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WELL-POSED PROBLEMS FOR A PARTIAL DIFFERENTIAL
EQUATION OF ORDER 2m + 1"

R. E. SHOWALTER"

We are concerned here with well-posed problems for the partial differential
equation

ut(x, t) + yMut(x, t) + Lu(x, t) f(x, t)

containing the elliptic differential operator M of order 2m and the differential
operator L of order <__ 2m. Hilbert space methods are used to formulate and solve
an abstract form of the problem and to discuss existence, uniqueness, asymptotic
behavior and boundary conditions of a solution.

The formulation of a generalized problem is the objective of 1, and we shall
have reason to consider two types of solutions, called weak and strong. Sufficient
conditions on the operator M are given for the existence and uniqueness of a weak
solution to the generalized problem. These conditions constitute elliptic hypotheses
on M and are discussed briefly in 3. Similar assumptions on L lead to results on
the asymptotic behavior of a weak solution. The case in which M and L are equal
and self-adjoint is discussed in 2, and it is here that the role of the coefficient 7 of
the equation appears first. Special as it is, this is a situation that often arises in
applications, and there has been considerable interest in this coefficient 7 [4], [25].
The weak and strong solutions are distinguished not only by regularity conditions
but also by their associated boundary conditions. It first appears in 5 that it is
possible to prescribe too many (independent) boundary conditions on a strong
solution, but in the applications it is seen that the interdependence of these condi-
tions is built into the assumptions on the domains ofthe operators. Two examples of
applications appear in 6 with a discussion of the types of boundary conditions
that are appropriate.

1. The generalized problem. Let G be a nonempty open set in the n-dimensional
real Euclidean space, R", whose boundary G is an (n 1)-dimensional manifold
with G lying on one side of it. C(G) is the space of infinitely differentiable functions
on G, and C(G) is the linear subspace of C(G) consisting of functions with
compact support in G. The Sobolev space Hm(G)= H is the Hilbert space of
(equivalence classes of) functions in L2(G), all of whose distributional derivatives
through order m belong to L2(G). The inner product and norm are given,
respectively, by

and Ilfll,, X//(f,f)m, where e (e, ..., e,) denotes an n-tuple of nonnegative
integers, and c31l

D

is a derivative of order [[ 1 -- -- n"* Received by the editors September 18, 1969.
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Ho(G) H’ is the closure of C(G) in Hm; it is known that if cG is m times
continuously differentiable and b is in C 1(cl (G)) then b is in/-o(G) if and only
if it is in Hm(G) and vanishes on cG together with all derivatives of order <_ m 1.
Hence, 4) H’ is a weak Dirichlet boundary condition. In order to determine
other boundary conditions, we let V be a closed subspace of H that contains
C(G) and define the norm on Vby qSlv 114llm for b V.

We shall consider the equation

(1.1) u’(t) + 7/[u’(t) + u(t)= f(t)

containing the indicated vector-valued functions and the partial differential
operators of order 2m in the divergence forms

(1.2) ///= {(- 1)llDm’(x)D’Ipl, lal =< m},
(1.3) &a {(_ 1)l,lDop,(x)D, "lPl, Irl _-< m}.
Since we are concerned with weak solutions, it suffices to require only that the
coefficients in (1.2) and (1.3) be bounded and measurable on G. This implies that the
sesquilinear forms

(1.4) m(b, O)= {(m’D’dp,DO)o "IPl, Irl m},
(1.5) l(b, )= {(l*D*dp, DO)o "IPl, I1 m}
are bounded on V; in particular, for all q5 and O in Vwe have

(1.6) Im(qS, 0)1 Km bllvl 0 ,

where K sup {llmP*lloo} and g sup {ll/P*lloo}. These sesquilinear forms can
be used to specify solutions of (1.1) in V, since for any u in V the conjugate linear
maps q5 --, m(u, 4)) and 4 l(u, ok) are continuous from (G) into C, where @(G)
is the linear space C(G) with the topology of L. Schwartz [11], [19]. These maps
determine elements of ’(G), the space of distributions, and they satisfy

(1.8) m(u, 4)) (#u, dp),

(1.9) l(u, c) (’u, dp)

for all q5 in (G). The operators and 5e map Vinto ’(G).
Let H be the Hilbert space LZ(G). Define linear subsets of H by D(M)

{ue V’/(u)e H and (1.8)holds for all qSe V} and D(L) {ue V’(u) H and
(1.9) holds for all b in V}, and let M and L denote the restrictions of///and 5 to
D(M) and D(L), respectively. Then M and L are unbounded operators on H whose
domains are contained in V [3], [10]. Furthermore, for any u in D(M),

(1.10) m(u, v) (Mu, v),

for all v in V and

(1.11)

for all u in D(L) and v in V.

l(u, v) (Lu, v)n



216 R.E. SHOWALTER

The generalized problem is the following" Let V and H be Hilbert spaces for
which the injections 5(G)c__, V c__., H are continuous and (G) is dense in H. Let m
and be sesquilinear forms on V which satisfy (1.6) and (1.7). Let Uo belong to V,
and let f be a continuous map of R into H. Find a continuously differentiable
function u of R into V such that u(0) Uo and

(1.12) (u’(t), v)n + 7m(u’(t), v) + l(u(t), v) (f(t), v)n

for all v in V and in .
A solution of the generalized problem is a weak solution of (1.1), since for all

q5 in C(G) it follows from (1.8) and (1.9) that

(u’(t), d?) + 7(//u’(t), b) + (u(t), d?) (f(t),

hence (1.1) holds in ’(G). Furthermore, if u(t) belongs to D(L) and u’(t) to D(M)
for all in , then

u’(t) + 7Mu’(t) + Lu(t) f(t)

in H, and u(t) is called a strong solution of (1.12).
We shall hereafter assume, with no loss of generality, that

for in V.

2. A special case with L M L*. We first use the method of eigenfunction
expansions to obtain a rather precise description of solutions of the generalized
problem with m =- l, Assume that

(2.1) l(u, v) l(v, u) for all u, v in V,

(2.2) l(u, u) >= klllUll2v for all u in V, k > O,

and the injection

(2.3) VH is completely continuous.

The condition (2.1) implies that L is symmetric, while (2.2) implies that L is
a bijection of D(L) onto H [11], [12], [15], [16]. In fact, (2.2) and (1.11) imply that
for any 05 in H,

k z-ld? <= (b,L-lqg)H =< qSlllL-lq5 ,
so L-a is continuous from H into V and satisfies

IIL-4llv <_- k-lllb I,
for all b in H. The condition (2.3) will be satisfied if G is bounded and either
V =/o(G) or cG is sufficiently smooth [1], [5, [16.

From (1.7), (2.1) and (2.2) it follows that the sesquilinear form [u, v] l(u, v)
is an inner product on Vfor which the associated norm Ilu It u, u] /2 is equivalent
to the norm Ilullv, Letting K be the restriction of L- to V, we see that

(2.4) [Ku, v] (u, v)n

for all u and v in V, and from (2.1) it follows that K is symmetric on Vwith respect to
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[’,’ ]. Also, K is the composition of the continuous operator L- "H - V and the
completely continuous injection, so K is a completely continuous operator on V.

The spectral resolution of completely continuous and symmetric operators is
well known [18] there is a complete orthonormal sequence {q.} of eigenvectors of
K in Vand associated eigenvalues {p} such that

(2.5a) Kb. p,b, for all n => 1,

(2.5b) [qb,., b.] bin,, for all m, n >__ 1,

(25c) Pl => P2 > P3 >’’" P.--0 asn o

and every v in V can be written as

(2.5d) v Iv, qb,]b,.
n>_l

Let 2.---(p,)-l; the sequence {2,} is nondecreasing and unbounded by (2.5c),
and Lb, 2,q, for n _>_ 1. Since (bm, b,)n [Kbm, b,] p,,6,.,, for m, n >__ 1,
the sequence {,n/zqn} is orthonormal in H. It is also complete, for iff is in H there is
a u in V with Lu f The sequence u. ,=1 [u, 4k]4k Z,=I (f, 4k)nb, con-
verges in V to u, hence u, u in H. The sequence Lu. " ( "k]l/Ztk’klHZk]]l/2bk

{2 b,}, so L beingconverges in H, since it is the Fourier expansion of f by 1/2

closed implies Lu f k (f 2/2b)n2/zb.
Let u(t) be a solution of the generalized problem. For each in R there is a

unique sequence {u,(t)} of complex numbers for which

(2.6) u(t) u,(t)dp,.
n>l

These Fourier coefficients are given by u,(t) [u(t), b,], so each is a continuously
differentiable function which satisfies the initial condition

(2.7) u,(0) [Uo,

If s.(t) denotes the nth partial sum of the series (2.6), then s,(t) converges to u(t) in V.
The continuity of u(t) implies that this convergence is uniform on compact subsets
of R. To verify this, let g,(t)= ]]u(t)- s,(t)]]2. Then each g, is continuous, the
sequence g,(t) converges to zero for each t, and from

g.(t)= ]uk(t)[ 2
k=n+l

it follows that the sequence is monotone, so the convergence is uniform on each
compact subset of R by a well-known theorem of Dini [12].

Furthermore, the sequence of formal derivatives {s’,(t)} converges to u’(t) in V.
This follows by obtaining the Fourier expansion of u’(t), which converges uniformly
on compact subsets of R as above, and integrating this series termwise to obtain
u(t). Since s,(t) u(t) and s’,(t)--, u’(t) in V, we have for any v in V, l(s,(t), v)

l(u(t), v) and yl(s’,(t), v) + (s’,(t), v)n --. yl(u’(t), v) + (u’(t), v)n. The sequence
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{/nl/2n} is orthonormal and complete in H, so

/2,L ]1(f(t), v)n (f(t), 2, WnlHznl2)n, I))H
n>l

(f(t),dp.)n[dp.,v].
n>_l

Thus, for each in R and v in V we have, by (2.4) and (2.5a),

{(p, + 7)u’,(t) + u,(t)- (f(t), qS,)H} [qS,, v] 0,
n>l

and this yields the necessary condition

(2.8) (p, + 7)u,(t) + u,(t)= (f(t), 49,), n >= 1,

for u(t) to be a solution of (1.12).
Let M be the (finite) set of integers m for which 7 + Pm= 0, and N the set of

integers n >= 1 for which 7 + P, - 0. It follows from (2.7) and (2.8) that for all n in N,

u,(t) [u0, qb,] exp (-(7 + P,) -it)

+ (7 + P,)- exp ((7 + P,)- 1(r t))(f(r), ck,)i dr,

and for m in M we must have u,,(t) (f(t), 49m)" In particular, the initial function
must satisfy the compatibility condition [Uo, m] (f(0), 4m)n for all m in m.
That is, 2mUO f(O) is orthogonal in H to 4,, whenever 7 + Pm= 0. These remarks
verify the uniqueness and representation statements of the following result.

THEOREM 1. With the assumptions (2.1), (2.2) and (2.3), the generalized problem
of 1 with m =- has at most one solution. A solution exists if and only if for each
integer in M {m: 7 +Pm 0}, the compatibility condition

l(uo, Cm) (f(O), Cm)H

holds and the function (f(t), era) is continuously differentiable. This solution is

given by the expansion

(2.9)

u(t) [Uo, b.] exp (-(7 + P.)-

+ (7 + p.)-i exp ((7 + P.)-
N

+ 2 (f(t),
mM

where N is the set of integers n >= 1 with 7 + P, O.
We need only to verify that the function defined by (2.9) is a solution of the

problem. Since the sequence {p,} converges, the sequence {(7 + P,)- 1} is uniformly
bounded for n in N. If K is a compact subset ofR and m >__ n > sup (M), then from
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the estimate

k=n k=n

N sup {exp (-(7 + p)- t).: n e N, e K}

Euo, 21 =

for all in K and from the convergence of the expansion of Uo by {4}, it follows
that the first series in (2.9) converges uniformly on each compact K in R. A similar
estimate shows that all derivatives of this series converge uniformly on compact
subsets of R, so these can be integrated term-by-term to show that the sum of this
series is infinitely differentiable with respect to in the V-norm (equivalently, the
/-norm) and its derivatives are obtained by differentiating the series term-by-term.

In order to discuss the second term in (2.9), let T > 0 and 0 N r N T. The
continuity of f: R H and of L-’H V imply that the function L-f:R V is
continuous;hence, the series

(2.10) EL-’f(), ,], (f(v), ,)n,
n=l n=l

converges to L- af(z) for each z in , and the convergence is uniform on [0, T] by
an argument as above which depends on the theorem of Dini. Letting q denote the
supremum of the numbers

1(7 + P,)-’ exp ( + p.)-’(’ t)l

over all n in N and in [0, T], we obtain the estimate

(2.11)

( + p)-’ exp (( + p)-’(z t))(f(z), qS)ndp
k=n

I( + p)-’ exp (( + p)-’(r, t))(f(r), qS)nl 2

rt2 ,l(f(), qS,)[ 2

k-n

(f(:), b)nb
k--t

for r in [0, T] and m >__ n > sup (M). But we have shown that the series (2.10) is
uniformly convergent on [0, T], hence uniformly Cauchy, so this shows that the
series appearing in the first term of (2.11) is uniformly Cauchy on [0, T]. We may
then integrate this series termwise with respect to r over the interval [0, t], and
this integrated series converges uniformly for all in [0, T]. Thus, the second series
in (2.9)converges uniformly on compact subsets of ] to a continuous function
from ]R into V. Application of a similar argument to the termwise derivative of this
series shows that the sum of this series is continuously differentiable in V, and its
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derivative is the limit in V of the termwise derivative of the series. The convergence
is uniform on compact subsets of.

That the continuously differentiable V-valued function defined by (2.9) is the
solution of the generalized problem follows easily by a routine computation
similar to that which led to (2.8) above.

3. Existence of a solution. The objective in this section is to develop sufficient
conditions to guarantee the existence of a solution to the generalized problem of 1.
This development depends on the Lax-Milgram theorem, which gives sufficient
conditions on a sesquilinear form in the situation of 1 for the associated un-
bounded operator to be onto [11], [15], [16], and the calculus of functions taking
values in a Banach space [3], [9]. The major result is Theorem 2, and the two
following corollaries give sufficient conditions on the parameter 7 in order that
the hypothesis of Theorem 2 be fulfilled for the case in which the operator //{ is
elliptic.

Let the Hilbert spaces H and V and sesquilinear forms m and be as specified
in the generalized problem, and assume further that there is a constant k > 0 for
which

for all in V. This implies that the operator M + I is a bijection of D(M) onto H
and that D(M) is dense in V. It follows then from (1.10), (1.11) and (1.7) that for any
4 in D(L)

kl (TM + I)- LI I(L, (TM + I)- L)nl

II(, (TM +

and hence the estimate

for all 4 in D(L). If D(L) is dense in V, it follows from (3.2) that (TM + -L has a
unique bounded extension from V into V which we shall hereafter denote by B.

Since B belongs to the Banach algebra (V) of continuous linear operators
on V, we may define by a power series a one-parameter group ofbounded operators
on V by

exp (- Bt) ((- )"/n
nO

for in R [9]. The operator-valued function exp (-Bt) is differentiable in the
uniform operator topology of (V) and satisfies

.d
d exp (- Bt) B.exp (- Bt).

We now define a V-valued function as follows. Since (7M + - is a bounded
map of H into V as a consequence of (3.1), and since f:R H is continuous, it
follows that (7M + -fis continuous from R into V, and so also is the function

r exp (B(r 0)(M + - f(r)
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for each in R. Hence we can define for each in R an element of Vby the formula

(3.3) u(t) exp (- Bt).uo + exp (B(r t)). (TM + /)- 1. f(r) dz,

where u0 is the initial condition specified in V. Then u’R---, V is continuously
differentiable and satisfies the equations

(3.4) u’(t) + Bu(t)= (TM + /)-if(t), U(0) Uo

in V. From (3.4) we can show that u is a solution of the generalized problem. Let
R and let {4,} be a sequence in D(L) for which 4, ---’ u(t) in V. The continuity

of B implies by (3.4) that {Bb,} converges in V to -u’(t) + (7M + /)-if(t). Since
B is an extension of (7M + /)- 1L and each 4, is in D(L), it follows that each
is in D(M) and

(?M + /)(-BqS,) + LqS, 0.

Thus for each n _>_ 1 and each in 1/we obtain, by (1.10) and (1.11),

3’m(--Bq,, v) + (-Bb,, v)n + l(b,, v) 0,

and taking the limit in this equation as n -. oo we obtain (1.12).
The requirement that D(L) be dense in V (which was used twice in the above

arguments) is not essential for existence or uniqueness. In particular, u(t) is,a

solution if and only if w(t) e-Xtu(t) is a solution of the problem with initial data
Uo, nonhomogeneous term F(t) e-Zf(t), and the equations (1.12) with replaced
by

,((u, v). + m(u, v)) + l(u, v).

By taking 2 sufficiently large, say, 2 (Kz + kz)/k, it follows from (1.7) and (3.1)
that we may assume without loss of generality that

(3.5) II(q, )l > k114llv2

for all q5 in V. From the Lax-Milgram theorem and (3.5) it follows that D(L) is
dense in V, and we obtain the following theorem.

THEOREM 2. If the sesquilinearform m of the generalized problem satisfies (3.1),
then there exists a solution of this problem, and it is given by the formula (3.3).

Coercive inequalities like (3.1) and (3.5) are known to hold for the sesquilinear
forms associated with strongly elliptic partial differential operators. Garding has
verified the following result [8]"

Let /be the operator specified by (1.2); if all the coefficients are bounded
and measurable, the principal coefficients {m’lpl lal m} are uniformly
continuous on cl (G), and if

Re{,pl=lal=mZ Pmmr(X)r} Co[l 2m Co>0,

for all real vectors in R", then there exist real numbers c > 0 and c such that

Re {m(qS, b)} + c2141t02 => Clll I2

for all b in H’(G), where G is bounded and open in R".
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Similar results will be established for some particular examples in 6 for spaces
V other than H"d(G). For some other coerciveness results see [13], [16], [17]. We
shall make the following assumption: there is a number such that for every e > 0
there is a fl(a, e) > 0 for which

(3.6) Re m(4, 4)/ ( / )1 11 _->/31 llv2

for all 4 in V.
Consider first the generalized problem with 7 > 0. From (3.6) it follows that

(3.7)

for all q5 in V if /(e + e) _<_ 1 for some e > 0 in the case e >= 0 and for any 7 if
< 0. Since

Re 7m(b, qS) + I1112 __< lym(4, 4) + I I1,
we obtain from Theorem 2 the following corollary.

COROLLARY 1. Assume that the sesquilinear form m satisfies (3.6). Then the
generalized problem has a solution if > 0 and 0 < y < -1 or if <= 0 and 0 < y.

For the case of < 0 the above method is applicable only if (3.6) holds for
some e < 0, for if

-), Re m(qb, 4’) [lbllr] >
for all in V, then

Re m(, ) (-)-allll
so (3.6) holds with 7- < 0. Conversely, if (3.6) holds for some < 0, then

2(3.8) (-7)flllllv

for all in Vif, for some e > 0, ( + e) ) + 1 0, and this is true if > (- )- .
COROLLARY 2. Assume that the sesquilinear form m satisfies (3.6) with < O.

Then the generalized problem has a solution < -.
4. Uniqueness and boundedness. The solution of the generalized problem

constructed in 3 is the only solution. In particular, we shall show that (3.1) yields
estimates on the growth of a solution and dependence on the initial data and non-
homogeneous term of (1.12). Estimates of the type (3.6) for m and and symmetry
of m imply that the solution of the homogeneous equation is asymptotically stable,
since all such solutions decay exponentially to zero.

Consider the sesquilinear forms m and introduced above on V x V. For
each 4 in V, the conjugate linear functional m(qS, ) on V is bounded by (1.6),
so the Riesz-Fr6chet theorem [11] implies the existence of a unique mo(4) in V
for which

(4.1) m(qS,

for all O in V. This determines a bounded operator too: V --, Vwhose norm in (V)
satisfies Ilmo[I <_- Km by (1.6). Similarly, there is a unique operator lo in &(V) for
which

(4.2) l(b, O) (lo(b), )v
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for all and ff in V with (V)-norm II/o[I Kl by (1.7). The continuity of the
injection Vc-, H suggests the construction of an operator J :H- V as follows.
For each 4 in H, the conjugate linear form ff- (, ff)n is continuous on V, so
there is a unique J() in V for which

(4.3) (b, 0)n (JqS, 0)v

for all ff in V. This operator J maps H into V, and it follows from (1.13) that the
5(H, V)-norm of J satisfies

IIJII _-< 1.

Let v(t) be any solution of the generalized problem. It follows from (1.12),
(4.1), (4.2) and (4.3) that

(4.4) (J + ymo)v’(t) + lov(t)= Jf(t)

in V. That is, v(t) satisfies (4.4) in V with bounded operator coefficients. From the
estimate (3.1) and the Lax-Milgram theorem it follows that the bounded operator
Vmo + J on V associated with the V-coercive sesquilinear form Vm(b, ) + (b, )n
is a topological isomorphism of V onto V for which the (V)-norm of the inverse
satisfies [[(ymo + J)-1 =< k-1. Hence the function v(t) satisfies the equation

(4.5) v’(t) + (J + ymo)-1/o v(t) (J -k- ymo)-1Jf(t).

Since v’R --. V is continuously differentiable, the real-valued function

a(t) Iv(t)l v2

is continuously differentiable and by (4.5) satisfies

a’(t) 2 Re (v’(t), v(t))v

2Re {-((J + 7mo)-llov(t),v(t))v + ((J + mo)-lJ.f(t),v(t))v}
and this in turn implies

[a’(t)[ <_ 2k-lKl[[V(t)[l, + 2k-l[If(t)lln[[v(t)l[v
(4.6) _< k- 1(2K/+ 1)a(t) + k- If(t)

for all in R. From (4.6) we obtain the estimates

(4.7)

and

(4.8)

for all in

a(t) <_ a(O) exp (k- l(2Kt + 1)ltl)

+ k -1 exp (k- l(2Kl + 1)It :1). f(:)ll2n d:

o’(t) if(0) exp (-k- l(2K/-q- 1)lt])

The linearity of the problem and the preceding remarks yield the following
result.

THEOREM 3. Let the sesquilinear form m of the generalized problem satisfy (3.1)
for all ck in V. If us(t), 1, 2, are solutions of the generalized problem with initial
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data u(O) and u(O) and nonhomogeneous terms f(t) and fa(t), respectively, then
r(t) Ilu(t) u2(t)ll satisfies the growth and decay estimates (4.7) and (4.8) with

f f -f. In particular, the generalized problem has at most one solution.
Stronger estimates on the solution can be obtained when the sesquilinear

form m is symmetric and satisfies estimates of the form obtained for the corollaries
of 3. Let us assume then that

(4.9) m(b, k) m(O, qS) for all b, O in V,

and that

(4.10)

for all b in V. The condition (4.9) implies that m(qS, qS) m(qS, b) is real for each
q5 in V, and (4.10) is equivalent to (3.7) when 7 > 0 and to (3.8) when 7 < 0. Thus
(4.10) follows from the coercive estimate (3.6) for certain values of 7.

Let u(t) be a solution of the generalized problem. Then the real-valued function

Z(t) lylm(u(t), u(t)) / sgn (7)lu(t)ll
is continuously differentiable, and from (4.9) we obtain

E’(t) 2 Re {ITlm(u’(t), u(t)) / sgn (T)(u’(t), u(t))}
2 sgn (7) Re {Tm(u’(t), u(t)) + (u’(t), u(t))n}.

If (1.12)is homogeneous, then

E’(t) 2 sgn (7) Re {-l(u(t), u(t))},
and if satisfies the coercive estimate

(4.11) sgn () Re l(dp, dp) >= k1141
for some k > 0 and all q5 in V, then we have from this and (1.6) the estimate

,’(t) < -2k u(t)l _-< -2kl(lylgm + 1)-22(t).
But this implies that for all >= 0,

(t) =< exp (- 2kl(lTlg + 1) -lt)(0).
We summarize these results in the following theorem.

THEOREM 4. Assume that the sesquilinear forms of the generalized problem
satisfy (4.9), (4.10) and (4.11). Then there exists a unique solution to the generalized
problem, and iff =_ 0 in (1.12), then this solution satisfies the estimate

(4.12) Ilu(t)llv (fl-lKm nt- ]T]-I) lUo vexp(-kl(lTlKm + 1) -t)

for all >= O.
This last inequality follows from the estimate on Z(t) together with (1.6) and

(4.10). Also, (4.10) implies (3.1). By the usual linearity arguments, one may obtain
estimates for the solution of the nonhomogeneous equation (1.12) by adding (4.8)
with or(0) Iluollv2 0 and (4.12). The same argument shows that if(4.11) is replaced
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by the estimate

(4.13) -sgn (,) Re l(b, b) >= kl]]bl]v2,

then one obtains an estimate like (4.12) with the inequality reversed, so the solution
grows at least exponentially in norm. Finally, we remark that with all the hypotheses
above except f 0, the difference of two solutions with different initial data
satisfies (4.12), so the effect of initial data is "transient".

5. Weak and strong solutions. The objective of this section is to show that ifM
and L satisfy elliptic hypotheses and if M is "stronger" than L, then the weak
solution of the problem is a strong solution if and only if the initial function u0 is
in the domain of L.

THEOREM 5. Assume that the sesquilinear forms m and of the generalized
problem satisfy the estimates (3.1) and (3.5), and that D(M)

_
D(L). If Uo belongs

to D(L), then the weak solution (3.3) of the generalized problem is a strong solution
( 1).

Proof. From the estimate (3.5) it follows that L- is a continuous injection of
H into V. Hence we can define by

a norm on D(L) for which the injection D(L) V is continuous. The completeness
of H shows that D(L) is complete in the norm (5.1). The bounded extension B of
(TM + /)-1L maps D(L) into D(M), and the assumption above that D(M)

_
D(L)

implies that B maps D(L) into D(L). Thus B is a continuous linear operator from
V into V, and the space D(L) is invariant under B. This implies by the closed graph
theorem that B is continuous from D(L) into itself with the norm (5.1). To see this,
let {qS,} be a sequence in D(L) for which 114.- XollL --* 0 and lIB.. YOIIL --* 0
as n , where Yo and Xo are in D(L). Then

Ilyo- Bxo Iv <- [Yo Bqb,,llv + [IB(c,,-

< Ilyo BqbnlIv + [BlleCv)llqb,- Xollv,

and the continuity of the injection D(L) V implies that each of these terms con-
verges to zero, so Yo Bxo. Thus B is a closed and everywhere-defined linear
operator and is hence continuous on D(L) [9], [18].

The significance of the continuity of B on D(L) is that the restrictions of the
operators

{exp (-Bt)’t in R}
are bounded on D(L), and hence the function t--* exp (-Bt)uo is in CI(D(L)).
Finally, each (TM + /)-if(t) belongs to D(M), hence also D(L), and an argument
like that above shows that (TM + /)- is continuous from H into D(L), sof" R H
being continuous implies that the function

t- exp (B(z t))(TM + /)- lf(z) dr

is in C(D(L)). Hence the (weak) solution of the generalized problem given by (3.3)
is in C(D(L)), and differentiating this function shows that u’(t) belongs to D(M)
for each in , so u(t) is a strong solution of the problem.
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Theorem 5 is really a regularity result, for the domain of an elliptic operator
consists of functions which are "smooth". In particular, the global regularity
results for elliptic operators can be used to show that B leaves invariant the sub-
spaces V HP(G), and an argument like that above shows that u(t) belongs to
V fq HP(G), where the integer p depends on the coefficients in M and L and the
boundary of G. The details for the case V H(G) for Dirichlet boundary con-
ditions on an equation of order 3 appear in [22].

The interesting distinction between weak and strong solutions is the type of
boundary conditions they carry. If u(t) is a strong solution of the generalized
problem, then u(t) and u’(t) belong to D(L) and D(M), respectively, and from (1.8)
and (1.9) it follows that

(5.2) m(u’(t), v) (Mu’(t), v)n

and

(5.3) l(u(t), v) (Lu(t),

for all v in V. These constitute independent boundary conditions on u’(t) and u(t),
respectively, if V properly contains/-o(G). Also, the conditions that u(t) and u’(t)
belong to V constitute boundary conditions if V is properly contained in Hm(G).
The conditions (5.2) and (5.3) will be called strong boundary conditions.

Suppose u(t) is a weak solution of the generalized problem. Then the identities
(1.8), (1.9) and (1.12)imply that

(5.4) u’(t) + 7//u’(t) + ’u(t)= f(t)

in ’(G). From (1.12) and (5.4), we obtain the identity

(5.5) (y#u’(t) + L’u(t), v)n ym(u’(t), v) + l(u(t), v)

for all v in V. This will be called a weak boundary condition, since it is certainly
implied by the strong boundary conditions.

6. Applications. We shall discuss the implications of our_ above results in two
examples. The first originates in the flow of second order fluids as discussed in
[4] and [25], and our results contain most of those in these references. The second
example includes the above as well as problems in consolidation of clay [24] and
homogeneous fluid flow in fissured rocks [2]. Our results are adequate to discuss
all of the boundary value problems associated with these theories as well as many
for which no physical applications are known to this writer.

For the first example, let G be the interval (0, T), T > 0, and define

l(u, v) Uxdx

for u and v in Hi(G). For functions in Ha(G) we have, for x, y in G,

(6.1) lu(x)- u(y)l- u’(s) ds <= Ix yl /2 ull,

so Hi(G) contains only continuous functions. Suppose V is a closed subspace of
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Hi(G) which contains only functions which vanish at x T. Then for such q5 in V,

(6.2) sup {Irk(x)[ "0 < x =< T} =< (T)l/2]lqSII1

From (6.1) and (6.2) it follows that any sequence {qS,} of elements of V for which
b,[I =< 1 for all n is a sequence ofequicontinuous and uniformly bounded functions.
By the Ascoli-Arzelt theorem [11], [18], such a sequence has a uniformly con-
vergent subsequence which then converges in the mean-square norm. That is, the
injection of V into H L2(G) is completely continuous.

For any q5 in V, we have

14(x)12 + XI(x)I2 dx xl4(x)12 0

since qS(T) 0, so

From the inequality 2fl =< 202 + 2/2, we obtain

I(x)l 2 dx -- I(x)l 2 dx + 2T2 I’(x)l 2 dx,
-2

and hence the inequality

(6.3) I11o 2T IG o

for in V. From (6.3) we have for all u in V,

l(u, u) lu x

> lull 2 dx + lul 2 dx > k [u I=2

where k min [1/2, 1/(8T2)] > 0. Thus the conditions (2.1), (2.2) and (2.3) are
satisfied. By Theorem 1 there is a unique solution of the generalized problem of

1 for certain values of 7 which is then a solution of the equation u’(t) + 7u’(t)
+ u(t) f(t), where is the distributional derivative -d2/dx2. Furthermore,
the inequality (6.2) shows that for each x (0, T), the "evaluation" functional
e’u u(x) from V into C is continuous, so u’(t)(x) O[u(t)(x)]/Ot in the equation.
If y is not equal to any of the eigenvalues {p,}, then the initial data and nonhomo-
geneous term are prescribed arbitrarily. For the exceptional values, a compatibility
condition is necessary and sufficient for the existence of the solution which is given
by (2.9). We shall discuss two choices for V and the associated problem.

If V { in Ha(G)’(T) 0} then the sequence of eigenvalues is given by
p, (2T/((2n 1)))2, n 1, and the eigenfunctions are cos (p /2 x).

For u and v in V, we obtain by integrating by parts

(6.4) l(u v)= (u V)o u. vl r0
so u is in D(L) if and only ifu. vl 0 for all v in V. That is, u(0) 0. The condition
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that u belongs to V implies u(T) 0. Thus the solution u(t) of the generalized
problem satisfies the weak boundary conditions

(Tu’(t) / u(t))l=o 0,

u(t)l=T 0

from (5.5) and u(t)e V, respectively. The condition u’(t)lx=r--0 follows from
u’(t) V, but is redundant since it can be obtained from the second condition above
by differentiation. If 7 is chosen such that (3.1) holds and if Uo is in D(L) (see above),
then the solution satisfies the strong boundary condition

ux(t)l=o 0, u(t)l= T 0

from (5.3) and u(t) V. (Note that (5.2) leads to a redundant condition u(t)l= o 0.)
If V H(G)= {b e HI(G)’b(0)= qS(T)= 0}, then the sequence of eigen-

values and functions is given by p, (T/(nTr))2 and sin (p a/Zs), n > 1. For u, v
in V, all boundary terms are zero in (6.4), so the identities (5.2), (5.3) and (5.5) do
not determine boundary conditions. However u(t) V implies the boundary condi-
tions

u(t)lx=O u(t)lx= 0.

Similar applications hold in spaces of higher dimension. Estimates like (6.3)
hold for smooth domains and functions which vanish on a sufficiently large portion
of the boundary, and the injection of V into H LZ(G) is completely continuous
if G is bounded and either V H"(G) or the boundary is m times continuously
differentiable [5], [17]. Nonhomogeneous boundary data may be introduced by
superposition [22. The relation between u’(t)(x) and c[u(t)(x)]/c3t is not always so
clear as above; see [9, pp. 68-71] for results in this direction.

For a second example, which exhibits more of the "flavor" of these problems,
we define the forms

v)= (u,i, Vx,)o + f (s)u(s)(s)m(bl ds,
i=1 ,)0G

l(u (s)u(s)(s) ds,
i=1 dOG

where G is a bounded open set in R" with smooth boundary t3G, and ds denotes
Lebesgue measure on t3G. The functions , fl are in L(cG) and (s) >= 0. By elemen-
tary results on "traces" [17], m and are bounded on Hi(G). Since (s) > 0, it
follows that for each e > 0

m(qS, b) +
so (3.6) is satisfied with V <_ Ha(G), H L2(G) and z 0. Hence the generalized
problem has a unique solution for each 7 > 0.

If the elements of V satisfy the estimate

(6.5)
i=1

then (3.6) holds for small but negative, so the generalized problem has a unique
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solution for all 7 < (a)-1. Furthermore, if (6.5) holds and fl(s) >= 0, then the form
l(u, v) satisfies an estimate of the form (4.11) with y > 0, so the solution is asymp-
totically stable if f 0 in (1.12). Similarly, if y < (a)-1 < 0 then (6.5) implies
(4.13), and the solution grows exponentially as by the remarks at the end
of4.

In any case, there exists a unique solution of the generalized problem for 7
satisfying either of the two corollaries, and the V-valued function u(t) satisfies in
’(G) the equation

u’(t)- 7A,u’(t)- A,u(t)= f(t),

where 5 -A, is the Laplace operator in n variables, and the initial
condition u(0) Uo. If u and v are sufficiently regular and if cG is sufficiently
smooth for the divergence theorem to apply [13], then we have (formally)

(6.6) m(u, v) (-A,u, V)o + -n + u ds
G

and

(6.7) l(u, v) (-A.u, V)o +

for all u and v in V, where c/cn denotes the normal derivative. Thus, the weak
boundary condition is

for all v in V, while the strong boundary conditions are

io/ u, fo( u(6.9)
6 cn + au’ f)ds O, -n + flu fds O

for all v in V. The condition

(6.10) u(t) V

also holds true.
Let the boundary G be equal to the disjoint union of F1 and F2. Let V be

the closure in H(G) of the space of restrictions to G of those functions in C(R")
whose support is disjoint from F1. The condition (6.10) means that each u(t)
vanishes on F1 while the condition (6.8) implies that

cu’(t) cu(t)
(6.11) 7 On + au’(t) + ---- + flu 0

on F2

If that portion F1 of G on which the Dirichlet condition is prescribed is
sufficiently large, then the estimate (6.5) holds for some K and all b in V, and if

_>_ 0, then one can obtain the estimate (3.5) for 1. Finally, the identities (6.6) and
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(6.7) show that D(M)
_

D(L) if ft. From Theorem 5 it follows that if u0 belongs
to D(L), that is, if

3Uo + Uo 0

on I2, then the solution of the generalized problem, u(t), satisfies the strong
boundary condition

(6.12)
u(t) + u(t)- 0
#n

on 12 for all in R. Note that in order to obtain the condition D(M)
_

D(L), we
had to choose fl, and this makes the two conditions in (6.9) dependent, for
the first can be obtained from the second by differentiation. Although the boundary
conditions obtained by combining (6.10) with (6.11) or (6.12) for various choices
of F1, and fl include all cases of physical interest, many other types can be
introduced by adding more boundary integrals to the sesquilinear forms.
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