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1. INTRODUCTION

Every attempt to exactly model laminar flow through highly inhomogeneous media,
e.g., fissured or layered media, leads to very singular problems of partial differential
equations with rapidly oscillating coefficients. Various methods of averaging will
yield corresponding types of double porosity models, and we shall describe some of
these.

As a first approximation to flow in a region G which consists of such a compos-
ite of two finely interspersed materials, one can consider averaged solutions, one
for each material and both defined at every point x € G. This leads to a pair of
partial differential equations, one identified with each of the two components, and
a coupling term that describes the flow across the interface between these compo-
nents. The values at each point x of the two dependent variables in this system
(the solutions) have been obtained by averaging in the respective media over a
generic neighborhood, which is located at € G and is sufficiently large to contain
a representative sample of each component. Since the two components are treated
symmetrically in the resulting system of two parabolic partial differential equa-
tions, such a double porosity model is said to be of parallel flow type. Although
appropriate for many situations, this symmetric treatment of the two components
can be a real limitation. For a fissured medium, for example, such a representation
is particularly restrictive, since the porous and permeable cells within the struc-
ture have flow properties radically different from those of the surrounding highly
developed system of fissures. Moreover the geometry of the individual cells and the
corresponding interface are lost in the averaging process leading to such models.
For layered media similar remarks apply, and these could be supplemented by non-
isotropic considerations. In general, essential limitations of the parallel flow models
are the suppression of the geometry of the cells and their corresponding interfaces
on which the coupling occurs and the lack of any distinction between the space and
time scales of the two components of the medium.

In order to overcome these deficiencies, we consider the class of double porosity
models which we call distributed microstructure models. These are known in many
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cases to be the limit (by homogenization) as the scale of the inhomogeneity tends
to zero, and they provide a way to represent a continuous distribution of cells with
prescribed geometry. At each point x € G there is given a representative model
cell, G, the flow within each such cell is described independently by an initial-
boundary-value problem, and the solution of this local problem on G, is coupled
on the boundary I', to the value near z of the solution of the flow problem in the
global region . Thus, we have a continuum of partial differential equations to
describe the local flow on the micro-scale, one at each point z € GG, and these are
each coupled to a single partial differential equation in G for the macro-scale flow.
Such continuous models represent a good approximation of the real but discrete
(and very singular) case of a finite but very large number of cells. This concept
was introduced in the early 1930’s (see Section 3), and it has arisen repeatedly in
a variety of applications which we mention below.

We shall illustrate these two classes of double porosity models with examples of
single phase flow in various types of fissured media. The class of parallel models
is briefly treated in Section 2 for motivation and orientation. The distributed
microstructure models are introduced in Section 3 by a simple and classical example,
and we discuss this class in much more detail. We use both types to describe first
the example of a totally fissured medium in which the individual cells are completely
isolated from each other by the fissure system. In this situation the cells act only
as storage sites, and there is no direct diffusion from cell to cell within the matrix.
Then we introduce corresponding models for the more general example of a partially
fissured medium in which there is some fluid flow directly through the cell structure.
This flow through the cells is driven indirectly by the pressure gradient in the fissure
system, and it contributes an additional component to the velocity field in the fissure
system which we call the secondary flux. We also display the form of the functional
differential equations by which these problems can be represented; here the family
of local problems is replaced by convolution terms. We shall describe some typical
results on the theory of such systems in Section 4. This is illustrated in the simplest
case as an application of continuous direct sums of Hilbert spaces which arise rather
naturally as the energy or state spaces for the corresponding (stationary) variational
or (temporal) dynamic problems. In Section 5 we indicate in some detail how the
distributed microstructure models arise by way of homogenization from exact but
singular models, partial differential equations with highly periodic coefficients or
geometry, and then we close with some additional remarks.

2. PARALLEL FLOW MODELS

The classical example of a parallel flow model for single phase flow in a composite
medium is the parabolic system

o %(aul) — V- (AVu) + %(u1 —uy) = f1
2.1
9

a(bu2) V. (Bﬁw) + %(m —u1) = fa.

discussed in [8] for which u; represents the density of fluid in the first material
and ugy the density in the second. The coefficients a(z) and A(z) are porosity and
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permeability of the first material, respectively, while b(x) and B(x) are correspond-
ing properties of the second material. The first equation quantifies the rate of
flow in the first component of the composite, and the second equation quantifies
the corresponding flow rate in the second. Both of these equations are to be un-
derstood macroscopically; that is, they were obtained by averaging over a generic
neighborhood sufficiently large to contain contributions from each component. The
third term in each equation is an attempt to quantify the exchange of fluid between
the two components. See [52] for a corresponding system which describes heat
conduction in such a composite medium.

Totally Fissured Media. A fissured medium consists of a matrix of porous and
permeable material cells through which is intertwined a highly developed system
of fissures. The bulk of the flow occurs in the highly permeable fissure system,
and most of the storage of fluid is in the matrix of cells which accounts for almost
all of the total volume. One approach to constructing a model of such a medium
is to regard the fissure system as the first component and the cell matrix as the
second component of a general composite by adjusting the coefficients in (2.1)
appropriately. These fissured media characteristics are modeled by choosing very
small values for the coefficients a(x) and B(z) in (2.1). Since one component
is essentially responsible for storage and the other for transport, the distributed
exchange of fluid between the two components is of fundamental importance. The
parameter § represents the resistance of the medium to this exchange. (When
d = 00, no exchange flow is possible, and the system is completely decoupled.)
An alternative interpretation is that 1/§ represents the degree of fissuring in the
medium. (When the degree of fissuring is infinite, the exchange flow encounters no
resistance and u; = us.)

In order to specialize the system (2.1) to a totally fissured medium in which the
individual cells are isolated from each other, one sets B = 0, because there is no
direct flow through the matrix of cells; only an indirect exchange occurs by way of
the fissures. Thus, the condition B = 0 corresponds to a totally fissured medium in
which each cell of the matrix is isolated from adjacent cells by the fissure system.
The resulting system of parabolic-ordinary differential equations

(2.2.a) %(aul) — V- (AVuy) + %(u1 —ug) = f
(2.2.6) %(b’l@) -+ %(UQ — U1) =0

is called the first-order kinetic model, since the cell storage is regarded as an added
kinetic storage perturbation of the global fissure system.

The equation (2.2.b) models the delay that is inherent in the flow between the
fissures and blocks. It is precisely this delay that led to the introduction of such
models by Barenblatt, Zheltov, and Kochina [8] and Warren and Root [62] three
decades ago in order to better match observed reservoir behavior. See [2], [18],
[15], [39], [26], [13], [22], [38], [57] for additional applications and mathematical
developments of such models.

If we further specialize this model by setting a = 0 in order to realize that
the relative volume of the fissures is zero, we obtain the pseudoparabolic partial
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differential equation

0 = - - = 0
(2.3) —b(u1 V- (AVu1)> Y (AVu) = f 4027

ot ot
See [12] for the development of such equations. Their solutions are determined
by a group of operators on appropriate spaces, and their dynamics is regularity-
Preserving.

Partially Fissured Media. Next we present a parallel flow model for a partially
fissured medium, a fissured medium in which there are substantial flow paths di-
rectly joining the cells in addition to the predominate connection with the surround-
ing fissure system. Thus, the cells are not completely isolated from one another
by the fissure system, and the matrix is somewhat connected. This model allows
for a secondary flux that arises from this bridging between cells. The model above
is based on the assumption that the exchange flow between the components has a
spatially distributed density proportional to the pressure differences. That is, the
fluid stored in the cell system at a point in space is determined solely by the history
of the wvalues of the pressures of the components at that point. In order to induce
a flow within the cell matrix as a response to local effects, however, it is necessary
to apply a pressure gradient from the fissure system. Thus, we shall model the flux
exchange as a response to both the value and the gradient of the pressure. Equiv-
alently, we assume that the local cell structure at a point is responsive to the best
linear approximation of the pressure in a neighborhood of that point. Furthermore,
if the geometry of the cell matrix is symmetric with respect to the coordinate sys-
tem, then the response of the cell to the value and to the gradient of the pressure is
additive, the terms representing even and odd responses, respectively, to even and
odd input. Thus, we are led to model the resulting storage and transport responses
within the cell matrix as two independent processes whose effects are additive.

In this situation one must account for the effect of the gradient of the fissure
flow on the local flow within the cells, for it is this fissure pressure gradient which
necessarily provides the driving force for this transport within the matrix. In order
to implement this in a model of parallel flow type, we introduce into the first order
kinetic model (2.2) a secondary flux s through the cell system. This flux is assumed
to respond to the fissure pressure gradient with a delay analogous to that of the
cell storage in response to the value of fissure pressure in (2.2). This leads to the
second-order kinetic model

8 = = ]_ —

(2.4.a) a(aul) — V- (AVuy) + g(ul —up)+V-C'ig=f
0 1
J, 1, -

(2.4.c) a(cug) + B(’U,g +CVu;)=0.

We assume the responses of the cell structure at a point to the value and to the
gradient of fissure pressure are additive, an assumption that is valid for cell struc-
tures which are symmetric with respect to coordinate directions. The third and
fourth terms in (2.4.a) give the distributed mass flow rate into the cell matrix from
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the fissure system at a point. According to (2.4.b), the first of these goes toward
the storage of fluid in the cells. Fluid from the fissure system enters the cell system
at a point of higher pressure, it flows through the cell matrix to a point of lower
pressure, and then it exits the cell back into the fissure system according to the
second of these exchange terms in (2.4.a). The secondary flux i3 follows the fissure
pressure gradient according to (2.4.c). The matrix C*C arises from the bridging
of the cells, and it distinguishes the partially fissured model (2.4) from the totally
fissured model (2.2). Such a system may also be appropriate to describe totally
fissured media which are composed of larger cells for which the more accurate ap-
proximation of u is necessary. See [53] for a discussion and development of such
models with multiple nonlinearities.

3. DISTRIBUTED MICROSTRUCTURE MODELS

We first describe an elementary example in which a distributed microstructure
model arises very naturally. For historical reasons, it will be presented in the
framework of a heat conduction model, but it clearly has a meaningful analogue for
the analogous problem of diffusion and absorbtion of a dissolved chemical in a fluid
flowing through a porous medium. The problem concerns the following situation.
A system of pipes is used to absorb heat from circulating hot water and then later
to return this heat to colder water, thereby serving as an energy storage device.
This system has two sources of singularity, a geometric one due to the high ratio
between the pipe length and the cross section, and a material one due to the very
different conduction properties of the two materials involved. We seek a model
in which these two singularities are properly balanced in order to obtain a good
description of the exchange process.

We begin by examining the heat exchange in a single pipe in such a system.
The heat transport in the water is primarily convective, due to the unit velocity
of the water. The transport in the walls of the pipe is purely conductive and
relatively very slow. The cross-sections of the pipe are very small, and these must
be properly scaled to accurately model the exchange of heat between them and
the water. We introduce a small parameter € > 0 to quantify this. A reference
cell Y = {y = (y1,92) € R : |y1] + |y2| < 23/2} defines the structure of the
cross-sections, and we write the parts of this double component domain as Y =
YiUY,, with Y] = {y € R? : ||y|]| < 1} representing the internal flow region
and Yy = {y € R% : 1 < ||y|| and |y1| + |y2| < 23/2} the walls of the pipe. The
boundary of Y; is the unit circle, I'y;, and that of Y is the square, I's5. The
boundary of Y5 is given by I'y =I'1; UT'93. By v we denote the unit vector normal
to I'y which points in the direction out of Ys. We shall represent the very small
cross-sections by Y¥ = ¢Y; = {z = (21,22) = €(y1,y2) € R? : (y1,92) € Y1} and
Yy =ecYy = {2 =¢ey € R? : y € Yo}. Similarly, we denote the corresponding
boundaries by I'j;,1'5,, and I'5.

Let the interval G = (0, 1) denote the axis of the very narrow pipe in which water

is flowing at unit velocity through the cross section Y7 and for which Y5 is the pipe
wall, a material of relatively very low conductivity. This situation is described by
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the initial-boundary-value problem

oUc  oUF  9%U* _ _
55 T e = gg2 T Ve VeUt(wat), z€YF, vl

oUe o0%U¢

_ 2 3 €
Py =e*(V, -V, U%(z,2,t) + 522 ) z€Yy, x €@,
V.U -vlye :62VZU5-V|Y26, zelf, zed,
VzUE'V:()’ Z€F§2,$L’€G,

which is the exact e-model. The e2-scaled conductivity permits very high gradients
in G x Yy. However, only those components in the cross-section direction are
responsible for the exchange flux, and in order to see that it is balanced with the
other transport terms we rescale with z = ey and V, = évy to get

ous oUc 92U 1

(313’) ot + or - ox2 + 5_2Vy ) VyUE('Tayat)a yE Yla T e G7
ou*® 02U¢

(3.1.b) S =Vu- V,Us(z,y,t) + e2ﬁ, y€Yy z€G,

(3.1.c)  V,U®-vly, =e’V,U°  vly,, y €T, z€q,

(3.1d) V,U®-v=0, y €y, zed.

Now it is easy to recognize the limit as ¢ — 0. In Y7 we get U(x,y,t) = u(z,t) in
the limit, i.e., it is independent of y € Y;. Average ( 3.1.a) over Y7 and use ( 3.1.c)
with Gauss’ theorem to get an integral over I'y;. This gives the following limiting
form of the problem:

Jdu Ou B 0%u 1

(3.2.a) % + 9r 022 | - V,U -v ds, z €@,

ou
(3.2.b) 5 = Vy -V, U(z,y,t), y €Yo, r €@,
(3.2.c) U(z,s,t) =u(z,t), s €Ty, x €@,
(3.2.d) V,U*®-v =0, s € I'ag, rzed.

The integral term in ( 3.2.a) is the total heat lost to the pipe wall at the cross-section
z € G, computed from the normal component of the heat gradient in the wall, and it
is comparable to the transport terms representing convection and conduction along
the pipe. This balances the heat gained in the water with its moderate gradients
against that exchanged with the pipe where the gradients are very high.

This problem approximates the heat transport and the exchange between the
water and the pipe walls. It is essentially the heat recuperator problem which was
introduced by Lowan [40], and it is our first example of a distributed microstructure
model. The global domain is the interval G. For each point x € G there is identified
a local cell, Yo, which is located at or identified with that point. In the exchange of
heat with the global medium, this family of cells acts as a distributed source, and
the global medium is coupled to the cell at that point only on its boundary, I';;.



MICRO-STRUCTURE MODELS OF POROUS MEDIA 7

It provides a well-posed problem which is a good aproximation to the apparently
singular e-problem. We see the apparently singular term in (3.1.a) arose in the
rescaling from the singular geometry in the original problem, but it is balanced
by the corresponding term in (3.1.b) without the small coefficient because of the
flux condition (3.1.c). In particular, the choice of €2 as coefficient in (3.1.b) exactly
balanced the competing singularities introduced by the geometry and the materials.

Remark. In order to describe the complete system of parallel pipes which makes up
a heat recuperator, we need a periodic array of such cells €Y to cover a fixed region
in R?. Since the domain then has an e-dependent structure which is not eliminated
by a simple scale change as above, we need a more sophisticated technique to describe
the limit. This is provided by homogenization. (See Section 5.)

The introduction of distributed microstructure models for diffusion in porous
media represents an attempt to recognize the geometry and the multiple scales in
these problems in order to better quantify the exchange of fluid across the intricate
interface between the components. We are given a domain G which represents
the global region of the model. At each point x € G there is specified a cell G, a
magnified or scaled representation of the microstructure that is present near . One
partial differential equation is specified to describe the global flow in the region G,
and a separate partial differential equation is specified in each cell G, to describe
the flow internal to that cell. Any coupling between these equations will occur on
the boundary of G5, denoted by I',. It is the collection {I'; : z € G} which provides
the interface on which this exchange takes place. Now we use this concept to model
some examples of single phase flow in a fissured medium. These include analogues
of the parallel flow models which were given above.

Totally Fissured Media. The global flow in the fissure system is described in
the macro-scale = by

0

(3.3.a) 5

(a(z)u(z,t)) = V- A(@)Vu +q(z,t) = f(z,t), z€G,
where ¢(z,t) is the exchange term representing the flow into the cell G;. The flow
within each local cell G, is described by

(3.3.b) %(b(m,y)U(m,y,t)) —Vy - B(z,y)V,U = F(z,y,t) , y€G, .
The subscript y on the gradient indicates that the gradient is with respect to the
local variable y. A gradient operator without any subscript will mean that the
gradient is taken with respect to the global variable x. Because of the smallness of
the cells, the fissure pressure is assumed to be well approximated by the “constant”
value u(z,t) at every point of the cell boundary, so the effect of the fissures on the
cell pressure is given by the interface condition

- 1
(3.3.¢) B(z,s)V,U(z,s,t) v+ g(U(x, s,t) —u(z,t)) =0, sely,

where v is the unit outward normal on I';. (When § = 0, this becomes (and con-
verges to) the matched boundary condition, u(z,t) = U(z, s,t) for s € T';.) Finally,
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the amount of fluid flux across the interface scaled by the cell size determines the
remaining term in (3.3.a) by

(3.3.d) q(z,t) = L‘/ B(x,s)ﬁyU -vds
Ga| Jr,

where |G| denotes the Lebesgue measure of G, and this contributes to the cell
storage. Thus, the system (3.3) comprises a double porosity model of distributed
microstructure type for a totally fissured medium. It needs only to be supplemented
by appropriate boundary conditions for the global pressure u(z,t) and initial con-
ditions for u(x,0) and U(x,y,0) in order to comprise a well-posed problem. See
[40], [51], [50], [19], [61], [9], [25], [6], [7], [3], [5], [19], [20], [23], [24], [28], [29], [30],
[31], [32], [33], [34], [36], [35], [43], [59], [58], [60], [56], [55], [54] for applications and
mathematical theory for (3.3) and various related problems. A typical development
of well-posedness results is given below in Section 4.

Finally, we remark that the system (3.3) can be rewritten as a single equation of
functional-differential type. By applying Gauss’ theorem to (3.3.b) we obtain from

(3.3.d)
0 oU
— bU dy = B—d Fdy .
3t/Gw Udy /p v S+/Gw Y

Then by using the Green’s function for the problem (3.3.b) to represent the solution
U(z,y,t) as an integral over I'; of u(x,t), we substitute this into (3.3.a) to get the
implicit convolution evolution equation

(3.4) % {a(x)u(x, t)+ /0 k(xz,t —71)u(z,T) dT} — V- A@)Vu = f(z,t) .

The convolution term represents a storage effect with memory. See [37] for a direct
treatment of this equation and particularly [45], [48], [49] where this equation forms
the basis for an independent theoretical and numerical analysis. Also see [46], [47]
for related work.

Partially Fissured Media. We shall present two distributed microstructure mod-
els for flow in a partially fissured medium, a porous medium composed of two in-
terwoven and connected components, the first being the system of fissures and the
second being the matrix of porous cells. (Note that such a construction is impossi-
ble in R2.) In partially fissured media, the matrix of cells is connected, so that some
of the flow passes directly through the block interconnections. While the primary
flow will continue to be the flow from cells into fissures followed by flow within the
fissures, the flow within the porous matrix has more than only a local character, as
in the case of a totally fissured medium. This effect is less promiment than the bulk
flow in the fractures, but it can have a noticeable effect when the interconnections
between the cells are sufficiently large.

For our first model of a partially fissured medium, we are motivated by our
parallel low model above, in which the cell system responds additively to the value
and the gradient of fissure pressure, that is, to the best linear approximation of the
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fissure pressure at each cell location. As before the global fluid flow in the fissures
is described by

%(a(m)u(x, t)) — V- A(z)Vu+ q(z,t) = f(z,1) reG,

and the local flow within the matrix in the cell at each point x is given by

(3.5.a)

(3.5.b) %(b(w,y)U(x,y,t)) —Vy - B(z,y)VyU = F(z,y,t), y€eG,.
The boundary values for each cell problem are taken from information about the
solution to the global equation in the vicinity of that point. The tacit assumption
of the microstructure models is that the matrix cells are so small that the global
solution v may be effectively approximated over the matrix cell boundary by an
appropriate approximation to u. In the usual models, as above, the approximation
used for this purpose is merely the constant value of the global solution u(z,t).
Our objective here is to refine this model in order to more accurately describe the
flow through the matrix. Thus, we shall assume that the pressure on the matrix
boundary is driven by the best linear approximation of the fissure pressure, and
this leads to the boundary condition

. 1 .
(3.5.c) B(z,s)V,U(x, s,t)-l/—l—g(U(m, s, t)—u(z,t)—Vu(z,t)-s) =0, sely,

Here I',, is taken to be that part of the fissure-matrix interface that is interior to
the unit cell, Y; periodic conditions are prescribed on the remaining part of that
interface, I'y5, which intersects the boundary of the unit cell. Finally, the exchange
term ¢ in (3.5.a) consists of two parts, the average amount flowing into the cell to be
stored and the divergence of the secondary flux flowing through the cell structure.
The total exchange is given by

1 ~ 1 = =
(3.5.d) q(z,t) = / B(z,s)V,U-vds— V- (/ B(z,y)(V,U-v)s ds) .
|Gzl Jr, |Gl r,

The system (3.5) comprises the first of our two distributed microstructure models
for a partially fissured medium. This model was introduced in [14] to describe the
highly anisotropic situation in layered media and developed in [16] for more general
media. See [4] for an earlier discrete version and numerical work.

When the cells G, are symmetric in coordinate directions, one can separate the
effects of storage from those of the secondary flux. Specifically, the storage can then
be expressed in terms of the value of the fissure pressure at the point over a time
interval through a convolution integral obtained as before from a Green’s function
representation of the cell problem, and the secondary flux and its corresponding
contribution to the global flow are expressed likewise in terms of the global flux.
This leads just as before to a functional partial differential equation of the form

0
5 (a(z)u(z,t) + ki(z, ) * u(z, )
-V (A(a:)ﬁu(x, t) + %klg(.’ﬂ, Y % Vu(z, t) + ke (z, ) * Vu(z, t))

= f(z,t) , reG,t>0.

(3.6)
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which is known as Nunziato’s equation. This equation was presented in [42] without
any physical or philosophical justification as an interesting generalization of heat
conduction with memory models due to Gurtin and Chen. See [41] for mathematical
development of these equations.

Next we describe our second microstructure model for flow in a partially fissured
medium. We use three variables in this model. The fast diffusion through the fissure
system is determined as before by a concentration u;(x,t) there, but we specify the
concentration in the matrix in two components. The first of these, U(x, y, t), results
from the e2-scaled slow diffusion in the matrix as before, but we account also for a
moderate component of flow in the matrix which has concentration us(x,t). Thus,
ug is the (low spatial frequency) component of the density in the matrix that leads
to global diffusion, and U is the (high frequency) component of the density in the
matrix that gives the local storage. These three variables, u,(x,t), ua(z,t), U(x,t),
are defined in the fissures, the matrix, and individual cells, respectively. The model
system is given by

(3.7.2) @1% _V (M Vu) + gz, ) = 0,
a’u,g = =3
(37b) (I)QW -V (AzVUg) — q(m,t) = 0, x € G,
(3.7.¢) q(z,t) = / )qﬁyU(x, s,t) - vds,
r
o - -
(3.7.d) ¢2§ -V, - (ANVU) =0, s € Yo(x),

(3.7.¢) U(z,s,t) and AgﬁyU(.’IJ, s,t) - v are Y-periodic on I'yp, and
(3.7.1) U(z,s,t) + uz(x,t) = ur(z, ), sel.

Note the different spatial domains on which the problems (3.7.b) and (3.7.d) are to
be solved. The equation (3.7.d) is to be solved in the individual blocks which are
now artificially disconnected along I's2, while (3.7.b) is to be solved in the whole of
G, which includes all of the blocks and their interfaces to form a globally connected
set. In view of (3.7.d), the flux (3.7.c) can be expressed by

oU
q= v, ¢2§dy.

With appropriate boundary conditions for u; and us and initial conditions on each
of uy, ug and U, this is a well posed problem.

The condition (3.7.f) expresses a matching of total pressures across the matrix-
fissure interface. We note that the condition (3.7.f) is, in a mathematical sense,
the dual to the right sides of (3.7.a) and (3.7.b). The system is complemented by a
pair of conservation equations (3.7.e) on the artificial interface I'y3 where pressure
and flux are localized. This problem is a hybrid between parallel and microstructure
models: the introduction of two matrix components is a parallel construction which
was built into the e-model, and it persisted in the limit. This is one of a family
of such models which were derived in [21] by homogenization (see below) from
corresponding e-models.
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4. A VARIATIONAL FORMULATION

We illustrate with the case of a totally fissured medium the mathematical formu-
lation of microstructure models as evolution equations on various Hilbert spaces.
This provides a means of establishing that they are well-posed problems and identi-
fies the natural energy and state spaces for these dynamical problems. Let G be an
open, bounded domain in R3 and for every z € G, let G, be a bounded region con-
tained in R3. Identify the product space [[.cc Gz = Q as a subset of RS; we require
that Q be a measurable subset of R®, hence, each of the cells G, = {y : (z,y) € Q}
is a measurable subset of R®. Here we will formulate the Cauchy-Dirichlet problem
for the linear parabolic system

(4.1.%(01(95)“(%15)) — V- A(z)Vu(z, t) + / B(x, )V, U(z, s,t) - 7 ds

Iy
= f(z,t), redG,

(4-1-65%(6(06,1/)U($,y,t)) —Vy Bz, y)V,U(z,y,t) = F(z,y,t), 2€G,y€eC,,

=3

(4.1.¢) B(z,s)V,U(z,s) -7 = %(U(az, s,t) — u(z)) ,

relG, s=el,,

as an evolution equation in an appropriate Hilbert space. This is just the system
(3.3) in which the measure ds on I'; is used to absorb the extra factor of |G,|.
We shall assume a € L*(G), b € L*°(Q), A and B are uniformly positive definite
and bounded measurable matrix functions, 7 is the unit outward normal on I, and
d > 0. We will further assume that each boundary T', is piecewise C' and that
the measures |I';| and |G| are uniformly bounded in z. We shall use the Lebesgue
space L2(Q) = L?(G, L?(G,)) with the norm

1/2
101220 = (/ / xy|2dydx) |

and the Sobolev spaces W,>>(G) and
LA(G, WY(G,)) = {U € L3(G,L3(G,)) : V,U € L2 (G,LZ(GQE))} .

See [1] for information on Sobolev spaces. For the norm on L?(G,W'2(G,)) we
employ the notation

. 1/2
|U|2=(/ / |va<x,y>|2dydx) |
G JG,

so ||UI3 = U3 + |Ul32q)- Denote by V. = Wy*(G) x L*(G,W"*(Gy)) the
indicated product space with norm

e, Ulllv = llullwz2 gy + 1U]]2 -
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Let v, be the usual trace map of W1?(G,) into L?(T';), and define B = L*(G, L*(T'z))}
and the distributed trace v : L*(G, W12(G,)) — B by YU(z, s) = (7.U(z))(s). We
will require that the trace maps 7, be uniformly bounded, so v is continuous from
L*(G,W'2(G,)) into B. Define A : Wy*(G) — B by: Iu(z,s) = u(z)l, , = €
G, s €T, , where u(z)l; is the constant function on I'; with value u(z). We will
employ the notation @ = [u, U].

Define the Hilbert space H = L%(G) x L?(G, L?(G,)) with the inner product

(5 @) = /G a()u(e)p(z) do + /G /G W)U ), ) dyder
for 4 =[u,U], ¢=[p,P]€ H.

Define Vi, = {a € V : yU = Au in B}. Since v and X are continuous, V}, is a closed
subspace of V. Also define Vy = {U € L*(G,W12(G,)) : vU = 0}. It can be shown
that W, *(G) x V, and V}, are dense in H.

We shall write the system (4.1) as an evolution equation over the spaces described
above. To obtain the variational form for the system, choose [, ®] € V, multiply
(4.1.a) by ¢ and integrate over G. Multiply (4.1.b) by ® and integrate over both
G, and G. Add these equations and apply Green’s Theorem to obtain

/G{% (a(z)u(z,t))p(z) + / %(b(ax, YU (z,y,1))@(z,y) dy} dx
{A(a:)Vu(a:, t)- Vo(z) +/1“ B(z,s)V,U(z, s,t) - To(z) ds
B(x, y)ﬁyU(:ﬁ, y,t) - 611@(:& y)dy

- / B(z, y)ﬁyU(as, Y, t) - Uy, ®(z, 5) ds} dzx
Iy

- [ r@p@aes [ | Pl p)®(,y) dyds
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Combining the boundary integrals and substituting for B(z, s)ﬁyU (z,y,t) - Vyields

(4.2) [u(t), |ev: / u(z, t)p(r) de

+ /G /G m %b(x,y)(](m,y,t)@(m,y) dy dz

+ /G A(z)Vu(z,t) - Vo(z) dz

n /G A B(x,y)VyU(z, y, 1) - V,®(z,y) dy da

+ /G /P m %(WU(JE, 5,1) — Au(z, 5,0)) (Y0 (2, 8, £) — Ap(x, 5, 1)) ds d

_ /G f(@)p(z) dz + /G /G P p)®(y) dyds o8] c V.

A special case of the above is obtained when (4.1.c) is replaced by
(4.1.c) yU (z, s,t) = Au(z, s, t) reG,sel, , t>0.

This is the formal result obtained by allowing 6 — 07, so that (4.1.c)’ is forced to
hold, and it corresponds to

(4.2)"  [u(t),U®)] € Vi : / u(z,t)p(z) dz
// 5.0 (@0 (2,9)®(w, y) dydz
+ /G A(x)Vu(z, 1) - Vo(x) do
n /G/G Bz, y)VoU(z,y,t) - ¥V, @(z,y) dy dz

- /G f(@)p(z) dz + /G /G P y)dyds o, 8] € Vi

The problem (4.1) will be called the regularized model, and (4.1)', i.e., (4.1.a),
(4.1.b) and (4.1.c)’ will be called the matched model. Conversely, starting from
(4.2) it is not difficult to recover (4.1).

Define the Hilbert spaces

H=L*0,T;H)
Wa = L2(0, T; W, (@)
Vs = L*(0,T; L*(G,W"2(Gy,)))
V=W, XxV,, and
Vi={a€V:yU@)=Au(t) in B for almost every ¢ >0} .
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Define L : V — V' by
Li(p) :/ A(z)Vu - Vo dz +/ / B(z,y)V,U -V, ®dyds @,5€V .
G G JGy

The conditions above on A and B imply that L is bounded and coercive from V'
into V'. The exchange term is given by the operator

M(ﬂ,gb)z// (YU — M) (y® — A\p) dsdz u,peV.
GJI,

This gives a continuous and linear function M : V — V', Let f € V' be given in

the form
ﬂ@=/fwm+//“mwwz, Gev .
G cJa,

We will use the same notation to refer to the corresponding realizations of these
operators on the spaces H, V and Vj.
Integrating (4.2) from 0 to T we obtain

T 9 T T 1
(4.5) ieV: / (Eﬂ’ @) dt + / La(@) dt + / SM(@) dt
0 H 0 0

T~
:A f@d, gev.

Similarly from (4.2)" we get
T /g T T

(4.5) aevh;/ (—a,¢> dt+/ L&((ﬁ)dt:/ @) dt, eV
o \0t H 0 0

In the situation described above, (4.5) and (4.5)" have unique solutions and the
solutions s of (4.5) converge to the solution @ of (4.5)" as § — 0.

Theorem. Given the spaces and operators as above, suppose that iy = [ug, Up] €
H and f = [f,F] € V'. Then for every § > 0 there is a unique G5 € V which
satisfies (4.5) and u5(0) = . Also, there is a unique 4 € Vy, which satisfies (4.5)’
and where 4(0) = Gg. Furthermore G5 converges weakly to @ in) as 6 — 0.

The proof is a direct application of standard results on evolution equations in
Hilbert space.

We have shown that (4.5) and (4.5)" have unique solutions and that the two
models which they represent are related. We remarked previously that allowing
§ — 07 formally transformed the regularized model into the matched model. We
have substantiated that observation by showing that the solutions us converge to
the solution of the matched model.

Note also that the variational form (in (4.2)" for example) leads directly back to
(4.1)". This confirms that our choice of the exchange term in the physical model is
the correct one.
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Finally note that the models and results here could be generalized or extended in
several ways. In (4.1.c) we might choose % to be something other than a constant.
If, for example, % is assumed to be a monotone graph which is also a subgradient
operator, an approach similar to that in [17] might be used to show existence of
a solution. As stated earlier, Dirichlet boundary conditions on G are not neces-
sary, so some generalization is also possible in that respect. Finally, if additional
assumptions about the differentiability of A and B and the smoothness of I';, and
0G were made, then it might be possible to say more about the regularity of u and

U.

5. REMARKS

We describe first how microstructure models can arise by way of homogenization
from partial differential equations with highly periodic coefficients or geometry and
appropriately scaled coefficients. This provides the connection with the exact mod-
els described by classical equations. Then we close with some additional remarks
and observations.

Homogenization. So far we have given a direct but only heuristic justification
of the microstructure models. In order to employ them to simulate real phenom-
ena, one must obtain realistic values for the coefficients, e.g., by matching with
data. Here we briefly recall the derivation by homogenization of the distributed
microstructure model of a totally fissured medium following [4],[6]. This provides
simultaneously a justification of the model and a means to compute the effective
coefficients in the microstructure model from known coefficients in the exact case.

We begin with the exact microscopic model of single phase flow in a fissured
domain G, a bounded open subset of R3. We assume that the geometry and the
physical parameters of the problem have e—periodic character. This implies that the
solution to the problem exhibits periodic behavior. It has also some macroscopic
(non—periodic) behavior which is seen on the scale of the whole region, G. The basic
problem is to investigate the asymptotics of the solution as ¢ — 0 in a family of
properly scaled problems posed on domains G° formed by a lattice of copies of cells
€Y, where the unit reference cell is the cube Y = (0,1)3. We use € as a superscript
or subscript on coefficients or variables to denote objects periodic with respect to
eY'; we omit this notation when € = 1.

The reference cell Y defines the double component structure of the fissured do-
main, and we write Y = Y; UY 5, with Y; and Y5 denoting the fissure and matrix
parts of the cell, respectively. Their respective boundaries are denoted by I'y and
I’'5. The fissure-matrix interface is given by I'yo = I'y N 'y, Let I' be that part of
I'12 which is contained in Y, and let I'1; and I's5 denote the respective intersections
of Y with Y7 and Y. In the totally fissured case, we assume Yy C Y, so the
matrix interface I'gg is empty and I' = I'15. We then refer to Yy as a block. By v
we denote the normal unit vector to I' which points in the direction out of Y5.

The system of fissures and matrix blocks in G® are denoted by G{ and G5,
respectively. The exact (but singular) e—model consists of a pair of differential
equations, one on each of the subdomains G§ and G% for the density, which will
be denoted by u®. These equations are coupled by standard interface conditions
on I'j, to insure conservation of mass and momentum across the fissure-matrix
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interface I'{5. An exterior boundary condition and an initial condition must also be
specified, but they do not enter into the derivation of the limit model. In order to
preserve the magnitude of the flux crossing the interfaces contained within a fixed
volume of the medium as € — 0, it is necessary to scale the permeability in the
blocks by the factor €2. Thus, the e - model of diffusion in a totally fissured medium
has the form

8 €
(5.1.a) 1 6“t — V- (MVeE(z,8) =0, 1z €GE,
Ou’ 2 € €
(5.1.b) b2 e V- (e°AVus(z,t)) =0, z€ G5,
(5.1.c) u®|gz (s,t) = u¥|as (s,1), s € I'{q,
(5.1.d) MVus|ge v = e’ A Vuslgs - v, s € I'i,.

If u® is expanded in powers of ¢ and the formal analysis of this expansion is carried
out, it will be seen that the leading terms for the density u®|g: in the fractures
and the density u®|gs in the matrix blocks will be a pair of functions, u(z,t) and
U(z,y,t), x € G, y € Yo, t > 0, respectively, which satisfy the system of equations

(5.2.a) \Yﬂ% - V- (A Vu(z,t)) +q(z,t) =0, ze€G,

ouU
(5.2.b) ¢QW —Vy - (AV,U(z,y,t)) =0, y € Ya(z), z € G,
5.2.c U(x,s,t) = u(x,t), sel, xr € G,
(5.2.c) (2, s,t) = u(z,1)
(5.2.d) q(z,t) = / X V,U -vdS, r€eq.
r

This is just the matched microstructure model (3.3). Here |Y7| denotes the ¢;—
weighted volume of the reference set Y;. The effective permeability tensor A; is

given by
Bwi
(A1)ij :/ A1 <5i,j Yif + )dy,
Y

8yj
with the auxiliary functions wy, k = 1,2, 3, being Y -periodic solutions of the cell
problem

V;u)k:(), y € Y,
Vywi -v=—ep-v, yerl,

where e, is the unit vector in the direction of the k—axis.

Equation (5.2.a) is the macroscopic equation to be solved in G for the (macro-
scopic) density u. The distributed source term ¢ accounts for the flux across the
boundary T' of the block Ys; we denote it here by Ys(x) to emphasize that a copy
of it is identified with each point € G. Blocks over different points in G are dis-
connected; thus, no flow can take place directly from one such block to another. It
is this feature that limits this model to flow in a totally fissured medium. If the &2
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scaling of the permeability in the blocks had been omitted, then the limit process
would have led to a single diffusion equation with effective or averaged coefficient
that fails to represent the desired delayed storage effects. Vogt [61] appears to
have been the first to have recognized this idea in the development of a model for
chromotography.

Further Remarks...

The basic distributed microstructure model (3.3) is obtained as the limit by
homogenization of a corresponding exact but highly singular partial differential
equation with rapidly oscillating coefficients. This provides not merely another
derivation of the model equations, but shows also the relation with the classical
but singular formulation as a single diffusion equation, and it provides a method
for directly computing the coefficients in (3.3) which necessarily represent averaged
material properties. A similar result of convergence of a classical system to (3.5) is
to be expected. Also, the convergence of the solution of the well-posed e-problem
to a solution of this system provides a proof of existence for the distributed mi-
crostructure system. An alternative direct proof is independently available as in
Section 4. Furthermore, the parallel flow model systems can be recovered as lim-
iting cases of corresponding microstructure models. For example, the first order
kinetic model (2.2) is the limiting case of (3.3) as the permeability coefficient B
tends to infinity. In this limit the cell behaves as a single point, equivalently, the
function U is independent of the local variable y, and the geometry of the cell is
lost. The system (3.5) converges to (2.4) likewise as B tends to infinity. When ¢
tends to zero in (3.3) or (3.5), the solution converges to that of a limiting prob-
lem with the boundary conditions (3.3.c) or (3.5.c) replaced by the corresponding
“matched” conditions of Dirichlet type. These results provide useful connections
between the various classes of models [17].

An interesting open problem is the determination of the coefficients in the system
(3.3) from measurements of data on the boundary of the global region. It would
be particularly interesting to obtain information on the cell geometry from such
boundary measurements.

The systems (2.1) and (2.2) comprise parabolic and degenerate parabolic dy-
namical systems, respectively, in the product space L?(G) x L?(G). The functional
differential equations (3.4) and (3.6) lead to dynamical systems in L2(G), but these
are governed by Cj semigroups without regularizing effects, and the estimates and
techniques for these are comparatively difficult. These equations lack the parabolic
structure one seeks in such models. However the systems (3.3) and (3.5) do retain
all of the parabolic structure and corresponding estimates and regularity of classical
parabolic systems when they are posed on the spaces L?(G) x L*(G, L*(G,)). The
dynamics of these microstructure systems is given by an analytic semigroup. Thus,
they are truly parabolic problems.

Interesting models of a layered structure are easily obtained from the examples
above for partially fissured media. Rather than having a secondary flux in all three
coordinate directions, the fissure pressure gradient induces transverse normal flow
across the layers while the parallel flow within the layered matrix is driven by the
internal pressure gradient. See [11], [10], [44] and [27] for alternative approaches.

All of the models and results we have presented here could be generalized or ex-
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tended in several ways. In fact, most are special cases of what is already available
in the literature. For example, the linear elliptic operators in the above exam-
ples can be replaced by quasilinear operators of divergence type, such as p-Laplace
operators, and one can include semilinear operators such as the porous medium
equation. We have not even mentioned results for equations of other types, such as
hyperbolic. Furthermore, we have restricted discussion to problems with the sim-
plest geometry, and we have not mentioned those involving, e.g., flow on boundaries
with concentrated capacity, or, more generally, manifolds arising from periodic cells
that have a non-flat geometry.

Experience suggests that the distributed microstructure models are conceptually
easy to work with, they provide accurate models which include the fine scales and
geometry appropriate for many problems, and their theory can be developed in a
straightforward manner using conventional techniques. The numerical analysis of
these systems provides a natural application of parallel methods.
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