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EQUATIONS WITH OPERATORS FORMING
A RIGHT ANGLE

R. E. SHOWALTER

The operator B in a complex Hubert space H is said to
form an angle Θ with the (stronger) operator A if D(A) c
D(B) and, for every x in D(A), (Ax, Bx)π belongs to the cone
K(θ) of all complex z with | arg (z) \ ̂  θ. If A and I? are
closed maximal accretive operators and B forms a right angle
with A, then A + JE> is closed maximal accretive and the Cauchy
problem for each of the equations ur(t) -f (A -f J5)u(ί) = /(£)
and (I + B)uf(t) + Au(ί) = /(£) is well-posed. Applications to
partial differential equations are indicated in the second part.

1* Global perturbations* A linear operator B: D{B) —> H, D(B)d
H, is accretive if He(Bx, x)H J> 0 for all x e D(B) and maximal accre-
tive if is accretive and has no proper accretive extension in H. An
accretive operator B is closed if and only if the range R(I + B) is
closed. A maximal accretive operator is closed if and only if it has
dense domain. For an accretive operator B, R(I + B) = H if and
only if B is closed and maximal accretive. These results are given
in [6].

Let B be a closed and accretive operator in H. Then R(I + B)
is closed in H and I + B is a bijection of D(B) onto R(I + B). Hence
the set J ΞΞ D(B) with the inner-product (x, y)j = ((/ + B)x, (I + B)y)π

is a Hubert space. J is a subset of H and (x, x),τ ̂  (x, x)π for xej,
so J is topologically imbedded in H.

Let A be an operator in H and assume D(A) c JD(Z?) and JS(A) c
i2(I + J5) Define by T = (I + EΓ'A: D(A) -^ J an operator in J.

LEMMA 1. If A is closed then T is closed.

Proof. Let xn e D{A) and lim Txn — y, lim xn = x in /. These
imply lim Axn = (I + JB)?/ and lim xn = x in H, respectively, so the
result follows.

LEMMA 2. If T is accretive in J and R(I + A) ID R(I + £), ίfee^
i2(J + T) is dense in J.

Proof. Let xej be orthogonal to R{I + T) and choose zeD(A)
such that (J + A)z = (I + ΰ)α;. Then 0 = Re (α, (I + T)z)j - Re ((I + A)z,
(I + B + A)z)H = I (J + A)^|27/ + Re (Γ«, «),, + Re (z, Bz)H - Re (Az, z)n.
This implies Re {Az, z)H ^ | (I + A)2;|27, and thus 0 ̂  |^| 2 + Re (As, s)^ +

357



358 R. E. SHOWALTER

IAz\2

H9 so (I + A)z = (Z + £)# = 0. Hence x = O

THEOREM 1. Lβί B be a closed accretive operator in Hy A a closed
operator with E(A) c 12(1 + B) c jβ(l + A). Assume I + B forms a
right angle with A: Re (Ax, (I + B)x)H^0 for all x e D(A) c £>(£).
Tλew T is closed maximal accretive on J and R(I + B + A) = 1?(J + 2?).

Proof. The right angle condition is precisely the statement that
T is accretive on J. Lemma 1 implies R(I + T) is closed and hence
(by Lemma 2) equal to J.

COROLLARY 1. Let B be a closed maximal accretive operator in
H, A a closed operator with R(I + A) = H, and assume I + B forms
a right angle with A. Then R(I + B + A) = H. If A is accretive
(hence, maximal accretive) then B + A is closed maximal accretive.

We note here that if any two of the following three conditions
hold, then so does the third: B forms a right angle with A, A is
accretive (I forms a right angle with A), I + aB forms a right angle
with A for every a > 0. In particular the Corollary 1 is close to a
result of [4].

The closed maximal accretive operators are characterized as the
negatives of infinitesimal generators of strongly-continuous semigroups
of contractions, so Corollary 1 gives a sufficient condition for the well-
posedness of a Cauchy problem [5].

COROLLARY 2. Let A and B be closed maximal accretive operators
on H and assume I + B forms a right angle with A. For each u0 e
D(A) and continuously differentiate f: [0, oo) —> H9 there is a unique
continuously differentiate u: [0, oo) —>H with u(0) — uo,u(t)eD(A)
for t > 0 and

(1) u'(t) + (A + B)u(t) = f(t) .

This is a perturbation of the Cauchy problem for the equation

(2) u'(t) + Au(t) =/(ί)

by an (unbounded) operator B which is weaker than A [2] This
result is known to hold when B is replaced by a strongly continuously
differentiable map t —> B(t) of [0, oo) into the space of continuous linear
operators on H [5]. Thus the term B(t)x(t) can be added to (1) and
a well-posed problem is obtained. Perturbations of a "local" type
are known without our right angle condition [1, 2, 4]. See [1, 3, 6]
for applications of (1) to parabolic and hyperbolic differential equa-



EQUATIONS WITH OPERATORS FORMING A RIGHT ANGLE 359

tions.
In the proof of Theorem 1 we showed that T is closed maximal

accretive on J, so — T generates a strongly continuous semigroup of
contractions on / . This yields the following result.

COROLLARY 3. Let B be a closed accretive operator in H, A a closed
operator with R(A) c R(I + B) c R(I + A). Assume I + B forms a
right angle with A. Then for uoeD(A), continuously differentiate
f: [0, oo) —>H and strongly continuously differentiable 2?( ) from
[0, oo) to the space of continuous linear operators from J to H, there
is a unique continuously differentiable u: [0, oo) —> J with u(0) = u0,
u{t) e D{A) and u'{t) e D(B) for t> 0 and

( 3) u'(t) + Bu\t) + Au(t) + B(t)u(t) = f(t) .

Proof. It suffices to note that (3) is equivalent to the equation
u'(t) + Tu(t) + (J +B)~1B{t)u{t) = (I + B)~ιf(t).

The equation (3) arises in applications wherein B = cA, A is a
realization of partial differential operator in spatial variables, and c
is a complex number [7, 9]. Our hypotheses hold if A is a closed
accretive operator and Re (c) ;> 0.

Our second major result is a refinement of Theorem 1 under the
(stronger) hypothesis that I + B forms an acute angle with A.

THEOREM 2 Let B be a closed accretive operator in H, A a closed
operator with R(A) c R(I + B) c R(I + A). Assume I + B forms an
angle Θ < ττ/2 with A. Then — T generates an analytic semigroup on
J.

Proof. Since T is closed maximal accretive, (λ + T)"1 is in the
space J*f(J) of bounded linear maps on J and ||(λ + T)~ι\\ ^ (Re (λ))""1

whenever Re (λ) > 0. It suffices to show that the operators {λ(λ + T)~ι:
Re (λ) > 0} are uniformly bounded in <Sf(J) [10].

The acute angle assumption implies the existence of a k > 0 such
that

(4) Re(Tx, x)j ̂  k\Im(Tx, x)j\,xeD(A) ,

and we may assume k ̂  1. Letting λ = σ + iτf σ > 0, and x e D(A)
we have

(5) Re ((λ + T)x, x)j = σ(x, x)j + Re (Tx, x)j

and

(6) | I m ( ( λ + T)x,x)j\ ^ \τ\{x,x)j- \Im{Tx,x)j\ .
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If it were not true that

(7) IIm ((λ + T)x, x)j I ^ (Iτ \/2)(x, x)j ,

then from (4), (6) and the negation of (7) we have

( 8) R e (To;, x)j ^(k\τ\/2)(x, x)j .

Thus, at least one of (7), (8) holds and this gives

|((λ+ T)x,x)j\^(k\τ\/2)(x,x)j.

From this last estimate follows the inequality

But we already have this quantity bounded by (1/σ) (cf. (5)), so we
obtain finally,

||λ(λ + T)-1!! ^ 4/ft, Re (λ) > 0 .

COROLLARY, For each u0 e D(B) and Holder continuous f: [0, oo)~*
H, there is a unique continuously differentiable u: [0, co)—>iJ for
which u{ϋ) — u0, u(t) eD(A) for t > 0 and (3) is satisfied [1, 2],

2* Applications* The applications of the abstract Cauchy prob-
lem for (2) are well known [1, 3, 6] so we shall restrict our discus-
sion to applications of (3). No attempt will be made to be comprehen-
sive in any sense, but we shall give three elementary examples for
which generalizations are obvious.

Let £Γ = L2(0, 1), the Lebesgue square-summable (equivalence classes
of) functions on the unit interval, and let iP(0, 1) be the Sobolev
space of elements of L2(0, 1) whose derivatives through order k are
in L2(0, 1) [1], Let c be a complex number with |c | <̂  1 and define
B=d/dx on D(B) = {φ e iΓ(0, 1): ψ(O) = cφ(ΐ)}. Then B is closed maximal
accretive in H. Let A = B; then we have

Re (Aφ, (I + B)φ)H = (1 - I c \2) \ φ(l) \2/2 + ί V I2

Jo

for φ e D(A) = D(B), so I + B forms a right angle with A. J = D{B)
is a closed subspace of iί^O, 1), so we may define B(t):J—+H by
B(t)φ = &i(έ)0' + b2(t)φ. B(') is strongly continuously differentiable if
&! and b2 are continuously differentiable. Finally, let F be continu-
ously differentiable on [0, 1] x [0, oo) and define f(t) = F( , t). Then
/ is continuously differentiable from [0, ̂ ) to H. Thus, Corollary 3
implies that for each u0 e D(B) there is a unique (generalized) solution
u(x, t) of
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(9) ut + uxt + ux + δi(ί)ttβ + b2(t)u = F

in (0, 1) x (0, co) for which u(x, 0) = uQ(x) and u(0, t) = cu(lf t) for t :>
0. Thus our results apply to the hyperbolic equation (9) with boundary
conditions specified on the characteristics. Furthermore, we can use
the Poincare inequality

to show that I + B forms an acute angle with A when | c | < 1. This
permits us to relax the smoothness requirements on B(t) and f(t) in
(9).

For our second example we take H, B, B(t) and f(t) as above and
define A = - {djάx)2 on D(A) = {φ e H2(0, 1): φ(0) = cφ(l), cφ'{0) = φ'(ΐ)}.
Then A is closed maximal accretive in H and

Re (Aφ9 (I + B)φ) = (Vl 2 + I ^ W d - |c|2)/2 ,
Jo

for φ e D(A) c D(B), so I + B forms a right angle with A. As before,
we have for each u0 e D(A) a unique solution of

(10) ut + uxt + bάtyu, + b2(t)u = F

in (0, l)x(0, oo) for which u(x, O) = uo(x) and ^(0, t) = cu(l, t), cux(0, t) =
ux{l, t) for t ^ 0. We cannot improve the result to obtain an acute
angle above, but this is expected since we would then have a regu-
larity result (see below) too strong for the hyperbolic equation (10).

For our final example let G be a bounded open subset of Rn with
G on one side of its infinitely differentiable boundary dG. Hk{G) is
the Sobolev space of (equivalence classes of) functions all of whose
derivatives through order k are in L2(G). Let A = Σ^i^/dα^)2 be the
Laplacian operator on the domain D(Δ) = {φ e H*(G): φ = 0 on dG}.
Then for each complex b with Re (6) ^ 0, the operator B = —bΔ with
D{B) = D{Δ) if b Φ 0 and D(B) = i ϊ if 6 = 0 is closed maximal accre-
tive in H = L2(G). Let Re (a) ̂  0 for the nonzero complex number
a and define A = aΔ2 on D(A) = {φ e H\G): φ = Δφ = 0 on 3G}. Then
A is closed maximal accretive in if. From the divergence theorem
we obtain

(Aφ, (I + B)φ)H = α(4*, J0)* - α6 ί Σ\d4φ/dxt

for ^ G D(A). Thus I+B forms a right (acute) angle with A if Re (ab) Ξ>
0 (resp., Re (αδ) > 0 and Re (a) > 0), and for each uoeD(A) (resp ,
uQ e D{B)) there is a unique (generalized) solution of
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(11) ut — bΔut + aΔ2u = 0

in G x (0, oo) for which u(x, 0) = uo(x) and u(x, t) — Δu(x, t) = 0 for
xedG and £ > 0. Nonhomogeneous terms and perturbations by first
order spatial derivatives can be added to (11) when b Φ 0. When
Theorem 2 applies, the solution of (3) with B(t) = f(t) = 0 belongs to
the domain of every power of the generator — Γ. Hence, when 1 — bΔ
forms an acute angle with aΔ2, the solution u(t) = u(x, t) of (11) belongs
to ((1 - bΔy'aΔT^DiA)] c H2n+2(G) for every t > 0 and n > 0. Thus
%(#, ί) is by Sobolev's lemma a C~ function of x. Further, one can
show by standard techniques [1, 3, 8] that u(x, t) is infinitely differ-
entiable in x and t and is a genuine (pointwise) solution of (11).

The last example illustrates the technique when A is a poly-
nomial with coefficients in the right half-plane in a self-adjoint operator
B.
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