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Abstract 

The evolution of an elastic-plastic material is modeled as an initial boundary value problem consisting of the dynamic momentum equation 

coupled with a constitutive law for which the hysteretic dependence between stress and strain is described by a system of variational 

inequalities. This system is posed as an evolution equation in Hilbert space for which is proved the existence and uniqueness of three classes 

of solutions which are distinguished by their regularity. 

1. Introduction 

Classical models of elastic-plastic material lead to an initial-boundary-value problem consisting of the 

dynamic momentum equation 

u,, + D*a =f(x,t) (l.la) 

coupled with a constitutive law 

(T = F(E) (l.lb) 

which contains a system of variational inequalities. Here, u is the displacement vector, (T is the tensor of internal 
stress, f is the volume density of body force, and E is the strain tensor 

E=Du. (l.lc) 

The (small) strain is given by the symmetric gradient 

and the corresponding dual operator is the divergence 

1 

(D*cr), = - 2 Q 
,=I 

in ( 1. la). The constitutive law (l.lb) permits a variety of classical models of elastic-plastic materials with 
multi-yield surfaces. 

We give a new formulation of this system as an evolution equation in Hilbert space for which we prove the 
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existence and uniqueness of three classes of solutions which are distinguished by their regularity. Weak solutions 
are obtained in a very general situation, strong solutions arise in the presence of kinematic work-hardening or 
viscosity, and the solution is even more regular under a stability assumption connecting the constraint set with 

the divergence operator. This approach yields simpler proofs of many classical results, it displays clearly how 
the regularity arises from work hardening, and it leads in special cases to an even more regular solution that was 

anticipated from numerical experiments. 
A variety of well-known results will be recovered in this setting. The existence and uniqueness of the weak 

solution for the fundamental Prandtl-Reuss model with a single yield surface was given in [6]. The fundamental 
idea was to express the constitutive relation ( 1. lb) as a variational equation or inequality 

a; + dq(fr) 3 DZJ (1.2) 

which is coupled to the dynamic equation (1. la). Here, cp(. ) denotes either the indicator function I,(. ) of a 
given closed convex set K characterizing the particular plasticity model or a smooth convex function for the 
viscosity models, and a(p is the corresponding subgradient or derivative, respectively. For a weak solution, the 
strain-rate is not in L2, so it must be understood in a weak form by means of the dual operator, D*. The 
extension to more general Prandtl-Ishlinski models with multi-yield surfaces was obtained by Visintin [18]. In 

these models, the total stress is given as the sum of a collection of stress components, i.e. CT = Cj 5, where the 
collection of these components C? = {vj} satisfies a system of the form (1.2). An alternative approach is taken in 
the work of Krejci [ 131, where a large class of such general multiple component models is considered. There, 
the dissipation properties of the hysteresis functional are developed and exploited. 

The quasi-static case, in which the dynamic equation ( l.la) is replaced by the corresponding static equation, 
was developed in [9,10]. There a regularizing effect due to work-hardening of the material appeared, and both 
weak and strong forms of solutions were obtained. Also, see Babuska and Li [14], Suquet [17], and Han and 

Reddy [8]. 
Here, we shall write the system ( 1.1) in the form 

u, + D*a =f(x, t) , CT=CCT 
I 

(1.3a) 

c?‘, + &p( 6) - Du 3 g(x, t) , (1.3b) 

and show that the dynamics is governed by an m-accretive operator in L2-type spaces. In this framework, we 
obtain three classes of solutions which we call weak, strong and regular, respectively. The smoother strong 
solution with strain rate Du in L2 results from a boundedness assumption on a non-trivial measurable subset of 
the subgradients a~: in the system ( 1.3b). This assumption arises from a work hardening component in the stress 

or in the presence of viscosity. This shows that each of these characteristics has a regularizing effect. From an 
additional stability condition relating the convex sets of the plasticity model to the divergence operator, D*, we 

obtain the new regular solution for which each component of C? is smooth. Details are given here for the 
one-dimensional case, and it is straightforward to extend most of them to the realistic three-dimensional case. 
We have not been able to apply our results on the regular solutions to a three-dimensional model of plasticity. 

Our plan is as follows. We recall below some topics from convex analysis and evolution equations in Hilbert 

space. Section 2 consists of some elementary examples of models of plasticity. These motivate the general 
construction to follow. We introduce in Section 3 an abstract setting for these examples and recover the above 
mentioned well-known theorems as weak solutions, and additionally we give sufficient general conditions under 
which these solutions are strong. The new regular solution is obtained for the one-dimensional case. 

A (possibly multi-valued) operator or relation @ in a real Hilbert space H is a collection of related pairs 
[x, y] E H X H denoted by y E C(n); the domain Dam(C) is the set of all such x and the range Rg(@) consists 
of all such y. The operator @ is called accretive if for all y, E C(n,), y2 E @(x2), and c: > 0, we have 

IGC, - x2lI c II% -x2 + E(Y, - Y2)ll. 

This is equivalent to requiring that (I+ CC) ’ be a contraction on Rg(1+ E@) for every E > 0. This is also 
equivalent to requiring 

(Y, -y,,x, --x,),30 for all Ix,, Y, I, [x2, y21 E C 
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Additionally, if Rg(Z + E@) = H for some (equivalently, for all) E > 0, then we say @ is m-accretive. For such 
an operator, the Cauchy problem is known to be well-posed, and we shall realize each of our initial-boundary- 
value problems as such a problem in an appropriate function space. 

THEOREM A. Let c be m-accretive in the Hilbert space H. Zf T > 0, x0 E Dom(Q andf E W”‘(0, T; H), then 

there exists a unique solution x E W’*“(O, T, H) of the Cauchy problem 

x’(t) + C(x(t)) 3f(t) , t > 0 

x(0) =x0 

with x(t) E Dam(@) for all 0 G t G T. 

We will use some techniques of convex analysis to construct the operators below. For details, see [7,2,3]. Let 
W be a Hilbert space, and let (p : W + (- CQ, +@J] be convex, proper, and lower-semi-continuous. Then, tbe 
functional f E W’, the dual space, is a subgrudient of 40 at u E W if 

f(u - u) < q(u) - p(u) for all u E W . 

The set of all subgradients of cp at u is denoted by ap(u). The subgradient is a generalized notion of the 
derivative, comparable to a directional derivative. We regard I~+J as a multivalued operator from W to W’; it is 
easily shown to be monotone. That is, if f, E aq(u,), f, E 8rp(u,), then (f, - fi)(u, - u2) 3 0. 

If K is a closed, convex, nonempty subset of W, then the indicator function I,( * ) of K, given by ZK(w) = 0 if 
x E K and ZK(w) = +m otherwise, is convex, proper, and lower-semi-continuous. Its subgradient is characterized 
by a variational inequality: f E aZ,(w) means 

fEW’, wEK: f(y-w)GO forallyEK. 

As an example, we consider first the indicator function I,( - ) of tbe interval [- 1, 11. Thus, I, : IF8 + + R, is 
convex, proper, and lower-semi-continuous, and its subgradient is characterized as follows: f E aZ,(x) means 

f 30, forx= 1, 

(xl s 1 and 

c 

f=O, for -l<x<l, 
GO, for x = - 1 . 

Thus, aZ, is just the inverse of the sign graph, 

I 

(119 ifx>O, 

sgn(x)= [-l,ll, ifx=O, 

i-11, ifx<O. 

A second example is the corresponding realization on the Hilbert space W = L*(O, 1) given by 

I 
1 

4pl(U) = 
0 

~,b-wdx, UEW, (1.4) 

and here we havef E arp,(a) if f, u E W = W’ and f(x) E aZ,(a(x)) at a.e. x E (0, 1). For a third example, let q, 
be given by (1.4) on the Sobolev space W = H’(0, 1). Then, the inclusion f E 13rp,(o) implies that (+ is smoother, 
but it permits f to be a distribution, so tbe pointwise characterization above does not necessarily hold. 

2. Examples 

We shall describe a variety of models of plasticity in one spatial dimension for the ease of exposition. These 
are intended only to illustrate the theorems which will follow. The full 3-dimensional models can be developed 
similarly. 
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2.1. Elastic-petiectly plastic 

The momentum and constitutive equations are, respectively, 

u, - rr, =f > a, + sgnC(cr) 3 Er 

The phase diagram showing the /relationship between stress u and strain E is the hysteresis functional shown in 
Fig. 1. This model results from the series addition of an elastic element, a( = E,, and a perfectly-plastic element, 
sgn-‘(u) 3 E,. By equality of mixed derivatives, u,, = urX, the resulting dynamical system is (formally) given by 

v,-ur==f, O<X<l, O<t, u(O,t)=0 (2.la) 

q-uu,+sgn-‘(cr)30, cr(l,t)=O (2.lb) 

with appropriate initial conditions on v and cr. 
We shall write this as an evolution equation 

f iv, ul + WV, ul) 3 [.L 01 

in the appropriate product space. Define the Hilbert space 

w=(aEH’(O,1):u(l)=0). 

(2.2) 

Let the function p, be defined on this space W by (1.4). For E > 0, the corresponding resolvent equation, 
(I+ &)[v, g] 3 [f, g], is given by 

vEL2: v-Ear-f, O<x<l, (T(l)=O, 

crEW: u-&vEV,+E&JJ,(u)3g. 

Note that EV, and E c~(P, (a) are in W’, so this is a weak solution in our notation below, and there is no boundary 
value assigned to u(0). 

It will follow easily that @ is m-accretive, and then Theorem A shows directly that there is a unique weak 

solution of (2.1) with 

a~ au 
v, yxg, yzg E L”(0, T; L2(0, 1)) , u E L”(0, T; W) 

This is the content of Theorem W in the next section. This weak solution was already.obtained as Theorem 4.2 
of [6] and Theorem 1 of [18]. See [I] for regularity of the solution and the interpretation of (2.lb). 

2.2. Kinematic hardening 

Here, we assume that the material work-hardens each time the yield stress is reached. Momentum and 
constitutive equations are, respectively, 

Fig. 1 
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(2.3) 

This model results from the parallel addition of the elastic-plastic stress from Section 1 (corresponding to a,) 

with a purely elastic stress (corresponding to a;) which records the position of the center of the yield stress 
interval. The lines in Fig. 2 representing the upper and lower yield surfaces have slope &. 

We shall write the system (2.3) as an evolution equation (2.2) in the appropriate product space. The 

corresponding operator C is m-accretive in the space H = L’(O, 1)3 and, since v, E L*(O, l), it leads to a strong 

solution. This solution agrees with that of Theorem 1.2 of Chapter III in [13] where much more general 
situations are obtained. To this end, as well as to motivate our notation in the next section, we introduce the 
following: 

V= {v E H'(0, 1) : v(0) = 0} D = $ : V -+L*(O, 1) 

D*=-$:L*(O,l)+V’ is the continuous dual operator 

p = [&Z, &Z] : L2(0, l)+L*(O, 1>2 where p,, p2 E R are given, 

P*[d = P, PI + P*q 7 p* : L2(0, 1>2 +L2(0, 1) 

W, = {u = [CT,, u2] E L2(0, 1)2 : /l*u E H’(0, l), p*cr(l) = 0} 

Denote by D, the L*(O, 1)-adjoint of the closed operator, D. That is, 

D,w =ftiw, f E L*(O, 1) and (Dv, w) = (v, f) for all u E Dam(D) = V . 

Then, D, : Dom(D,) +L*(O, 1) is also closed and dense, and it can be characterized as follows. 

LEMMA. D,w =f E L’(O, 1)-w E L*(O, l), f = -dw/dx and w( * )v( * )I; = 0 for all v E dam(D). 

This shows how the boundary conditions imposed on D determine those associated with D,. Then, we set 
W= Dom(D,) so that D, : W + L*(O, 1). Note that for any solution of (2.3), either weak or strong, we have 
@*a E Wand D, can be replaced by D, in the momentum equation. In particular, /3*a satisfies the appropriate 

boundary condition. 
The resolvent equation (I + C)[v, a] 3 [J g] corresponding to (2.3) is equivalent to solving the system 

vEV: v+D*P*u=f, 

UE w,: u - /?Dv + [acp,(u,), 01 = g E L*(O, l)* . 

This is equivalent to solving for v the equation 

Fig. 2. 
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v EV: u+o*(P,(I+a(o,)-‘(p,D~+g,)+P:ou+P~g~)=f inV’. 

Since /Ii > 0, the form is coercive, and existence of a solution follows. The components of [g,, ~~1 E W, are 

obtained directly from the second and third terms in this equation, respectively, and then we check that u E IV,,. 
In particular, the boundary condition at x = 1 is satisfied. These remarks show that Theorem A applies directly 

to give existence and uniqueness of a strong solution of (2.3) with 

v E L”(0, T; V) , (T E L”(0, T; iv,) , 
au da 
at, x E L”(0, T; L2(0, 1)) . 

This is the content of Theorem S in Section 3. 

REMARK 1. Since u belongs to V instead of merely to L2(I), the solution here is smoother than that of Section 
1. This is made possible here by the coercivity resulting from the /Iz term. 

REMARK 2. We can include a viscous element in parallel to the above by adding a third equation of the form 

More generally, we can include visco-elastic elements in the form 

1 a a 
,;,u3+.l’(u3>=ci)xu. 

where J has a bounded derivative. This represents a series combination of elastic element and a purely viscous 

element, and one obtains strong solutions as above. See Theorem 3.1 of [6] for the case of a single stress 
component. 

Finally, we give a simple but important extension of the preceding example to a plasticity model built on four 
stress components. This will motivate the consideration of generalized sums or integrals of a collection or even 

a continuum of such components. The system is given by 

1 1 1 
a=u,+-u2+-a +-u4, 

2 4” 4 

d a 
~5 +a~,m~jp 

(2.4) 

a 1 a 
x$u4=~Yjyax. 

For each j = 1,2,3, 6 is the indicator function of the interval L-j, j], so the corresponding stress component q 
is constrained to lie within that interval. The relation between total stress u and strain 6 is indicated by Fig. 3. 

(Recall that as/ at = dv / 8.x is the strain rate.) Here, we begin with all components at 0. We increase the strain, 
8, from 0 to 5, decrease it to -5, then increase it to 2, and we follow the resulting stress, u. 

The limiting positive slope l/4 is the work-hardening component, and it is this component of the stress that 
leads to a strong solution of (2.4) as before. Since the boundary lines in this hysteresis functional are straight 
lines, such models are called multilinear. By using a collection of such components, one can approximate a large 
class of convex bounding curves; with a continuum of such components, the corresponding class of convex 
functions can be matched. Most models of plasticity involve such multiple yield surfaces, and these provide an 
approximation of the observed smooth transitions between elastic and plastic regimes. Such smooth transitions 
are best modeled by a continuum of elastic-plastic elements with varying yield surfaces. 
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Fig. 3. 

3. A general plasticity model 

Let D : Dam(D) +L*(O, 1) be a closed operator with dense domain Dam(D) in L’(O, 1). Let D, be the 
L*(O, 1)-adjoint of this closed operator. That is, 

D,w=f@w,fEt2(0,1) and (Du,w)=(v,f) foralluEDom(D). 

Therefore, D, : Dom(D,) -+L*(O, 1) is also closed and dense. We set W= Dom(D,) and give it the graph norm. 
Then, D, : W -+L*(O, 1), is a bounded operator between Banach spaces. The continuous dual operator will be 
denoted by 05 = (D,)* : L*(O, 1) + Dom(D,)’ = W’. Note that 

D@(w) = (u, D,w),z for all wEDom(D,), u EL*, 

= (Du, W)~Z for all w E Dom(D,) , u E dam(D) , 

so we have D$3 D in the sense of graphs. Similarly, we put the graph norm on Dam(D) and denote the 
resulting space by V. We define the continuous dual D * : L*(O, l)+V’ and note that D* 3 D,. 

Let S, k be a measure space. Define j3 : L2(0, 1) + L*(S, dp; L'(0, 1)) = L*(S X (0,l)) by (pg)(s, X) = 

J~(x, s)g(x) where p( * ; ) E Lm((O, I), L’(S)). Then the continuous dual is an operator p*: L’(.S, dp.; 

L*(O, 1))+L2(0, l), and we have 

P*&) = I, P(x, S)P(S, 4 dpz 7 a.e. x E (0, 1) , p E L’(S, d/.q L2(0, 1)) . 

Define W, = {a E L*(S, dp; L2(0, 1)) : P*a E Dom(D,)). Let /I* : W, -+ W be the indicated restriction, which is 
bounded on W, with the graph norm, and denote its continuous dual by & : W’ + Wk. We shall denote the 
space L*(S, dp; L2(0, 1)) by L2(S X (0, 1)). The various operators are summarized in the following diagram. 

L*(z) -% W’ p:\ w;. L2(S x I) -5 L2(Z) s V’ 

U U u U U U 

v -5 L2(Z) P\ L2(S x I) w, p*\ w -% L2(Z) 

Let cp : W, + R, be proper, convex and lower-semicontinuous, and denote its subgradient by 3rp : W, + Wk. 



508 R.E. Showalter, P. Shi I Comput. Methods Appl. Mech. Engrg. I51 (1998) SO1 -511 

DEFINITION. The weak Catchy Problem is to find v(t), cr(t) for 0 < t < T such that 

v,$tL^(O,T;L”(O, I)), CT E L”( 0, T, I,v,) , $ E LX(O, T; L2(S x (0, I))), 

and they satisfy the system 

W) 
dt + D*/?&(t) =.f(t(r, in L’(0, 1) (3.Ia) 

du(t) 
7 + @(u@)) - PPtu,(t) 3 g(f) in W; , (3.lb) 

v(0) = u,, in L’(0, 1). (T(O) = cr,, in L’(S, d,u; L’(O, I)), (3.lc) 

where the four functions v,, E L’(O, l), g,, E w,, .f E LL(O, T; L’(O, 1)) and g E L”(0, T; L’(S, dk; L*(O, 1))) are 
given. 

Note that the variational form of (3.1 b) is 

u(t)Ebv,: - > ,_l,s,.<( ,), )) + (u(t), D*P*(P - o(t)))LQI.I, 

+ (g(t), P - dt)),‘,.sx ,,,.I ), zz p(p) - p(u(t)) for all p E FV, . 

THEOREM W. Assume thut the linear operator D : V 3 L’(0, I), the&u&on ,!S(., .) E L%((O, I>, L’(S)), und the 

convex functional p : kVy + IF!, are given us above, and d&e the corresponding operators 

D,: W+L’(O, I), Df :L’(O, l)+W’, 

p : L’(O, 1) + L”(S, d,u; L’(0, I )I, /?, : H$ + W 

Let u0 E L’(O, I) and a, E W’, be given with (acp(uO) - fl$D$u,) fl L’(S, dpu; L’(0, 1)) non-empty. Ler f‘E 

W”‘(0, T; L’(O, 1)) and g E W”‘(0, T; L’(S, d,u; L’(O, 1))) be given. Then there is u unique weak solution oj 

(3.1) with v(0) = vO, a(O) = gO. 

Under additional assumptions we can obtain Dv E L’(0, 1) and thus v E V. Then, the pair u, u is a strong 
solution of the resolvent equation corresponding to the strong Cuuchy Problem. By this we mean the weak 

Cauchy Problem (3.1) in which we additionally require that u E L”(0, T; V). Hence, one can then replace 0; 
with D and fit with p. This takes the form of a system 

i3 
;tt v(n-, t) + D, RX> s)(T(s, -G t) dp, =f(x, t) , (3.2a) 

a 
z ah x, t) + dp(a(s, x, t)) - P(x, s)Dv(x, t) 3 g(x, s, t) , a.e. s E S 

for a.e. x E (0, 1 ), t > 0, 

v(O) = v,, in L’(O, I), a(O) = u,, in L’(S, d,u; L’(0, I)). (3.2C) 

Assume that rp is given in the form 

qs(4c x>) du dtL, , u E L?S x (0, 1)) , (3.3) 

with a normal irategrand (151 for which each ‘p, : L*(O, 1) + R, is convex, lower-semicontinuous, and takes its 
minimum at qY(0) = 0. We shall require that some of the ap,‘s be regular, i.e. that they are linearly bounded. In 
order to quantify this condition, we set LYE 3 (I + i)qo,) -I. Note that each cy, is (uniformly) Lipschitz and that we 
have 

We shall assume additionally that there is an t‘> 0 and a measurable set S, C S such that 
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THEOREM S. In the situation of Theorem W, assume in addition that the function p is given on L2(S X (0, 1)) 
by the formula (3.3) and the normal family 9: of convex and lower-semicontinuous non-negative functionals for 

which ~~(0) = 0, s E S, and the estimates (3.4,) hold. Also, let v0 E V. Then the weak solution is a strong 
solution, i.e. v E L”(0, T, V) and the strong Cauchy Problem has a unique solution. 

The momentum equation (3.la) requires only that the generalized sum, /3*a(t), belong to W at each t > 0. We 
show that when p(*, .) is independent of x one may obtain a solution for which each component, o-(s, t), belongs 
to W at each t > 0. Define the distributed operator D : L’(S; V) + L2(S X I) by 

D(v)(s) = Dv(s) ) s E s , v E L2(S; V) , 

and denote its Lz-adjoint by D, : L2(S; W) + L2(S X I). The corresponding continuous duals are D* and K!I$ as 
before. 

L2(Z) 3 W’ B:\ w; L2(S x I) “:, L2(S; W’) 

U U U U U 

v -2 L2(Z) -5 L2(S x I) L2(S; V) -J-+ L2(S X Z) 

Assume that the function p(*, *) is independent of x, so we have /3( * ) EL’(S). We summarize the resulting 
structure as follows: 

L2(S x Z) -5 L2(Z) z V’ L2(S x I) -% L2(S; V’) 

U u u U U 

w, 5 w 2 L2(Z) L2(S; W) z L2(S x Z) 

U u* 

L2(S; W) JG L2(S x Z) 

Moreover, p* commutes with both D, and D. 
A regular solution of the resolvent equation is a strong solution (with v E V) for which, in addition, 

(+ E L2(S; W). For this, we assume that 

(A,o,A2a)~0,aEDom(A,), (3Sa) 

(A,a,aVl,(o))>O,~+Dom(A,), (3Sb) 

A, + 8rp is m-accretive . (3.k) 

The effort is to show that the resolvent of the operator c is stable under the norm of V X L2(S; W). That is, the 
lower semicontinuous norm 

@(iv* 4) = <llwl’ + ll~*d12r2 
is a Liapunov functional for the Cauchy problem (3.1). When additionally f(t) = 0 and g(t) = 0, each closed ball 
in H=L2(0,1)XL2(SX(0,1)) of the form 

B, = {[v, a] E V X L*(S; W): @([v, a]) s R} 

is invariant under the evolution equation in (3.1). For the nonhomogeneous case we show that each solution 
remains in such a ball, Bk, and thereby is a regular solution. 
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THEOREM R. In the situation of Theorem S, assume in addition that the function p(,, -) is independent of x, 

that is, p(. ) E L2(S), and assume [f( . ), g( . )] E L’(0, T; V X L’(S; W)) and [u,, u,,] E V X L’(S; W). Then the 

strong solution [v(t), u(t)] from Theorem S satisjies 

(IlDu(t)l12 + Il~*o-@)112)“2 s (IlD%ll’ + ll~*~lIl12Y 

+ o’ (/Df(s)ll* + Il@+zg(s)ll’)“’ ds > I 
OGtcT, (3.6) 

hence, u E L”(0, T; L*(S; W)). 

For the plasticity problems, the estimate (3.6) is a substantial regularity result for solutions. In particular, 

whereas a strong solution is one for which the average stress p*cr is regular in the sense that P.+I+ E W, that is, 
it is differentiable, the regular solution is one for which each component of the stress is differentiable, i.e. 
&s, * ) E W for a.e. s E S. The proof given above for Theorem R depends on the assumptions (3.5). We note that 
(3.5a) follows from the lack of dependence of p(s) on X, and (3.5~) also follows rather generally. However, 
although the verification of (3.5b) appears to be easy in one dimension, it is difficult to find examples in Iw” 
which satisfy this condition. 

If we have 849 = 0 or, more generally, L+P~ : W -+ W is bounded uniformly in s, for s E S,, then from the 
restriction to S, of the identity r+ ~(P(u) = /IOU + g we obtain a regularity result for the velocity in the 
stationary resolvent equation. That is, we get Dv E W and consequently D,Du E L2(1). This occurs, for 

example, when aqY arises from kinematic hardening or from a viscosity regularization, respectively. A 
corresponding regularity result for the displacement of a regular solution of the Cauchy problem is the 
following. 

COROLLARY. Assume additionally that dq, = 0 for s E S, and that u0 E Vwith Du, E W. Let [u(t), u(t)] be the 

regular solution from Theorem R, and denote the displacement by u(t) = u, + $i u(r) dr. Then, u E W”“(0, T; V) 

and Du E L”(0, T; W), i.e. D,Du E L”(0, T, L*(I)). 
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