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DIFFUSION WITH PRESCRIBED CONVECTION IN FISSURED MEDIA
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Abstract. A system consisting of an ordinary differential equation coupled to a non-
symmetric degenerate elliptic equation provides a model for heat transfer with phase change
in a fissured medium, a collection of material blocks separated by a system of fissures, when
a fluid of prescribed velocity transports heat within the fissures. Additional transport in
the fissures occurs by diffusion, and phase changes can occur independently in the two
components along respective free-boundaries. With the physically appropriate initial and
boundary conditions, the system is shown to be a well-posed problem; special regularity
properties of the solution will be established.

1. Introduction. We shall formulate the problem as a model for the melting of paraffin
sediments in oil-saturated media by means of hot liquid injection. Thus, heated fluid is
flowing through a fissured medium at a prescribed velocity in the fissure system; it has been
injected in order to remove paraffin sediments [5]. Some volume fraction, 0 < a < 1, is
fixed in the blocks while another fraction 0 < b < 1, is carried along by the fluid in the
fissures. The temperature varies both in the blocks and in the fissures within a range which
includes the melting temperature of paraffin; we normalize this to zero. The temperature u;
in the blocks is given as a function of the enthalpy or heat energy content w; in the blocks,
u; = a(w;). A typical model is a(w) = ayw™ + az(w — @)t where 2~ = min(z,0) and
zt = max(z,0) denote negative and positive parts, respectively, a; and oy are reciprocals
of specific heat above and below the melting temperature, and “a” is a measure of the
latent heat released with this phase change of the paraffin in the blocks [7]. Similarly, the
temperature us in the fissures is given as a function, us = S(w2), of the enthalpy in the
fissures. An example is f(w) = bywy +b2(w—b)* where by, by > 0 are reciprocals of specific
heat and “b” is a measure of latent heat of the fluid-paraffin mixture.

Let ¥ be the prescribed velocity field of the water in the fissures and k(u2) denote the
conductivity of the fluid-paraffin mixture in the fissures. Typically, k(u) > 0 is essentially
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constant on each of u < 0 and u > 0. Thus, the heat fluz in the fissures is given by Fourier’s
law as

Tws — k(uz)Vug,

where V is the gradient operator. The rate of heat transfer between the blocks and the
fissure system per unit surface area of contact is proportional to the temperature difference
times the average conductivity of the fluid, averaged over that temperature range, between
blocks and fissures; i.e.,

k() (ug —u) = /“2 k(s)ds .

The rate of heat transfer per unit volume of the medium is then of the form
1
(K (uz) = (K (),

where K'(s) = k(s), K(0) = 0, and the coefficient 1 is proportional to the specific surface
of the fissures; i.e., the surface area of fissures per unit volume. This is proportional to 1/¢
where £ > 0 is the average linear dimension of the blocks, so ¢ ~ £ and % is a measure of
the degree of fissuring.

Conservation of heat energy computed respectively in the blocks and in the fissures leads
to the pair of equations

Tt p (K - K@) =i, w=a(w), (1a)
6'“”?‘6KWﬂ}+§Uﬂw)—Kwd)=h, uz = Blwa), (1.b)

where V is divergent. The derivation of (1) follows [2]. There is no block-to-block diffusion,
since the system of fissures essentially isolates the blocks, so (1.a) balances the storage
of heat with the volume exchange rate. In (1.b) occurs the dual situation in which the
storage of heat in the fissure system is negligible, due to the smallness of its volume, but the
relatively high flow rates in the fissures balance the exchange of heat with the blocks. To
determine the temperatures u;, us and enthalpies w;, wo in a region 2 in R™ for all time
t > 0, we require, in addition to (1), that they satisfy a prescribed initial condition,

w(z,0) =wo(z), z€, (2)
and boundary conditions of the form
uz(s,t) = g1(s) , s€eS;, t>0 (3.a)

(Tws — VK (ug)) - T =ga(s), s€Sy, t>0, (3.b)

where S; U S is an appropriate decomposition of the boundary, 012, and 7 denotes the unit
outward normal. Specifically, the fluid temperature is prescribed by (3.a) on the outflow
region Sy, where ¥- 7 > 0, and the flux is prescribed by (3.b) on the inflow region S, where
¥ -7 < 0. By making a change-of-variable for K(u;) and K (u2) and relabeling a and £, we
shall hereafter take K equal to the identity in this system without any loss of generality.
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2. The Elliptic Operator. We shall write the system above as an O.D.E. and an
elliptic operator equation in the Banach space L'. We begin by defining the notation we
shall use to construct the elliptic operator in (1.b) and (3).

Let Q be an open, bounded subset of R™ with smooth boundary 8Q. There is given a C?
vector field 7 : @ — R™ which describes the velocity of the flow in the fissures. This vector
field determines, nonuniquely, a splitting of the boundary 0Q2 as follows:

S; and Sy are measurable with meas(S;) > 0,
N=5US,, S1NSy; =9,
S1 C {s€00N|d(s)-U(s) >0}, and
So C{s€aN|v(s) U(s) <0},
where 7 denotes the outward unit normal on 0f2.

We shall use the standard notation L? and W™ P for the Lebesgue and Sobolev spaces
of functions, and we denote W™2 by H™. The trace operator o : H*(Q) — H/2(30Q)
corresponds to restricting function values to the boundary. We denote by V the subspace
of functions g in H*(Q) for which ~p(g) = 0 a.e. on S, endowed with the norm ||Vul|z2 =
lullv- As in [8], we denote by € those vector valued functions §: 2 — R™ in {L?(Q)}" for
which the divergence div(§) € L?(Q). The trace operator v, : & — H~1/2(Q) corresponds
to restricting the normal component of the vector field, 7 - g, to 9.

The functions o and § : R — R are assumed to be Lipschitz and nondecreasing. We
further require that $(0) = 0 and that the graph of 3~ be bounded above and below by
affine functions; z.e.,

ls| < K(B(s)+1), sER, (2.0)
for some K > 0.

The elliptic operator equation will correspond to a well-posed problem provided appro-
priate boundary conditions are specified. Let A be the closure in L' x L! of the operator
A, defined on the domain

D(Ay)={welL?|Bw)—g €V, tw—-VBw) e
and (v (Tw — VB(w) — g3),7%(v)) =0 forallveV},

by A2(w) = div(dw — VA(w)). In the above definition, g; € H* and g3 € € are fixed and
the angular brackets denote the duality betwen H~1/2(9Q) and H'/?(41). Note that the
“temperature” B(w) is specified as g; on S while the normal component 7- (tw — VB(w)) of
the flux is specified as 7 - g3 on S2. The technical conditions which the data should satisfy
are

g1 € HY(Q) N L®(Q),70(g1) € L(S1),70(g1) € Range of 3 a.e. on S,

and
85 (v0(g1)) is bounded on S; .

The function 85! is the minimal section of the monotone graph 1.
There is a constant M so that
(W (@2), %) < M[(7(9),%0@))| forallveV,
and L
div(?) >0 and 0=3do0onS;NS;.
These conditions are discussed in [6], where it is shown that the operator A is m-accretive.
The following lemma is a modification of those results.
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Lemma 2.1. For any f € L* and for each € > 0, there is a solution w € D(Az2) to the
problem

Bw) +eAz(w) = f. (2.1)
If  is a solution to (2.1) with right side equal to f, then we have the estimate
1(8(w) = B@) "Il <N = F)Fllee (2:2)

Furthermore, there is a constant K depending only on the data g1, g2, U, and the domain
Q such that
1B(w)||ze < max{K, ||fllz}, (2.3)

and 1
18(w) = g1llv < EK(I +1fllz2) - (24)

Remarks: The solution w to (2.1) may not be unique, but we shall only need to use the
properties of S(w) in the sequel.

Proof: If w and v satisfy (2.1) with right side, respectively, equal to f and f, then for N,
€ > 0 we have

(w= ) + £ (A(w) - A(®)) = (w - 1B(w)) - (@~ (@) + (/- )
Since A is m-accretive it follows that
o = dllzs < Nw =) = 5 (8w) = B@) s + 1S = Fllz

= flw = dllzr — 186w) - B@zs + 517 = Fllr

provided N is larger than the Lipschitz constant for the monotone function 8. We conclude
that, although the solution w to (2.1) may not be unique, the function B(w) is unique. This
means that w may be nonunique only on the set where §'(w) = 0.

To obtain a solution to (2.1), we shall solve a sequence of approximating problems. Since
A is m-accretive, the resolvent

Iy = (I+AA)~!
is a contraction on L!. Define Ty : L! — D(A) by
1 1 1
Tw(w) = Jn (1 = 35)w = 3 AW) + 5 f)

Then, for N — 1 larger than the Lipschitz constant for 8, Ty is a strict contraction on L!:

1

1T (w) = Tn (@)l < (1= 37)llw = bl - %Ilﬂ(W) — B(@)llzr -

The contraction mapping principle guarantees that a unique fixed point wy of Tn exists.
This function satisfies the equation

SN + Blwn) + eA(wa) = f. (2:5)
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If f € L®°(1), then so is 4wy + A(wy); in fact, the maximum principle

Iy + Bwn) e < max(K, ||z} (26)

holds and may be proven exactly as in [6]. Similarly,

18o) ~ arlly < (14 1122, 2.7

as may be verified by multiplying (2.5) by the test function f(wx) — g1 € V, integrating
by parts and applying Holder’s inequality and the estimate (2.0) on (. Finally, we have the
estimate

N

where Wy is the solution to (2.5) with right side equal to f . This estimate follows from the
accretiveness and order estimates for A.

For f € L*({1), we obtain a solution to (2.1) by letting N — oo. From (2.6) and
(2.0), {wn, B(wn)} is a bounded subset of L>(2), hence of L?(2). From (2.7), {A(wn)} is
bounded in H!((2), so we may choose subsequences (still denoted by subscript N) for which

| [ + Bt = (ion +B@n)] ||, <17 = 7%, (28)

wN — w in L?

Bwy) — B  in L?, weakly in H*

and pointwise a.e. In fact, 8 = f(w) since

18- Bt = Jim [ (Bww) - Bw)”
< Jim_ca [ (Bww) - 6w) (wn = w) =0,

where we have used the facts that wy — w, f(wny) — B in L? and S is nondecreasing and
Lipschitz. The limit w is a solution to (2.1). i

Corollary 2.2. The solution operator 3o (3 +¢€A3)~! : L% — L! extends uniquely to an
L' contraction defined on all of L*.

Proof: Since fo (8 + cAz)~! satisfies (2.2) on the dense subspace L® of L!, the result
follows easily. Moreover, equation (2.4) continues to hold whenever w = (8 + €A2)~* f for
feL?

We shall denote the extended operator described in the corollary by £ o je, where J; is
meant to be the operator (3 + cA)~!. Note that we have not actually proven that 3 + A
is invertible, hence the notation is only figurative.

Finally, note that if f € LP/2(Q) for p > n and if u = B0 J.(f) € LP N H!(Q), then for
some v € (0,1), u € C7({V) for any (' CC 2, and

lullcs < C(IfllLora + llullze + 1), (2.9)



320 J. RULLA AND R.E. SHOWALTER

where C is independent of f and . This fact follows from the Hélder continuity of solutions
to the weakly formulated problem

/u<p+e€u~Vgo=/er-Vgo+fso,
Q Q

where ¢ is any testing function from the class C} (). Here, the function w satisfies B(w) = u;
hence, if u € LP, w € B~ (u) € LP by (2.0). We conclude that edw € (LP(Q2))", and may
apply the interior regularity *heory [4] to conclude that u € C7((Y).

3. The Evolution Problem. If we rewrite (1.b) and (3) in terms of the operator A, we
have

B(wz) + eA(wz) =uy +€f2 .

We solve this problem to obtain (uniquely) #(w:) and substitute into (1.a) to obtain the
O.D.E.

%wl(t)-i-é(a(wl)—ﬂ(js(a(w1)+sf2)>) =/ (3.1)

subject to the initial condition w;{0) = wp. This equation is known as the fissured medium
equation and is formally equivalent to the equation studied in [2], but is considerably com-
plicated by the convective term div(w) in the operator A. Because the “resolvent” J, of
A retains smoothing properties similar to those of the resolvent of the nonconvective oper-
ator in [2], properties of the solution to (3.1) will be similar to those obtained there. The
following theorem follows from the ordinary differential equation structure of (3.1).

Theorem 1. If A, o, (3, f1, f2, € and wg satisfy the conditions specified above, then there
is a unique solution w; € W1°(0,T; L') to (3.1) subject to the initial condition

w1 (0) =wo .
Proof: Define f:[0,T] x L' — L! by
ft,w) = %(ﬂo J. = D)(a(w) + ef2(t)) + f2(t) + fa(t).

Since o and B are Lipschitz,

17tw) = 6 @)le < 2w bl

The mapping ¢t — f(t,w) is measurable for each fixed w € L*; thus, f(¢,w) is integrable for
allwe L.
Define F : L*(0,T; L') — L*°(0,T; L") by

F(w)(t) = wo +/0 f(s,w(s)) ds.
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We seek a fixed point of F'. Let

t
b@=/emMﬁ—dewmmuw,
0
and define M C L*°(0,T; L!) by
M= {we L2(0,T; L")|llw(t) - wo)lz+ < b(t)}-
Then F maps M into M:
IF(w)(t) — woll+ < [IF(w)(t) — Flwo)(®)llzs + | F(wo)(t) — wol| o
t
/wsw meuwy/wwmmMS
0
k
< [ Zwte) - wolls + 7o, o) .
If w € M, then we have
t ok td
SA;Mﬂ+W@wMu®=AE?@@

=b(t).

We conclude that F(w) € M whenever w € M.
We shall prove that F¥ : M — M is a strict contraction provided N is large enough. If
w, W € M, then

170 - POl < 2 [ futs) - a(6)1s d,
and from here it follows successively that

. 2k .
| F(w) = F(@)||L(0,5;1) < —tHw — || Lo (0,1;L1)

. 2k 2k
I72(@)() - @)l < () [ (E)sdslw — dllzeora
2k \ 2t
(?) —||w w||L°°(OTL1)

and by an easy induction that
R 2kT \ N R
|1FN (w) — FN ()]l oo 0,752ty < [(T) /N!] lw — || Lo (o,7;L1) -

Thus, FV is a strict contraction for N sufficiently large, so F has a unique fixed point
w; € M.

The operator 8o J, satisfies (2.2) and (2.3), and we may interpolate this operator to the
spaces LP, 1 < p < oco. In fact, the order estimate included in (2.2) is stronger than we
need; all that is necessary is that S o Je be accretive (¢.e., satisfy (2.2) without the “+” s.)
The following lemma is an extension of Lemma 3 from [3].
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Lemma 3.1. Suppose T : L'(Q) — L'(Q) satisfies

T =T))  Ner < I = HF e (3.2)

and
IT ()|l < max{K, ||f||lz} (3.3)

andletj : R — R be a convex, lower semicontinuous function satisfying 7(0) = min, j(z) =
0. Then,

[3@0) <[5+ =36 meas(@) + [ 500).
Q Q Q

Proof: It suffices to prove the inequality for the functions j;(r) = (r — ¢)* and j2(r) =
(—=r—1t)*, where t > 0 (cf., [3]). Let g= f — (f —t)* = min{f,t}. Then, (3.3) implies that

Tg < max{sup(g), k} < max{t,k}.

It follows that
(Tf —max{t,k})* <(Tf-Tg)" <|Tf-Ty|,

so (3.2) (without the “+”) implies

s -maxtei < [ 1r=dl= [ (7-0*

Since max{t, k} =t + (k — ¢)*, and since
(a-b)* <(a-c) +(c=b)*

for all a, b, c € R, we have the estimate we desire, namely

/(Tf—t>+s/[(f—t)++<k—t)+1-
Q Q

The estimate for j follows by replacing T'(g) with —T'(—g). The conclusion of the lemma
now follows exactly as in [3]. I

Lemma 3.1 allows us to interpolate the operator 3 o J. as an operator on LP by taking
j(r) =17
1
1B lIze < (17155 + K2190) ™7 < I l12e + kIO

Let the set M used in the proof of Theorem 1 be redefined as
M={weL>®0,T;L") : |[w(t) — wol|zr < b(t) and ||w(t)||lLr < c(¢)},

where b(t) is the same function defined in the proof of Theorem 1 and ¢(t) is defined by the
integral equation

t t
e(t) = lluolzr + 1012 + [ [+ ca)llfa(@as + (0] ds + 2022 [ets)as.
0 0
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In this expression, ¢q > ||@||Lip and ¢g > ||B||Lip- The operator F maps M into M, since

I (w)(®)llze < llwolle + /0 1£(s, )l 2o ds

<lwolls+ [ [latw) +fa(o)lsn + K01+ 15(atw) + £fa(s)) s
+E)ze + 1a()lzr ds
Kt 1/p
< fhwollzs + Ly

+ [ [Eatt+ eolutoles + @ +eallalis + 1s(s)las] s
<c(t).

If we modify the proof of Theorem 1 by using the modified set M, we obtain the first part
of the following.

Corollary. If, in addition to the assumptions in Theorem 1, f, fo € L9(0,T; L?) forq > 1
and wg € LP, then w; € L*®(0,T;LP). Consequently, w; € W'9(0,T; L?). Furthermore,
if f; and f, € L?(0,T; H') and wo € H', then w; € L*(0,T; H') and, consequently,
wy € HY(Q x (0,7)).

Proof: (continued). We shall make use of the splitting of (3.1) described in [2], namely
{ @ 4 Lo(w () = %ﬂ(js (a(wy)(2)) +€f2(t))) + f1(t) + fa(t)

w1(0) = wp .

(3.4)

Suppose wy € H'(0,T; L?) is the solution to (3.1) and let g(t) = 1 8(Je (w1 () +ef2(t))) €
L>(0,T; H') by the regularizing property (2.4) of foJ.. The solution to (3.4) may be found
as the fixed point of the operator

t

1
G(s)(t) = wo + / —Za(w(s)) +g(s) + fu(s) + fa(s) ds.
0
It is easy to see that G is a strict contraction on L?(0,T; L?) for small enough T. In fact,
if M is the set B
M= {w € L*(0,T: L) [Vu(®)l.: < a(t)}

where a(t) is the function which is defined by the integral equation

t
alt) = Vunllza + [ %ale) + 19 () + f1(6) + fa(s)) 2 s

then it is easily verified that G : M — M. Since a(t) is bounded on (0, T), we conclude that
M is a closed subset of L2(0,T; L%); hence, w(t) € L°(0,T; H').

4. Smoothness of solutions. It was shown in [2] that solutions to the fissured medium
equation behave differently from solutions to the porous medium equation. Theorem 1 in [2]
describes the persistence of discontinuities in space as a function of time. Analogous results
hold for solutions to the equation with convection.
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Theorem 2. Let 7 be a unit vector in R"™ and define o( f(z)) = limpo(f(z+hD)— f(z—hD)),
the jump in the function f in the direction v at the point z. Suppose fo = 0, f1 €
L°°(0,T; L?), where p > n. Furthermore, assume that for some point z € (1, there is a
number hg > 0 and a function g € L*(0,T) for which

|f1(93+h’7,t)|59(t)a |h|<h07
and that each of o(wo(z)) and o(f1(z,t)) exists for almost all t € [0,T]. Then, o(w(z,t))
exists for each t € [0,T) and
t

ot (wr (2,1)) < o (wolz)) + / ot (f(z,5)) ds, (4.1)

0

t

ot (wi(z,t)) > C_Kt/e{a"‘ (wo(z)) +/0

and similar estimates hold for o~ (wy(z,t)) and o(w;(z,t)).

o~ (f(z,9)) ds} , (4.2)

Remarks: If the initial data or the external source f; has a jump discontinuity at the
point z in the direction 7, then so does the solution w;; furthermore, the discontinuity
remains located at the point z for all time. Solutions to the Stefan problem do not enjoy
this property, even though the Stefan equation is formally the limit as € | 0 of (3.1).
Discontinuities of w in the Stefan problem propagate with the free boundary and are not
stationary in space.

Proof: As in [2], we begin with the representation (3.4) of the solution. From the regularity
assumptions on the data and the remarks about the regularity of 3 o je(-) at the end of
section 2, (o Je(a(w;(t))) belongs to C7(Q) for each ¢; thus, (3 o Je(a(w;(t)))) =0. We
compute o of both sides of (3.4) to obtain the differential equation

do(wq(z,t))

it +a(§ a(wl(z,t))) = o(fi(z,t)) .

After multiplying both sides by sgng (o(w1(t))) € sgn™t(o(a(w1(t)))) and integrating over
[0,¢t], we have

ot (wi(z,t)) < oT(wi(z,0)) -I-/O ot (fi(z,s)) —a+(é a(wl(z,s))) ds.

The upper bound (4.1) now follows immediately. To obtain the lower bound (4.2), we note
that if C,, is the Lipschitz constant for o, then

ot (a(w; (t))) < Coot (wi(t)) -
We use this estimate after multiplying both sides of the differential equation by
sgnd (o(w1(t))) to obtain
t

ot (wi(z,t)) > 0T (wi(z,0)) +/ o~ (fi(z,9)) - é 20T (w1(z,5)) ds.

0
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Estimate (4.2) now follows from Gronwall’s inequality.
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