bjv 0 on cG if mj < 2mO- 1/2}
whenever 0 N 0 =< and 2mO 1/2 was not an integer. (We shall be concerned
only with the case in which 2mO is an integer.)

Let j’ H and consider the problem of approximating the u D(A) for which
Au f. The solution is determined by the variational equality

(2.9) u V, a(u, v) (f v), v V,

since V is dense in H. The Galerkin approximation of u determined by a given
finite-dimensional subspace M of V is the solution w of the problem

(2.10) w 6 m, a(w, v) (f v), v m.

Then w is the projection of u onto M with respect to the bilinear form a(.,. ),
and (2.10) is an algebraic problem for the coefficients of the expansion of w by a
basis for M. We shall assume that M belongs to a family ///= {Mh’0 < h < 1}
of finite-dimensional subspaces of V which satisfy the following approximation
assumption" there is an integer k > m depending on and a constant c > 0
depending on ///and the regular boundary value problem such that the Galerkin
approximation w e M of the solution u Hk(G) of (2.9) satisfies the error estimate

[hi- W] <5. ch2(k-m) ill if m __< k __< 2m,
(2.11)

]u wl <= chklJu if2m =< k.

Such LZ-estimates are typical, e.g., for finite element spaces of degree k with
mesh parameter h > 0 [11, Thm. 3.7].

3. Parabolic boundary value problems. Let A be the unbounded operator on
H constructed from a continuous coercive bilinear form as in 2. Then -A
generates an analytic semigroup {S(t)’t > 0} of contractions on H, and for each
uo H the function u(t)--S(t)uo is the unique solution of (1.1). In particular,
u C(I0, ), H) and at each > 0, u is analytic with u(t) D(AP), all p __> 0, and
satisfies utkt(t) (--A)ku(t) for integer k > 0. For fl > 0 and > 0 we have the
estimates

lIArS(t) L(U) < M/t.

(See I3, II. 14] or I7, IX. 1.61 for details.)
Suppose, hereafter, that uo D(A) for some a >__ 0. Since each fractional power

of A commutes with the semigroup, the estimate above gives

(3.1) IAu(t)[ =<(M-/t-)Auol, fi>=, t>O.

Similarly, since each S(t) is a contraction on H we obtain

(3.2) IAu(t)l <= IAUol, > 0,

and u C([0, ), D(A)).
The solution of(1.1) satisfies the variational equation

(3.3) (u’(t), v) + a(u(t), v) O, v V, > O.
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If M is a finite-dimensional subspace of V, we define a corresponding Faedo-
Galerkin approximation of u(. as the solution U C (I0, or), M) of

(3.4) (U’(t), v) + a(U(t), ) O, M, > O,

with U(0) to be prescribed below. (Since M has finite dimension, (3.4) is equivalent
to a system of ordinary differential equations.)

Assume hereafter that 2m is an integer and >= 1/2. Since D(A 1/2) V
([9], [10]) we have u C([0, ), V) and we can define We C([0, ), M) as the
pointwise elliptic Galerkin projection onto u"

(3.5) a(W(t), v) a(u(t), v), v M, >= O.

It follows then that we have

(3.6) a(W’(t), v) a(u’(t), v), v M, > O.

Following [11], we have from (3.3), (3.4) and (3.5),

(u’(t) W’(t), v) (U’(t) W’(t), v) + a(U(t) W(t), v), v M, > O,

and setting v U(t) W(t) gives

(1/2)D,(IU(t)- W(t)l 2) _-< (u’(t)- W’(t), U(t)- W(t)).

Note that if f is a continuously differentiable H-valued function, then it is locally
Lipschitz and so then is If(t)l. Hence, If(t)l is differentiable almost everywhere.
Applying this remark to the above estimate gives

U(t)- W(t)ID(IU(t)- W(t)l)-< U(t)- W(t)l. lu’(t)- W’(t)l

for almost every > 0. Consider the set Z {t > O’lU(t) W(t)l 0}. If is
not in this set, then we have

(3.7) D,IU(t)- W(t)[ =< lu’(t)- W’(t)[.

If is an accumulation point of Z then the indicated derivative is zero and (3.7)
holds. But there are a countable number of isolated points of Z, so (3.7) holds
almost everywhere, and we can integrate it to obtain

Ig(t)- W(t)l < IN(O)- W(O)[ + lu’- W’I, >__ O.

From the triangle inequality we obtain the fundamental error estimate

(3.8) lu(t)- u(t)l < lu(t)- W(t)l / IU(O)- w(O)l / lu’- W’l, > O.

We can easily estimate the error contributed by the first term in (3.8). If
1/2 __< o __< 1, we obtain from (2.11), (2.7) and (3.2),

h2m(20 1), 2m =< k,
lu(t) W(t){ (cnst’)lAul’(hZ-m), rn <= k <= 2m.
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Similarly, if 0 >__ we obtain the estimates

[u(t) W(t) (const.)[Auo[

h2m 2m0 =< k,

h 2m < k < 2me

h2(k-m), m -< k < 2m.

We intend to obtain from (3.6) estimates of the same order in h for the third
term in (3.8) on the interval 0 =< _<_ T, and we consider the preceding five cases
separately.

Case 1. 1/2 < < 1, 2me < k. Let 0 < 6 < T. Then (2.11), (1.1), (2.7) and
(3.1) give

lu’ W’[ _<_ const. IAuol t-3/2 dt

const. IAUo[, 1/2,

and, similarly, we obtain (with k __< 2m)
T

[lit-- W’]
T

[IAu[]k h2(/-m) __< const. ]Auo[ 1-k/2m dt

< const. ]A’uo]3-/2". h2{-’n).

Adding these with 6 h4m gives

(3.9) lu’ W’I <= const. IAuol h’-.
Case 2. 1/2 < o < 1, m <= k <= 2mo. If k 2m, then for each e > 0 we can

apply the proof of Case with e replaced by e e to obtain

ro
lU’ const, hm(a- .

But (2.4) shows ]A :Uo[ <-_ c- ]Auol so

,,T

[u’ W’[ __< const. [Auo[ h2m(2a- 1-2e),
0

where the constant is independent of e, and we obtain (3.9). If k < 2m0 we obtain
the estimate

T

h2(k -m)lu’-- W’[ <= C I[Au

< const. IAuol -/’ dr. h-’

const. IAuol h2(k-m)

from (2.11), (2.7) and (3.1).
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Case 3. <, 2me<=k. Let 0<6 < T and assume k=2me. For each
< : < 1, we have from (2.11), (2.8), (3.1) and (2.4),

h < const. IAa+ul hAb/

T

=< const. A-’:Uol t-1-,: dt. h

_< const. IA=uo[ /5-’:. h,
where the constant is independent of : and 6. Letting : --, 0+, then
obtain

fl lu’ W’I < const. IAuol

Case 4. <z, 2m=<k<2mz. Chooseflsothat2mfi=l+k. Thenfl<z, so

fl lu’ W’I =< const. IA +/2mu h

< const. IAaUol t-1+ 1/2m dt. h

< const. Auo h.
Case 5. < , m < k <= 2m. The preceding procedure gives the estimate

lu’ W’l =< IA’uolconst. h2{-,,).

Finally, we note that if U(0) is chosen by any of the usual methods, i.e., inter-
polation, Galerkin projection or L2-projection, the resulting estimates are (at
least) as good as the above. The preceding discussion is summarized in the follow-
ing.

THEOREM. With the notation given in 2, let V be a closed subspace of H(G)
determined by a (possibly empty) collection of normal homogeneous boundary
operators of order <m, a(.,. be the given continuous and coercive bilinear form
on V, and let A be the elliptic partial differential operator (2.5) of order 2m deter-
mined on LZ(G) by a choice of additional boundary operators and Green’s theorem
on G. Let uo e LZ(G) and denote by u(. the unique solution of (1.1). Let M be a

finite-dimensional subspace of V and denote by U( the unique solution of (3.4) for
which, e.g., U(O) is the LZ(G)-projection of uo onto M.

Assume the following"
(i) {A, Bj’0 __< j < m is a k-regular elliptic boundary value problem.
(ii) M is taken from a collection of subspaces of V which satisfy the approxi-

mation assumption (2.11), and
(iii) uo e D(A), where 2m is an integer >__m.
Then we have the estimate

(3 10) u(t)- U(t) 2{} < const Au hp0 L2(G)

where p 2(k m) !I’m < k <= 2m min {a, 1} and p k if 2m < k <= 2mz.
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Remarks.
1. The hypothesis (i) is standard and one can consult, e.g., [10] for conditions

on the coefficients and region G which imply it. Similarly, (ii) is standard I9],
and (iii) can be obtained from regularity of uo and boundary conditions on AJuo
for j integer and __< the integer part of [4].

2. In the case k >= 2m and we have convergence of order 2m in h. Trace
theory [8, VIII implies that, in general, u’e L2((0, r), D(A/2)) L2((0, T), V),
so we cannot hope to obtain (3.10) by estimating u’ with the norm of L2((0, T), D(A))
or (equivalently) L2((0, T), H2"(G)).

3. The assumption that M be a subspace of V restricts the method to natural
boundary conditions or very special domains. The construction of subspaces
satisfying essential boundary conditions is almost always impossible.
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