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constant on each of u < 0 and u > 0. Thus, the heat flux in the fissures is given by Fourier's 
law as 

vw2- k(u2)Vu2, 

where V is the gradient operator. The rate of heat transfer between the blocks and the 
fissure system per unit surface area of contact is proportional to the temperature difference 
times the average conductivity of the fluid, averaged over that temperature range, between 
blocks and fissures; i.e., 1U2 

k(u)(u2- ui) = k(8) d8. 
UJ 

The rate of heat transfer per unit volume of the medium is then of the form 

1 
-(K(u2)- (K(ul)), 
c 

where K'(8) = k(8), K(O) = 0, and the coefficient ~ is proportional to the specific surface 
of the fissures; i.e., the surface area of fissures per unit volume. This is proportional to 1/f 
where e > 0 is the average linear dimension of the blocks, so c ~ e and ~ is a measure of 
the degree of fissuring. 

Conservation of heat energy computed respectively in the blocks and in the fissures leads 
to the pair of equations 

awl 1( ) -a +- K(ul)- K(u2) = h , 
t c 

u1 = a(wl), (La) 

(Lb) 

where Vis divergent. The derivation of (1) follows [2]. There is no block-to-block diffusion, 
since the system of fissures essentially isolates the blocks, so (La) balances the storage 
of heat with the volume exchange rate. In (Lb) occurs the dual situation in which the 
storage of heat in the fissure system is negligible, due to the smallness of its volume, but the 
relatively high flow rates in the fissures balance the exchange of heat with the blocks. To 
determine the temperatures u 1 , u2 and enthalpies w 11 w2 in a region 0 in Rn for all time 
t > 0, we require, in addition to (1), that they satisfy a prescribed initial condition, 

w(x, 0) = wo(x) , 

and boundary conditions of the form 

u2(8, t) = 91 (8) , 

XE 0, 

8 E s1, t > o 

8 E s2, t > o, 

(2) 

(3.a) 

(3.b) 

where sl u s2 is an appropriate decomposition of the boundary, ao, and iJ denotes the unit 
outward normal. Specifically, the fluid temperature is prescribed by (3.a) on the outflow 
region sb where iJ.iJ;:::: 0, and the flux is prescribed by (3.b) on the inflow region 82, where 
v· iJ:::; 0. By making a change-of-variable for K(ul) and K(u2) and relabeling a and /3, we 
shall hereafter take K equal to the identity in this system without any loss of generality. 
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2. The Elliptic Operator. We shall write the system above as an O.D.E. and an 
elliptic operator equation in the Banach space £1. We begin by defining the notation we 
shall use to construct the elliptic operator in (l.b) and (3). 

Let 0 be an open, bounded subset of Rn with smooth boundary 80. There is given a C 2 
vector field v: 0-+ Rn which describes the velocity of the flow in the fissures. This vector 
field determines, nonuniquely, a splitting of the boundary 80 as follows: 

S1 and S2 are measurable with meas(SI) > 0, 

80 = s1 u s2 , s1 n s2 = ¢, 

s 1 ~ { s E 80 I v( s) . iJ( s) ~ 0} , and 

s2 ~ { s E 80 1 v( s) . iJ( s) :::; o} , 

where iJ denotes the outward unit normal on 80. 
We shall use the standard notation LP and wm,p for the Lebesgue and Sobolev spaces 

of functions, and we denote wm·2 by Hm. The trace operator 1o : H 1 (0) -+ H 112 ( 80) 
corresponds to restricting function values to the boundary. We denote by V the subspace 
of functions 9 in H 1(0) for which 1o(9) = 0 a.e. on S1o endowed with the norm IIY'ull£2 = 
llullv· As in [8], we denote by c those vector valued functions g: 0-+ Rn in {L2(0)}n for 
which the divergence div(g) E £ 2(0). The trace operator lv: c-+ H-112(80) corresponds 
to restricting the normal component of the vector field, iJ. g, to 80. 

The functions a and (3 : R -+ R are assumed to be Lipschitz and nondecreasing. We 
further require that (3(0) = 0 and that the graph of (3- 1 be bounded above and below by 
affine functions; i.e., 

lsi :S K(f3(s) + 1), s ER, (2.0) 

for some K ~ 0. 
The elliptic operator equation will correspond to a well-posed problem provided appro­

priate boundary conditions are specified. Let A be the closure in £ 1 x £1 of the operator 
A2 defined on the domain 

D(A2) ={wE £ 2 1 (3(w)- 91 E V, vw- V'(3(w) E c 
and bv(vw- V'(3(w)- 92) ,/o(v)) = 0 for all v E V}, 

by A2 ( w) = div( vw - V (3( w)). In the above definition, 91 E H 1 and 92 E c are fixed and 
the angular brackets denote the duality betwen H- 112(80) and H 112(80). Note that the 
"temperature" (3( w) is specified as 91 on S while the normal component iJ · ( vw- V (3( w)) of 
the flux is specified as iJ · 92 on S2. The technical conditions which the data should satisfy 
are 

and 
(30 1 (/0 (91)) is bounded on S 1 . 

The function (30 1 is the minimal section of the monotone graph (3- 1. 
There is a constant M so that 

bv(fi2),1o(v)) :S MI(Jv(iJ),!o(v))l for all v E V, 

and 
div(v)~O and v=oonS1nS2. 

These conditions are discussed in [6], where it is shown that the operator A is m-accretive. 
The following lemma is a modification of those results. 
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Lemma 2.1. For any f E L00 and for each£ > 0, there is a solution w E D(A2 ) to the 
problem 

{J(w) + eA2(w) =f. (2.1) 

If w is a solution to (2.1) with right side equal to j, then we have the estimate 

(2.2) 

Furthermore, there is a constant K depending only on the data g11 fh, if, and the domain 
0 such that 

llfJ(w)llu>O ~ max{K, II/IlL=}, (2.3) 

and 
1 

llfJ(w)- 91llv ~ -K(1 + 11/11£2) · 
€ 

(2.4) 

Remarks: The solution w to (2.1) may not be unique, but we shall only need to use the 
properties of {3( w) in the sequel. 

Proof: If w and w satisfy (2.1) with right side, respectively, equal to f and ], then for N, 
£ > 0 we have 

(w- w) +!.... (A(w)- A(w)) = (w- ~{J(w))- (w- ~{J(w)) + ~(!- ]) 
N N N N . 

Since A is m-accretive it follows that 

llw- wllu ~ ll(w- w)- ~ (fJ(w)- fJ(w))llu +~II!- 111£1 

= llw- wllu - ~ llfJ(w)- fJ(w)llu +~II!- fllu, 

provided N is larger than the Lipschitz constant for the monotone function {3. We conclude 
that, although the solution w to (2.1) may not be unique, the function {3( w) is unique. This 
means that w may be nonunique only on the set where {J'(w) = 0. 

To obtain a solution to (2.1), we shall solve a sequence of approximating problems. Since 
A is m-accretive, the resolvent 

J>. = (I+ >.A)-1 

is a contraction on L1 . Define TN : L1 --+ D(A) by 

Then, for N- 1 larger than the Lipschitz constant for {3, TN is a strict contraction on £1: 

IITN(w)- TN(w)llu ~ (1- ~2)11w- wllu- ~llfJ(w)- {J(w)llu. 

The contraction mapping principle guarantees that a unique fixed point WN of TN exists. 
This function satisfies the equation 

(2.5) 
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where Cis independent off and u. This fact follows from the Holder continuity of solutions 
to the weakly formulated problem 

In wp + s~u · 'Vcp = fo siJw · 'Vcp + fcp, 

where cp is any testing function from the class CJ (0). Here, the function w satisfies (3( w) = u; 
hence, if u E LP, wE (3-I(u) E LP by (2.0). We conclude that siJw E (LP(O))n, and may 
apply the interior regularity •heory [4] to conclude that u E C"~(O'). 

3. The Evolution Problem. If we rewrite (l.b) and (3) in terms of the operator A, we 
have 

(3(w2) + sA(w2) = ui + s/2 . 

We solve this problem to obtain (uniquely) f3(w2 ) and substitute into (La) to obtain the 
O.D.E. 

! wi(t) + ~ ( a(wi)- !3(Jc(a(wi) + s/2))) = h (3.1) 

subject to the initial condition WI (0) = w0 . This equation is known as the fissured medium 
equation and is formally equivalent to the equation studied in [2], but is considerably com­
plicated by the convective term div( iJw) in the operator A. Because the "resolvent" Jc of 
A retains smoothing properties similar to those of the resolvent of the nonconvective oper­
ator in [2], properties of the solution to (3.1) will be similar to those obtained there. The 
following theorem follows from the ordinary differential equation structure of (3.1). 

Theorem 1. If A, a, (3, JI, /2, sand w0 satisfy the conditions specified above, then there 
is a unique solution WI E WI,oo(o, T; LI) to (3.1) subject to the initial condition 

WI(O) = Wo. 

Proof: Define f : [0, T] x LI ---+ £I by 

1 -
f(t, w) = -((3 o Jc- I) (a(w) + sh(t)) + h(t) + h(t). 

€ 

Since a and (3 are Lipschitz, 

llf(t, w)- f(t, w)llu ~ 2k llw- wllu. 
€ 

The mapping t t--t f(t, w) is measurable for each fixed wE LI; thus, f(t, w) is integrable for 
all wE £I. 

Define F: L 00 (0, T; £1) ___, L 00 (0, T; L1 ) by 

F(w)(t) = w0 +lot f(s,w(s)) ds. 
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We seek a fixed point of F. Let 

b(t) =lot exp(2k(t- s)/c-)llf(s, wo)llu ds, 

and define M ~ L'x' (0, T; L 1 ) by 

M ={wE L00 (0,T;L 1 ),11w(t)- wo)llu :::=; b(t)} · 

Then F maps M into M: 

IIF(w)(t)- wollu ::::; IIF(w)(t)- F(wo)(t)ilu + IIF(wo)(t)- wollu 

::::; lot llf(s, w(s))- f(s, wo)llu ds +lot llf(s, wo)ll£1 ds 

1t 2k 
:::=; -llw(s)- wollu + llf(s, wo)llu ds. 

0 c 

If wE M, then we have 

rt 2k t d ::; lo €b(s) + llf(s, wo)llu ds = lo dSb(s) ds 

= b(t). 

We conclude that F(w) EM whenever wE M. 
We shall prove that FN : M -+ M is a strict contraction provided N is large enough. If 

w, wE M, then 

IIF(w)(t)- F(w)(t)llu ::::; 2k t llw(s)- w(s)llu ds' 
c lo 

and from here it follows successively that 

IIF(w)- F(w)IIL00 (0,t;£1)::::; 2ckt11w- wiiL 00 (0,T;£1) 

IIF2 (w)(t)- F 2 (w)(t)ilu ::::; ( 2ck) lot (2ck)sdsllw- wiiL""(O,T;£1) 

2k 2 t 2 
A 

= (E) 2llw- wiiL""(O,T;£1) 

and by an easy induction that 

IIFN(w)- FN(w)IIL00 (0,T;£1)::::; [( 2~T tIN!] llw- wiiL00 (0,T;£1). 

Thus, FN is a strict contraction for N sufficiently large, so F has a unique fixed point 
w1 EM. 

The operator (3 ole: satisfies (2.2) and (2.3), and we may interpolate this operator to the 
spaces LP, 1 ::::; p :::=; oo. In fact, the order estimate included in (2.2) is stronger than we 
need; all that is necessary is that (3 ole: be accretive (i.e., satisfy (2.2) without the "+" s.) 
The following lemma is an extension of Lemma 3 from [3]. 
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Lemma 3.1. Suppose T: L 1 (0)--+ L 1 (0) satisfies 

(3.2) 

and 

liT(!) II£<"' :::; max{ K, 11!11£<"'} (3.3) 

and let j: R--+ R+ be a convex, lower semicontinuous function satisfying j(O) =minx J·(x) = 
0. Then, 

fo i(T(f)):::; fo[j(f) + j(k)] = J"(k) meas(O) + fo j(f). 

Proof: It suffices to prove the inequality for the functions j 1 (r) = (r- t)+ and ]2(r) = 
( -r- t)+, where t 2: 0 (cf., [3]). Let g = f- (!- t)+ =min{!, t}. Then, (3.3) implies that 

Tg:::; max{sup(g), k}:::; max{t, k}. 

It follows that 
(Tf-max{t,k})+:::; (Tf-Tg)+:::; ITJ-Tgl, 

so (3.2) (without the "+")implies 

Since max{ t, k} = t + (k- t)+, and since 

(a- b)+ :::; (a- c)++ (c- b)+ 

for all a, b, c E R, we have the estimate we desire, namely 

The estimate for )2 follows by replacing T(g) with -T( -g). The conclusion of the lemma 
now follows exactly as in [3]. I 

Lemma 3.1 allows us to interpolate the operator (3 o JE: as an operator on LP by taking 
j(r) = rP: 

Let the set M used in the proof of Theorem 1 be redefined as 

M = { w E L 00 (0, T; L 1 ) : Jlw(t) - wollu :S b(t) and JJw(t)IILP :S c(t)}, 

where b(t) is the same function defined in the proof of Theorem 1 and c(t) is defined by the 
integral equation 

Kt 1t c(l+c)1t c(t) = llwoiiLP + -101 1/P + [(2 + cl9)11f2(s)IILP + llh(s)lb] ds + 0 19 c(s) ds. 
c 0 c 0 
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In this expression, Ca ~ llaiiLip and Cf3 ~ II,BIILip· The operator F maps .M into .M, since 

IIF(w)(t)IILv :::; llwoiiLv +lot llf(s, w)IILv ds 

:::; llwoiiLv +lot~ [lla(w) + ef2(s)IILv + KIOII/p + II,B(a(w) + e/2(s)) IILv J 

+ llfi(s)IILv + llf2(s)IILv ds 

::=; llwoiiLv + Kt IOII/p 
E 

+lot [~a(1 + Cf3)11w(s)IILv + (2 + Cf3)11!2(s)IILv + llfi(s)IILv] ds 

::=; c( t). 

If we modify the proof of Theorem 1 by using the modified set .M, we obtain the first part 
of the following. 

Corollary. If, in addition to the assumptions in Theorem 1, h, !2 E Lq(O, T; LP) for q ~ 1 
and Wo E LP, then WI E L00 (0, T; LP). Consequently, WI E WI,q(O, T; LP). Furthermore, 
if h and !2 E L2 (0, T; HI) and wo E HI, then WI E L 00 (0, T; HI) and, consequently, 
WI E HI(O X (O,T)). 

Proof: (continued). We shall make use of the splitting of (3.1) described in [2], namely 

{ ~ + ~a(wi(t)) =~,a( ] 10 (a(wi)(t)) + ef2(t))) + h(t) + h(t) (3.4) 

WI(O) = Wo. 

Suppose WI E HI(O, T; L2 ) is the solution to (3.1) and let g(t) = ~,B(J10 (a(wi(t))+ef2(t))) E 
L00 (0, T; HI) by the regularizing property (2.4) of ,Bo]10 • The solution to (3.4) may be found 
as the fixed point of the operator 

G(s)(t) = wo + t -~a(w(s)) + g(s) + h(s) + h(s) ds. 
} 0 E 

It is easy to see that G is a strict contraction on L2 (0, T; L2 ) for small enough T. In fact, 
if M is the set 

M ={wE L2 (0,T;L2)IIIY'w(t)IIL2 ::=; a(t)} 
where a(t) is the function which is defined by the integral equation 

a(t) = IIY'woll£2 + rt Ca a(s) + IIY'(g(s) + h(s) + f2(s))IIL2 ds 
} 0 E 

then it is easily verified that G: M ---+ M. Since a(t) is bounded on (0, T), we conclude that 
M is a closed subset of L2 (0, T; L2 ); hence, w(t) E L 00 (0, T; HI). 

4. Smoothness of solutions. It was shown in [2] that solutions to the fissured medium 
equation behave differently from solutions to the porous medium equation. Theorem 1 in [2] 
describes the persistence of discontinuities in space as a function of time. Analogous results 
hold for solutions to the equation with convection. 
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Theorem 2. Let iJ be a unit vector in Rn and define a(f(x)) = limh!o(f(x+hiJ)- f(x-hiJ)), 
the jump in the function f in the direction v at the point x. Suppose h = 0, h E 
L00 (0, T; LP), where p > n. Furthermore, assume that for some point x E 0, there is a 
number ho > 0 and a function g E £ 1 (0, T) for which 

lh(x+hiJ,t)l:::; g(t), lhl < ho, 

and that each ofa(wo(x)) and a(ft(x,t)) exists for almost all t E [O,T]. Then, a(w1(x,t)) 
exists for each t E [0, T] and 

a+(wl(x,t)):::; a+(w0 (x)) +fat a+(J(x,s))ds, 

a+ ( w I( x, t)) ~ e- K t I., {a+ ( w0 ( x)) + fat a- (! ( x, s)) ds } , 

and similar estimates hold for a- ( w1 (x, t)) and a( w1 (x, t)). 

(4.1) 

(4.2) 

Remarks: If the initial data or the external source h has a jump discontinuity at the 
point x in the direction iJ, then so does the solution w1 ; furthermore, the discontinuity 
remains located at the point x for all time. Solutions to the Stefan problem do not enjoy 
this property, even though the Stefan equation is formally the limit as c 1 0 of (3.1). 
Discontinuities of w in the Stefan problem propagate with the free boundary and are not 
stationary in space. 

Proof: As in [2], we begin with the representation (3.4) of the solution. From the regularity 
assumptions on the data and the remarks about the regularity of f3 o J., ( ·) at the end of 
section 2, /3 o Jc(o:(w1 (t))) belongs to C'"~(O) for each t; thus, a(/3 o ].,(o:(w1 (t)))) = 0. We 
compute a of both sides of (3.4) to obtain the differential equation 

da(w1(x,t)) (1 ) 
dt +a € o:(w1(x,t)) =a(ft(x,t)). 

After multiplying both sides by sgn(j(a(w1 (t))) E sgn+(a(o:(w1 (t)))) and integrating over 
[0, t], we have 

The upper bound (4.1) now follows immediately. To obtain the lower bound (4.2), we note 
that if C01 is the Lipschitz constant for o:, then 

We use this estimate after multiplying both sides of the differential equation by 
sgn{j(a(w1 (t))) to obtain 



DIFFUSION WITH PRESCRIBED CONVECTION IN FISSURED MEDIA 325 

Estimate ( 4.2) now follows from Gronwall's inequality. 
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