
proceedings of the
american mathematical society
Volume 42, Number 2, February 1974

CONTINUITY OF MAXIMAL MONOTONE SETS
IN BANACH SPACE1

R.  E. SHOWALTER

Abstract. A monotone set-valued map of a Banach space to

its dual is shown to map line segments into bounded sets. It

follows that convergent sequences are mapped into bounded sets

and, when the space is separable or reflexive, this imposes con-

tinuity requirements on maximal monotone maps.

Let X be a (real) Banach space with dual X* and denote the value of

we X* on x E X by (w, x). We consider a subset T of XxX* whose

image Tix)={w e X*: [x, w] e 7} at each xel is nonempty. The set

T is called monotone if

(W'j - w2, xx - x2) ^ 0,        [xx, wx], [x2, W2] E T,

and maximal monotone if it is not properly included in a monotone set.

We give an elementary proof that monotone sets map line segments into

bounded sets and then deduce some continuity properties of maximal

monotone sets.

Theorem 1. Let T be a monotone subset of XxX* with nonempty

image Tix) for each x EX. Let x0 and xx belong to X, and set xt=x0+

tixx-xn)for t e [0, 1). Then (J {T(xf):t 6 [0, 1)} is bounded in X*.

Proof. Let veX and choose wx e Tixx), w2e Tix0+v). For each

u e Tixt) we have by monotonicity of T

(w»! - u, xx — xt) = (1 — t)iwx -u,xx — x0) ^ 0,

so we obtain (m, xx—x0)^iwx, xx—x0). The monotonicity also gives us

(k, v) ^ /(«, xx — x0) + (w2, v — tixx — x0))

= I0«ii *i - *o)l + iwz, v) + 1(^2. *i - *o)l-

Repeating the argument with v replaced by — v shows that (w, z») is bounded

independently of re [0, 1) and ue Tixt), so the desired result follows

by uniform boundedness.
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Theorem 2. Let T be a monotone set with T(x) nonempty for each

x e X. If {x„} is a convergent sequence in X, then (J {T(xn) : n 1% 1} is bounded

in X*.

Proof. Since T(xn) is bounded for each «_ 1 by Theorem 1, it suffices

to show that for any choice of vn e T(xn) for each n, the sequence {v„}

is bounded. But this will follow from the proof in [3].

Remark. The writer was informed by the referee and by L. Nirenberg

of the references [4], [5] which contain Theorem 2. The simple proof of

Theorem 1 seems to be new, and it extends easily to the case where the

domain D(T)={x e X:T(x) is nonempty} is not all of X. One needs

then to require that x0 belong to the interior of D(T) and xx e D(T).

Theorem 2 holds if {xn} converges to a point in the interior of D(T).

A subset of Xx X* is called vaguely continuous [1] if for each pair

x0, Xy e X there exists a null sequence of positive real numbers {/„:«_ 1},

a sequence vn e T(x„), where Xn=x0+tn(xy—x0), and an06 T(x0) such

that {v„} is weak* convergent to v0. We define F to be hemicontinuous if, for

each pair x0, xx e X, for every null sequence of positive real numbers

{tn}, and for every choice of v„ e T(xn), xn given as above, there exists a

subsequence {v'n} which is weak* convergent to some v0 e T(x0). Finally,

we define T to be demicontinuous if for every sequence {xn} which con-

verges to x0 e X, and for every choice of vn e T(xn), there exists a sub-

sequence {v'n} which is weak* convergent to some v0 e T(x0).

It is clear that each of these conditions implies the preceding one.

Also, if T(x0)={v0} is a singleton in the definition of either hemicontinuity

or demicontinuity, then the original sequence {vn} converges to v0. Hence,

if F is a function, these definitions agree with the usual notions of hemi-

continuity and demicontinuity [3].

It is known [1, Theorem 1.2] that if Fis monotone, vaguely continuous,

and if T(x) is closed and convex for each xeX, then T is maximal mono-

tone. Conversely [1, Lemma 1.1], if F is maximal monotone it follows

that T(x) is closed and convex for each x e X. The converse is complete

when the closed unit ball of X* is weak* sequentially compact.

Theorem 3. Let X be separable or reflexive. A maximal monotone

set T with T(x) nonempty for each x e X is demicontinuous.

Proof. Let {xn} converge to x0 in X and vn e T(xn). Theorem 2

asserts that {vn} is bounded, so by weak* compactness of the unit ball

of X*, it suffices to show that if {vn} is weak* convergent to v0, then

v0 e T(x0). But for each x e X and w e T(x) we have by monotonicity

(vn - w, xn - x) > 0,       n > 1,
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so taking the limit gives

(t»0 - w, x0 - x) > 0,       [w, x] e T.

Since T is maximal monotone, t?0 6 r(jc0).

Corollary 1. Let X be separable or reflexive. The set T is maximal

monotone if and only if it is monotone, vaguely continuous, and Tix) is

closed and convex for each x e X.

Clearly, Corollary 1 is true with vague continuity replaced by hemi-

continuity or demicontinuity (or upper semicontinuity [2]) so these

notions agree for monotone sets whose images are closed and convex.

Furthermore, since the sum

Tx+T2 = {[x, wx + w2]:[x, Wj] e T„j-1,2}

of a vaguely continuous set Tx and a hemicontinuous set T2 is vaguely

continuous, we have a perturbation result.

Corollary 2. Let Tx be vaguely continuous and X be separable or

reflexive. If T2 is maximal monotone and the sum T3=TX+T2 is monotone

with T3ix) closed, convex and nonempty for each x e X, then T3 is maximal

monotone. In particular, if T2 and T3 are monotone with T2ix) and T3ix)

closed, convex and nonempty for each x e X, and if Tx is vaguely continuous

and single valued, then T2 is maximal monotone if and only if T3 is maximal

monotone.

Finally, if the range of T, (J {T(x):x e X) is all of A'* and A'is reflexive,

then the inverse set T~1 = {[x,w]:[w,x]e T} is monotone (maximal

monotone) if and only if 7" is monotone (respectively, maximal monotone).

This gives

Corollary 3. Let T be a monotone set in XxX* with X reflexive.

Suppose that T(x) and T^(w) are closed, convex and nonempty for each

x e X and w e X*. Then T is vaguely continuous (or hemicontinuous or

demicontinuous) if and only if T~* is vaguely continuous (or hemicontinuous

or demicontinuous).

The preceding results give improvements in many of the results of

[1], [2] : we obtain converses to certain of these, and we may drop bounded-

ness assumptions in others. Theorem 2 shows that monotone sets map

compact sets into bounded sets, so if X has finite dimension, a monotone

T maps bounded sets to bounded sets and is maximal if and only if it is

continuous.
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