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1. Introduction. We shall consider the Cauchy problem for the equation
(L1) A@u(t) + D.BHu®) = f(®

in which {A(f)} and {B(f)} are bounded and measurable families of linear
operators between Hilbert spaces. In Section 2 we show that the problem is
well-posed when the {B(f)} are non-negative, {A(f) + AB(f)} are coercive,
and the operators depend smoothly on ¢{. The equation is degenerate since the
coefficient operators are not necessarily invertible and may in fact vanish.
Sections 3 and 4 contain some applications to various boundary value problems.
The examples are chosen simply to indicate the large class of problems to which
the abstract results can be applied, and so we do not attempt to present the
most technically refined results in any sense.

The abstract problem which we shall formulate and resolve in Section 2

was initially motivated by boundary value problems for partial differential
equations of the form

LD 2 (b, hule, ) — ba, Au, D) — Aul, ) = f 1.

Such equations appear in various applications [1, 8, 9, 16] with non-negative
(real) coefficients determined by material constants. The coefficient b(z, ¢)
usually has the dimensions of viscosity and distinguishes (1.2) from the standard
equation of heat conduction. This equation is elliptic in that region where
bo(z, t) = b(z, t) = 0, parabolic where b(x, t) = 0 and bo(x, t) > 0, and of Sobolev
type where b(zx, t) > 0. Since we permit our abstract equation (1.1) to degenerate,
the coefficients in our model (1.2) may vanish identically on certain space-
time regions. It became apparent that the abstract results obtained below
would also give existence and uniqueness of weak solutions of boundary value
problems of much more general type than was first anticipated, so we have
attempted to illustrate some of these diverse applications in the examples.
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In Section 3 we apply the results of Section 2 to the equation (1.2) in one
space dimension. Of major interest here is the discussion of the allowed tran-
sitions from one type to another, since the type of the equation essentially
determines which problems are well-posed. We note, in particular, that the
hypotheses of our existence theorem are fulfilled when the time derivative of
the leading coefficient b,(z, t) has a (possibly negative) lower bound, hence the
coefficient itself may be negative over large regions.

Degenerate equations with smooth coefficients and space variables of higher
dimension are studied in Section 4, but the emphasis here is on the types of
boundary conditions that are permitted. The first example is an interface
problem for an elliptic-parabolic equation with time-dependent interface and
boundary conditions. Next we consider problems with time-differential con-
straints along a submanifold or portion of the boundary. These arise naturally
in a region in which the equation is of Sobolev type, and they also are obtained
by certain approximations of parabolic interface problems in a region in which
a coefficient is singular. (Such problems were discussed, e.g., in [4]; our Theorem 2
completes the uniqueness result claimed but not proved there.) Our final ex-
amples are the (non-local) boundary value problems of the fourth and fifth
kind [0] for parabolic equations. These arise, e.g., in problems of heat con-
duction in a body whose boundary is in contact with a (finite) reservoir of
highly conductive material whose temperature is a function only of time and
is affected by the heat flow across the boundary of the body.

We have used the abstract variational formulation of the Cauchy problem
in Section 2 for the equation (1.1). Time dependent problems in which the
leading operators are coercive (and hence non-degenerate) were considered by
J. Lions [22], M. Visik [29], H. Levine [20], and this writer [27]. Similar results
have been obtained by C. Bardos and H. Brezis [2, 3] for semi-linear but sta-
tionary problems. Related evolution equations of second order have been studied.
See, e.g., R. Carroll and C. Wang [6, 7] for degenerate equations and J. Lions
[21] and M. Visik [29] for equations with operator coefficients in the term with
highest derivative.

Some of our applications in Sections 3 and 4 can be related to previous works.
In particular, the problems with elliptic-parabolic partial differential equations
of second order and studied by G. Fichera [10], J. J. Kohn and L. Nirenberg
[17], and O. Oleinik [25] are posed on regions much more general than the
cylinders to which we are constrained. However, our techniques are elementary
and much more direct than theirs, and they give comparable results in the
cylindrical domains. The existence and uniqueness results of A. Friedman and
Z. Schuss [14] and W. Ford [13] are contained in ours. These concern a weak
form of the first initial-boundary value problem for equations like (1.2) with
b(z, t) = 0. The regularity theorem given in [14] is not comparable to ours and
the writers assume that the coefficient operators {4 (¢)} have a constant domain
and satisfy certain conditions on their resolvents. Equations of Sobolev type
have been treated by J. Lagnese [18, 19], T. W. Ting and this writer [26, 27, 28].
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2. The Cauchy problem. Let V be a separable complex Hilbert space with
norm ||v}|. V' is the antidual, and the antiduality is denoted by (f, v). W is
a complex Hilbert space containing V and the injection is assumed continuous
with norm = 1. £(V, W) denotes the space of continuous linear operators from
V into W. T is the unit interval [0, 1] and L°(T, V) is the Hilbert space
of (equivalence classes of) Lebesgue (weakly = strongly) measurable and
square integrable functions from 7' to V; when V is the complex field, denote
the above by L*(T). Finally, let H'(T, V) be the Hilbert space of those ¢ in
L*(T, V) for which the (distribution) derivative ¢’ is in L*(T, V). This means
that ¢’ is the (unique) function in L*(T, V) such that

[ etwoa = - [ oow at

for all ¢ in ®(T), the infinitely differentiable functions with compact support
in the interior of 7. The integrals above have values in V; we refer to [5, 15, 23]
for the calculus of vector-valued functions.

Assume that for each t e T' we are given a continuous sesquilinear form a(t; -, )
on V and that for each pair z, y ¢ V the map ¢t — a(¢; z, y) is bounded and measur-
able. The Uniform Boundedness Principle then implies that there is a number
K, > 0 such that |a(t; 2, y)| = K, ||z|| ||y|| for all z, y ¢ V and ¢ e T. Standard
measurability arguments then show that for any pair u, v e L*(T, V) the function
t — a(t; u(t), v(t)) is integrable [5, p. 168]. Similarly, we assume given for each
te T a continuous sesquilinear form b(¢; -, -) on W and that for each pair z, ye W
the map ¢ — b(¢; 2, y) is bounded and measurable. Let {V(¢): t ¢ T} be a family
of closed subspaces of V and denote by L*(T, V(t)) the Hilbert space consisting
of those ¢ ¢ L*(T, V) for which ¢(f) € V(¢) a.e. on T. Finally, let u, ¢ W and
fe L*(T, V') be given. A solution of the Cauchy problem (determined by the
preceding data) is a w ¢ L*(T, V(t)) such that

@.1) f s u(t), o(t)) dt — f bt u(t), v'(D) dt

= [ 40, 00 at + b0; us , 0)
forall ve LZ(T, V() N HI(T, W) with »(1) = 0.

Definition. The family {a(t; -, -): t e T} of sesquilinear forms on V is regular
if for each pair z, y ¢ V the function ¢ — a(¢; z, y) is absolutely continuous and
there is an M (-) ¢ L'(T) such that for all z, y ¢ V we have

(2.2) ' (t; z, )| = MO =] |lyll, a.e. te T
(The prime denotes the derivative with respect to ¢.)

Lemma 1. Let {a(t; -, -):te T} be a regular family on V. Then for each pair
u, v e H'(T, V) the function t — a(t; u(t), v(t)) is absolutely continuous and its
derivative 1s given by
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D.a(t; w(®), v(®)) = d'(t; u(®), v(®)) + a@t; W' (@), v(t)) + alt; w(@), v'(®),

ae teT.

Proof. Define a(t) e £(V, V) by (a@)z, y)vr = at; 2, y), 2, ye V. Fixze V
and let {y, : n = 1} be dense in V. For each n = 1 define (&()z, y.)v = D.(a(l)z,
Ya)v , a.e. t e T. (The estimate (2.2) shows («(f)z, y)v is defined and continuous
at every y e V and a.e. t e T.) The map &(-)z is weakly, hence strongly, measur-

able and the estimate (2.2) shows it is in L'(T, V). The weak absolute continuity
of ¢t = a(t)x then shows

alh = «(0)z + fo ‘a@wds, teT.

Thus «(-)r is strongly absolutely continuous and strongly differentiable a.e.
on T.

Let w e H'(T, V). For each v ¢ V we have (a(t)u(t), v)yr = (u(t), a*@t)v)y is
absolutely continuous, since the above discussion applies as well to the adjoint

a*(t). Hence, ¢ — a(t)u(t) is weakly absolutely continuous. The strong dif-
ferentiability of «a(-) from above implies

DJa®)u®)] = a®)ult) + a@)u'(t), ae. te T,

hence the indicated strong derivative is in L'(T, V). From this it follows that
a(-)u(-) is strongly absolutely continuous and the desired result now follows
easily. Q.E.D.

Remark. The conclusions of Lemma 1 hold if we assume only that a(- ; z, y)
is absolutely continuous for each pair z, y ¢ V. Hence we need not assume an
estimate like (2.2) in order to obtain the desired result. One can prove this

assertion as follows:-(1) use the closed-graph and uniform-boundedness theorems
to obtain an estimate

1
[ oo plas Kl bl = yeV;

(2) approximate u’ in L*(T, V) by simple functions and use the Lebesgue
theorem with (1) to obtain the result for the special case of constant v e V;
approximate v’ by step functions and use the results of (1) and (2) to obtain

the general result. The details are standard but involve some lengthy com-
putations.

Our first two results concern, respectively, the existence of and an a-priori
estimate on a solution, and the uniqueness of a solution. We compare our
hypotheses and results with other works in the remarks below.

Theorem 1. (Existence). Let the Hilbert spaces V() C V C W, sesquilinear
forms a(t; - , -) and b(t; - , -) on V and W, respectively, uo € W and f ¢ L*(T, V)
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be given as above. Assume that {b(t; - , -):t e T} is a regular family of Hermitian
forms on W:

b(t;x,y)=m, z,ye W, teT,
and b(0; z, ) = 0 for x e W. Assume that for some real N and ¢ > 0
(2.3) 2 Rea(t; z, x) + Nb(t; x, 2) + b'(t; 2, 2) 2 c||z||y, ze V(E),ae. teT.
Then there exists a solution u of the Cauchy problem, and it satisfies
lloscr.vr < const. ([[f][3cr.vn + O3 o , us))’,
where the constant depends only on \ and c.

Proof. Note first that by a standard change-of-variable argument, we may
replace a(t; - , ) by a(t; -, ) + (A\/2)b(t; - , -) in the equation (2.1). Hence
we may assume that A = 0 in (2.3):

2Rea(t;z, 2) + b/t z,2) = cllz||’, zeV(E), ae teT.

Define H = L*(T, V(¢)) with the norm (||ullx)® = [o' [[w(®)||* dt and let
F = {peH: ¢ e LT, W), (1) = 0} with the norm (|l¢|[r)” = (lle|[x)* +
b(0; ¢(0), ¢(0)). For uw e H and ¢ ¢ F we define

B, ) = [ a0, o) dt — [ b0, 0'0) dt

L) = [ 60, o0) di + 503 w0, o0).

Then E: H X F — C is sesquilinear and L: F — C is antilinear, and we have the
estimates

1B, o)| = Ko ||[ulla |lellz + Kb |lulla [le’|z2cr,w
|L(<P)| = Hf”u(r,v')‘ H€0||H =+ b(0; uo ;uo)*b((); #(0), ‘P(O))%
= (Hf”iur,v') + b(0; uo »uo»% ”‘PHF .

These imply that w — E(u, ¢) is continuous H — C for each ¢ in F and that
L: F — C is continuous.

Finally, for ¢ in F we have from Lemma 1 and (2.3) (with A = 0)

2Re Blp, ) = [ 2 Realt; o), o(0) dt

+ [ 105 00, o0) = DG 000, ()} d

= ¢ [lel|z + b0; ¢(0), ¢(0)) Z min (¢, 1) [le|| .

The above estimates show that a theorem of J. Lions is applicable [5, p. 169;
22, p. 37]. In particular, there is a u ¢ H for which E(u, ¢) = L(¢) forall p ¢ F,
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and |{u||lx £ (2/min (¢, 1)) ||L||s . But then u is a solution of the Cauchy
problem, and it satisfies the indicated estimate. Q.E.D.

Remarks. The assumption that (2.3) holds for some X is weaker than re-
quiring that for some ¢ > 0 and a = 0 we have

(2.4) b'(t; x, 2) + ab(t;x,2) =0, 2eV(1),ae teT,
(2.5) Re a(t; z, x) + Nb(; z, 2) = ¢ ||z||+"

In particular, if (2.4) and (2.5) hold, then an easy estimate shows that (2.3)
holds with X\ replaced by 2\ + «. The pair of estimates above will hold in many
of our applications below, e.g., all those of Section 4. Note that (2.4) together
with b(0; z, z) = 0 implies that b(t; x, ) = 0 for all ¢ e T. We give examples
in Section 3 where b(¢; 2, ) may be negative for some ¢ > 0 in the situation
where Theorem 1 holds. However, the solution will not be unique.

We give a uniqueness result below in which we assume the leading forms are
non-negative on the diagonal, and the forms a(¢; - , ) are regular and Hermitian
and satisfy an estimate like (2.5). All of these hypotheses are reasonable, as
we can show by examples. However, we also add a rather severe restriction
of monotonicity on the subspaces {V(¢)}. This hypothesis is certainly ‘“‘ad hoc’’,
but we claim to justify it, first, by exhibiting certain examples of boundary
value problems in which it is fulfilled, and, second, by noting the elementary
character of our proofs. In the special case of the Cauchy problem obtained
by setting b(f; x, ) = (x, x) in (1.1), our uniqueness and regularity theorems
fall short of the best known results [5]. (We have obtained a uniqueness result
in the situation of Theorem 1 where (2.5) holds and the subspaces {V(¢)} are
constant, but the proof is technical and does not have the elementary character
of those proofs presented here. Thus, we choose to omit it from this presentation.)
Finally, we note that even if we assume the subspaces {V(f)} are constant,
the results are new, and they give new and worthwhile examples.

Theorem 2. (Uniqueness). Let the Hilbert spaces V(t) C V C W, sesquilinear
forms a(t; - , -) and b(t; - , -) on V and W, respectively, uoe W and f ¢ L*(T, V')
be given as above. Assume that

Reb(t;x,2) =20, zeV({), aeteT,

that {a(t; - , -):te T} is a regular family of Hermitian forms on V(t):
(2.6) at; z, y) = alt; y, ), z,ye V(t),ae. teT,
and for some real \ and ¢ > 0

alt;z, ) + NReb(t; 2, 2) = c||z||’, e V(t), ae. te T.
Finally, assume that the family of subspaces {V (t): te T} s decreasing:
(2.7) t>ntreT imply V(@) C V().
Then there ts at most one solution of the Cauchy problem.
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Proof. Let u(-) be a solution of the Cauchy problem with w, = 0
and f(-) = 0. By linearity it suffices to show that u(-) = 0. Let s¢ (0, 1) and
define v(t) = —[,* u(r)dr for te [0, s] and v(f) = O for te[s, 1]. Thenv e L*(T, V)
and (2.7) shows v(t) € V(¢) for each t e T. Also, v'({) = —u(t) for ¢ e (0, s) and
V() = 0 for se (0, 1), so we have v' ¢ L*(T, V(t)C L*(T, W) and v(1) = 0.
Since u(-) is a solution we have by (2.1)

f " alt; v(8), od)) dt — f " bt (), () dt = 0.

Lemma 1 and (2.6) then yield

[ 2 Re bt u), w(o) at = [ (Dualt; o9, o) — 065000, o)} d,

[ 12 Re b5 000, w(0) + 0600, 0(0)) dt + a(0;00), 10) = 0.
As before, we may assume
alt; x,2) 2 cllz|’, zeV(),teT.

Define W(t) = [, u(r)dr; then W(s) = —v(0) and W(t) — W(s) = v(t) for
t e (0, s) and we obtain the estimate

¢ [IWEI* £ a0; W(s), W(s) + f "2 Re b(t; u(t), u() dt

— [ w@un, o ae s [ M@ (o] a

I\

2 [ MOUIWOIF + W) .

Choose s, > 0 so that 2 [,°° M (#)dt < c¢. Then for s ¢ [0, s,] we have

W@ < {2/(c —9 f M) dt)} f M@ || W)\ db.

From the Gronwall inequality [5, p. 124] we conclude that W(s) = 0 for s ¢
[0, 8o, hence u(s) = 0 for s e [0, o). Since M(-) is integrable on T we could use
the absolute continuity of the integral [ M (¢)dt to choose s, > 0 in the above
so that [,""*° M(t)dt < ¢/2 for every + = 0 with r + s, < 1. Then we apply
the above argument a finite number of times to obtain u(-) = Oon 7. Q.E.D.

In the remainder of this section we shall examine some properties of solutions
of the Cauchy problem which are related to initial conditions and regularity.
Thus, let u(-) be such a solution and assume for the moment that the family
{V(t): t e T} is decreasing as in (2.7). Let 7 ¢ (0, 1), v e V(r) and ¢ & D(0, 7).
Define v(t) = o(ty forte (0, r) and v(t) = 0forte[r, 1]. Thenw(-)e L*(T, V() N
H'(T, W) and v(1) = 0, so
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[ attsu, e at = [ o600, 060 at = [ 410, 00000 a.
That is, we have the identity
29) a(- 5 u(), ) + Db 5u(), ) = (), 0)

in the space ©'(0, 7) of distributions on (0, 7) for every v € V(). The first and
last terms of (2.8) are in L?(0, r) and so, then, is the second and we thus have
pointwise values a.e. in (2.8) and hence the equation

@9 [ atuw, 900 &+ [ Dy uw, 000 dt = [ G, e

for ge L*(0, 7) and v e V(7).
Suppose now that ¢ ¢ H'(0, 7) is given with ¢(r) = 0. Define v(-) as above
so as to obtain from (2.1)

[ atts ), odptey dt — [ bet; utt), o)t

= [ 40,0000 @t + 100, 600)

where v & V(7). Since (2.9) holds with g(f) = ¢(t), we obtain from these

[ (D500, 0600 + 5560, 'O} dt = —b(0; 0, 0)p00).

The integrand is the derivative of the function ¢t — b(t; u(t), v)e(t) in H'(0, )
and ¢(r) = 0, so we have proved the following.

Theorem 3.(Initial Conditions). Let u(-) be a solution of the Cauchy problem
and assume the subspaces {V(t): t e T} are initially decreasing: there is a t, ¢ (0, 1]
such that (2.7) holds for t, 7 € [0, &,). Then for every T ¢ (0, t,) and v e V(r) we have
t — b(t; u(t), v) is in H'(0, 7) (hence is absolutely continuous with distribution
derivative in L*(0, 7)) and b(0; u(0) — uo, v) = 0. Thus, if \J {V(1):0 < 7 < o}
18 dense in W, then b(0; u(0) — wu, , u(0) — u,) = O.

Another situation which arises frequently in applications (see Section 4)
and to which a variation of the above technique is applicable is the following.

Theorem 4. Let u(-) be a solution of the Cauchy problem and assume there
1s a closed subspace Vo in V with Vo, C M {V(¢): t e T}. Define the two famslies
of linear operators {A(@t)} C £(V, V') and {B(t)} C £(W, V) by

(A(t)x’ y) = a(t; Zz, y): zeV, Yye Vo , tle T
<B(t)x; y> = b(t; Z, y)’ Ze W; ye Vo , le T.

Then, in the space D' (V') of Vo -valued distributions on T we have
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(2.10) A@u(®) + D(BOw(®) = f(@®)
and the function t — B()u(t): T — V' is continuous.

The proof of Theorem 4 follows from (2.8) with v ¢ V, and the remark that
each term in (2.10), as well as B(-)u(-), is in L*(T, V,).

Our last result concerns variational boundary conditions. Suppose we have
the situation of Theorem 4 and also that (2.7) holds. Let H be a Hilbert space
in which V is continuously imbedded and V, is dense. We identify H’ with H
by the Riesz theorem and hence obtain V, — H — V' and the identity (h, v) =
(h,v)gfor he HyveV, . Assume f ¢ L*(T, H), + > 0 and v ¢ V(). Then from
(2:9) and (2.10) we obtain

fo " ot ut), v)e(t) dt + f " Db(E; ult), v)elt) dt

= [ 40D + DBOU), Vurtt at

for each ¢ € H(0, 7). This gives us the following.

Theorem 5. (Variational Boundary Conditions). Assume the situation of
Theorem 4 and that (2.7) holds. Let H be given as above and f ¢ L*(T, H). Then
for each + > 0 and v & V(r) we have in L*(0, )

(2.11) a(t; w(t), v) + D.b(E; u(t), v) = (AOu(®) + D.BOU®), v) x .

3. Examples I. We shall apply the preceding results to a discussion of the
first initial-boundary value problem for the partial differential equation (1.2)
in one spatial dimension. The Dirichlet boundary conditions are realized by
choosing V, = V(t) = V = H'(T),, all te T, and we also set H = L*(T) in the
following. Problems in higher dimension and with variable domain will be
presented in the next section. In our first two examples, the coefficients in
(1.2) are the characteristic functions of certain subsets of the at-plane, and the
third example is the case of a smooth b,(z, ) = 0 with b(z, {) = 0. Our objective
is to illustrate in these simple models some conditions on the coefficients suffi-
cient to attain the hypotheses in our theorems of Section 2.

(a) An elliptic-parabolic equation. For our first example, choose W =
{0 e H(T): (1) = 0}. If p ¢ W and z ¢ T we have

1
6@l = |[ ¢ s o= 1P 116'llzcn
and, hence, the estimate
@.1) sup {|p(@)|: ze T} = ||¢||zecrr , D2 W.

Let a: T — T be absolutely continuous and define

a(t) —_—
bt $, ¥) = [ o@V@,de, ¢, e W, teT.
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Then for each pair ¢, ¢ ¢ W, the function b(- ; ¢, ¥) is absolutely continuous
[24, p. 214] and

3.2) b(t; ¢, ¥) = @®)¥a(Da (), ae teT.
Since o’ ¢ L'(T), (3.1) and (3.2) show that the family of Hermitian sesquilinear
forms {b(t; - , -): te T} is regular. Define a second family of forms by

atio, ) = [ $@F @ ds, 6,4V, teT.

This is (trivially) a regular family of Hermitian forms on V. The well-known
estimate from the calculus of variations

(3.3) w|lplloecry S 8/ lleocrr ;¢ Ho(D),

shows that (2.5) is satisfied with A = 0. Finally, let uo ¢ W and F ¢ L*(T X T)
be given, and define f(f) = F(- , t), te T. Then all of the hypotheses hold in our
uniqueness theorem. Furthermore, if there is a number £, 0 < Z < 2, such that

(3.4) () =22 —2,aeteT,
then (3.1) and (3.2) imply that

20(t; ¢, ¢) + 0'(t;0,0) = 2 — 2) ||¢'|[z5cy , eV,

and, hence, by (3.3), it follows that (2.3) is satisfied with A = 0. (Note that
(2.4) holds if and only if &’(f) = 0, a.e. t e T, whereas (3.4) allows « to decrease,
but not “too fast’”.) The operators of Theorem 4 are given by (B(t)¢)(x) =
bo(x, t)p(x) (where bo(z, ) = 1for 0 < z < a(t) and by(x, {) = 0 for alt) <
z < 1) and A(t)p = —¢’’ (where the derivatives are taken as distributions on 7'.)

Let u(- , ©) = wu(f) be the unlque solution of the Cauchy problem. Then
(2.10) gives a weak form of the partial differential equation (1.2) with b(z, t) = 0,
u(t) e V.= H'(T), gives the boundary conditions, (0, t) = w(1,¢) = 0, a.e. te T,
and Theorem 3 gives the initial condition

u(z, 0) = uo(z), 0 < z < «(0).

It follows from (2.10) that wu(f) ¢ H*(T) at each t & T, so u(- , t) and u,(- , t)
are continuous across the curve r = «(t). We note that this curve, determined
by the smooth function «, is non-characteristic at a.e. t ¢ T, but (e.g., (x — 1/2)°
= (t — 1/2)/4) may actually be characteristic at certain points.

(b) An elliptic-parabolic-Sobolev equation. Our second example is similar
but allows the equation to be of Sobolev type in portions of T X T. Choose
the spaces and define the forms a(t; - , -) as above. Let « and 8 be absolutely
continuous maps of 7' into itself and b > 0. For ¢, ¢ ¢ W define

B(t)

a(t) —_ —_—
b(t; ¢, ¥) =f0 o(@)Y(x) de + b i ¢’ (@)¢ () dzx, teT.
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If we require that 8 be non-decreasing, then b(- ; ¢, ¥) is absolutely continuous
[24, pp. 214-215], and we have

b(t ¢, ¥) = ¢la®)¥a®)e’() + b’ GV BW) B'(H), ae. teT.
By the Remark following Lemma 1, it follows that the result of Lemma 1 (and

hence the proof of Theorem 1) holds for the family {b(t; - , -)}, even though
it is not regular. Thus we need only check estimates to apply the theorems
of Section 2. But a(t; - , -) is coercive, as before, and b(¢; - , -) is non-negative,

so we need only to check (2.3).

We shall show that (2.3) holds if L = ess inf {o/(f): te¢ T} > — o and there
is a number =, 0 < £ < 2, such that &’(f) = = — 2 whenever a(t) > B(?).
First, note that for a.e. te T and any A = 0

(3.5) 2 Rea(t; ¢,9) + \b(t;6,¢) + b'(t; 0, ¢)

1 B8(t)
z2 [ WP+ [+ O « 0.

(We have used the fact that 8'(t) = 0.) If a(f) < B(f), then the estimate
B(t)
sup (|6 10 < s < )} < f 67, b HT),

shows that the right side of (3.5) is bounded from below by 2 f,' |¢’|”, where
we have chosen X\ so large that \b = |L|. If a(t) > B(f), we drop the middle
term in the right side of (3.5) and show as in (a) that the remaining terms are
bounded from below by (2 — Z) [,' |¢’'|>. Thus (3.5) holds for a.e. t ¢ T, where
our choice of A depends on the essential infimum of o&'(t).

Let uoe W, F e L*(T X T) and set f(t) = F(- , t), t e T. Theorems 1 and 2
assert, the existence of a unique solution u(t) = u(- , t) of the Cauchy problem

(2.1), and (2.10) is a weak form of (1.2) in which the operator A(f) is given
as above and

B®)¢)(x) = bo(x, )e(x) — b(=, )e" (),

where bo(z, t) was given above and b(z, ) = bfor 0 < z < B(¢) and b(z, t) = 0
for 8(t) < # < 1. The inclusions u(t) e V() = H'(T), give the Dirichlet boundary
conditions as before, and Theorem 3 gives the initial condition

u(z, 0) = uo(z), 0 < z < max {«(0), 8(0)}.

Equation (2.10) shows that u(¢) e H?(8(¢), 1); examples can be given (see, e.g.
[28]) to show that u(f) € H'(0, 3(¢)) is the best regularity we can expect in general.
Note that the constraint that we needed on a(f) in this example is weaker than
(3.4): the estimate in (3.4) was necessary only in that region in which b(z, t) = 0.
The assumption that 8 be non-decreasing was used not only in estimates like
(3.5) but also to obtain the absolute continuity of the functions b(- ; ¢, ¥).
We can give examples (e.g., set a(f) = 0 in the above) to show that if 8 is per-
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mitted to decrease, then a compatibility condition is imposed on the initial
data, u, . Such behavior should be expected, since the lines ‘“2 = const.”’ are
characteristics for the third order equation (1.2) whenever b(z, ) > 0.

Before presenting the last example of this section, we prove a result which
gives a large class of regular families of sesquilinear forms on L*(?), and hence
H*(Q), where @ is any measurable set. This result will be used in all of the ex-
amples to follow.

Lemma 2. Let f: @ X T — C be measurable and assume f(- , t) ¢ L'(Q) for
every te T, f(x, -) is absolutely continuous for a.e. x € Q, and |3f/9t| < F, where
F ¢ L'(Q X T). Then the funétion t — [q f(x, t)dx is absolutely continuous and
[(8/0t) fof(x, t)dx| < [o F(x, t)dz, ae. teT.

Proof. Using the Fubini Theorem and then the Fundamental Theorem of
Calculus we have for te T

j: /Q (9f/dt) da dt = /;[,t (af/at) dt dx = fn(f(x, ) — f(z, 0)) da,

fﬂ Kz, 1) do = fn f(z, 0) dz + fo t { fﬁ (0f@0) dx} dt.

Since [q (8f(x, -)/dt)dx is in L'(T), the result follows. Q.E.D.

Definition. A function a(- , -) e L™(Q X T) is regular if a(z, -) is absolutely
continuous for a.e. e Q and [da(z, t)/9t| < M(t) for a.e. te T, where M(-) e L'(T).

Corollary. Let a(- , ) be reqular and define a family of sesquilinear forms
on L(Q) by

alt; u, v) = f a@, Yu(@w@) de,  w,ve L¥(Q), tel.

Then {a(t; -, -): te T} is a regular family.
Proof. Use Lemma 2 with f(z, {) = a(z, Hul@)v(r) and F(z, ) =
M) |u(z)v(z))|. Q.E.D.

(¢) Elliptic-(possibly backward) parabolic equation. For our third example,
we choose the spaces Vo, = V(t) = V = H'(T), and the forms a(t; - , -) as in
(a), and we also set H = W = L*(T). Let by(- , -) be a regular real-valued
function on 7' X T and define a (regular) family of sesquilinear forms on H by

b(t; 6, ¥) = f bow, bY@ dv, & e H, teT.

Let uoe H, Fe L*(T X T) and set f({) = F(- , t), te T. If u() is a solution of
the Cauchy problem (2.1), then it follows from Theorem 4 that the function
defined by u(- , ¢) = u(t), te T, is a weak solution of the equation

5 Bule, e, 0) = wne, ) = F@, 0, @, 0T X T.
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Theorem 3 asserts that we have the initial condition
bo(z, 0) {u(z, 0) — uy(@)} =0, ae xzeT,

and the inclusions u(t) ¢ H'(T), give the null Dirichlet boundary conditions,
u(0,t) = u(l,¢) =0,teT.

We shall consider separately the questions of uniqueness and existence of a
solution. Note first that, as before, the forms a(¢; - , +), t e T, are coercive over

H'(T), . Hence, in order to satisfy the hypotheses of Theorem 2 it suffices to
assume in addition that

(3.6) bo(z,t) =20, 2,teT,

for this is equivalent to b(f; ¢, ¢) = 0 for all ¢ e H and ¢ e T'. On the other hand,
the hypotheses of Theorem 1 are satisfied if we assume

3.7 bo(z, 0) = 0, a.e. xeT, and essinf {9b,/0t} > —2x°.

TXT

If (3.7) holds, then there is a number 2, 0 < 2 < 2#°, such that
9/0t)bo(z, t) = = — 27°, ae 2z, teT,
so we obtain for ¢ ¢ H'(T), , a.e. te T

vitio,9) 2 @ =2 [ ol

From (3.3) we easily obtain (2.3) with A\ = 0 and ¢ = Z/2x°. Thus, (3.6) implies
uniqueness of a solution and (3.7) is sufficient for existence.

Neither one of the conditions (3.6), (3.7) implies the other. In particular,
(3.7) permits the coefficient by(z, t) to attain negative values over large regions,
and in such a region the partial differential equation may be backward parabolic.
Such an example is given by

@/at) {(x*/4) (1 — 2t)°u(z, t)} = 8°u/0x".

For this example we have db,/dt = (37x°/4)(1 — 2t)> = O forall t e T, so (3.7)
is clearly satisfied, and Theorem 1 asserts the existence of a solution. Since
b, is non-negative only on [0, 1/2], we can use Theorem 2 to claim uniqueness
only on this smaller interval. A solution of the first initial-boundary value
problem with uy(z) = sin (wz), z ¢ T, is given by

wz, t) = 1 — 2) % exp {1 — (1 — 2t)7%} sin (w2).

To see that uniqueness does not hold beyond ¢ = 1/2, note that a second solution
can be obtained by changing the values of this function to zero for all ¢ > 1/2.

Finally, we give an example in which (3.6) holds but (3.7) is violated. Let
N > 0 and consider the first initial-boundary problem with u, given as above
for the equation

@/a) {(x*/NYA — t)"*u(z, )} = 0°u/02".
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The coefficient b, is non-negative so Theorem 2 asserts the uniqueness of a solu-
tion on T (or any subinterval). However, the time-derivative of b, is greater
than —2x” only on the interval [0, 1 — (4N)~*). Hence, for any £ > 0, Theorem
1 asserts the existence of a solution of the above problem on the interval [0,
1 — (4N)™® — Z]. By choosing N large, we can make the corresponding interval
of existence as close as desired to [0, 1]. However, it is easy to verify that the
function

u(, t) = (1 — )" exp {2N(1 — )"} sin (w2)

is the unique solution on [0, 1 — Z] for any 2, 0 < 2 < 1, and this function
is not L*(T X T). Hence there is no solution on T'.

4. Examples II. In this final section we apply our abstract results of Section 2
to four different types of boundary value problems. The necessary preliminary
material on function spaces is given quickly, and one may consult [23] for
additional details. The new points in our examples are not only that the coeffi-
cients appearing with time derivatives are not assumed to have positive uniform
lower bounds, but also that we may add terms containing ‘“traces” on a bound-
ary or submanifold. Such terms are always degenerate in our sense, and they
permit a much broader application of the theory than would be possible if one
needed to assume coercivity estimates on them. Our first two examples exhibit
a ‘“monotone”’ variable domain for which Theorem 2 is applicable. Similar
situations can easily be introduced in the remaining examples.

For each 7 = 1, 2, let ©; be a bounded open set in real Euclidean n-dimensional
space and assume ©; is on one side of its piecewise continuously differentiable
(n — 1)-dimensional boundary dQ; [12, 262-271]. Thus the Divergence Theorem
holds on each 2, , and we denote by

’I’L,-(S) = (’n:(S), ntz'(s)) T ,n?(s))

the unit outward normal at points s & d2; . Assume @, and Q, are disjoint and
their respective boundaries intersect in a submanifold I' of dimension n» — 1.
Then n,(s) = —na(s) for s e T'. Let © be the interior of the closure of @, \J Q,
so that the boundary of @ is given by 92 = 92, \J 4@, ~ (I' ~ 9TI'). We shall
denote the Lebesgue measure in @ by “dx” and that on dQ, \U 82, by ‘“‘ds”.

Let H be the Hilbert space L*(2) of (equivalence classes of) square-integrable
functions on Q. This space is isometrically-isomorphic to the direct sum L*(2,) @
L’(Q,) in the natural way and we shall hereafter identify them. Let H'(2,) be
the Sobolev space of those ¢ ¢ L*(Q;) for which the distributional derivatives
D;oforj=1,2, ---,narein L*(Q,). Then H'(Q,) is a Hilbert space with inner-
product

(‘P} 'I’)H‘(Qf) = L {‘P‘; + ngl D,'QOD,'l;} dz.

The trace operators v; ¢ £(H'(Q.), L*(3Q;)) are well-defined and coincide with
the restriction to the boundary on those functions in H'(Q,) which are con-
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tinuous on the closure of @, . (See [23] for these and later unsupported results
on Sobolev spaces and trace.) Since C”(Q,) is dense in H'(Q,) and the trace v,
is continuous, we can extend the Divergence Theorem on Q; to obtain

[ @D + 10D} do = [ Gayeamie) ds
for u, ve H'(Q;). Thus if w, ¢ H'(Q,) and u, ¢ H'(Q,) we have for each ¢ ¢ C,"(Q)
[ 1wbaDie + eDuf do = [ @us) — waetomics) ds

where we have suppressed the trace operator and u is the element of L*(Q)
which we identify as above with the pair (u, , u,) in L*(Q,) @ L*(Q,). Thus,
we H'(Q) if and only if u,(s) = wu,(s) for a.e. s ¢ I'. Finally, we remark that the
kernel of v, is the closure in H'(Q;) of (), the infinitely differentiable functions
with compact support in @, , and we denote it by H'(Q,), . The dual of H'(Q),
can be identified with a subspace of distributions on Q; [23, p. 78].

(a) Degenerate elliptic-parabolic interface problem. Let a, , a and b be regular
functions on @ X T and assume that, for each ¢ = 1, 2 and each ¢t ¢ T, the re-
striction of a(- , t) (b(- , t)) to ©Q, is uniformly continuous; we denote this re-
striction by a,(- , f) (respectively, b.(- , t)). Define the Hilbert spaces H =
W=LQ),V=H(@Q)DPH Q) and V, = H'(Q), D H' (), . Let {T', : te T}
be a family of measurable subsets of T' and suppose I', C T', when ¢ > s. Simi-
larly, {Z, : t ¢ T} is a family of measurable subsets of Q, with £, C =, when
t > s. Define V() = {peV:vie(s) = v:0(s) for a.e. se T, ; v,0(s) = 0 for a.e.
se Z,} for te T. Then (2.7) holds and each V(¢) is closed in V and contains V, .

Denote by V¢ the gradient of ¢ ¢ H'(Q); that is Vo = (D¢, Dyo, - -+ , D,e).
We now define the two families of sesquilinear forms

alti o, ) = [ ae, O(Te@) VHD) dz + [anle, Dp@W@ ds, 0, W V,

b(t; 0, ¥) = f bz, Do) da, o be W.

Since the coefficients in these forms are regular functions, Lemma 2 shows
the forms are regular. The operators {A(¢)} defined in Theorem 4 are given by

41 Aty = — ‘; Di(a(-, )D;e(-)) + ao(-, e(-),  teT, ¢eV

where the derivatives are taken as distributions on €, \U Q, , and we have
(formally) by the Divergence Theorem

42 altie V) — A0e Vn = [ als 050 Pds+ [ aits, ) 5o g s

when A(t)o ¢ H and o £ H*(Q,) @ H?(Q,). (The latter inclusion follows from the
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first when A (f) is regular elliptic.) The directional derivatives in (4.2) are given

by d¢/dn; = Ve-n, , and we suppress the trace operator for simplicity. Simi-
larly,

(43) B(t)‘P = b( ) t)‘P(')) teT, oeW.

Assume the following: u, ¢ L*(Q) and F ¢ L*(2 X T) are given; the coefficients
in (4.1) and (4.3) are regular real-valued functions and satisfy

4.4) b(x,0) = 0, (3/8t)b(t, x) + Nb(x, t) = O,
ao(z, t) = 0, ao(x,-t) + Nb(z, t) = c, az,t) =c

for a.e. (z,t) e Q@ X T, where A = 0 and ¢ > 0 are constants. Then the estimates
(2.4) and (2.5) are satisfied, so Theorems 1 and 2 imply the existence and
uniqueness of a solution u(f) of the Cauchy problem. Setting u(- , ) = wu(¢),
we have by Theorem 4 the partial differential equation

4.5 oz, tulz, ) — 2 Dilalz, )Dulz, 1)) + D (b(x, tu(z, ) = F(z, 1)
i=1

in ©((Q, Y Q,) X T) and by Theorem 3 the initial condition b(x, 0) (u(x, 0) —
uo(z)) = 0in L*(Q), hence

u(z, 0) = uo(x), xeQ: bz, 0) = 0.
Since u(t) € V(t) a.e. in T we have the boundary conditions (a.e.)
(4.6) viu(s, t) = vauls, t), sel,,

'Ylu(s’ t) =0, se X, ,

and from (2.11) and (4.2) we obtain (formally) for r > 0

ou ou
4.7) j«;m a, on, v ds + o, a, an, Y ds =0

for a.e. t ¢ (0, ) and each v ¢ V(7). If the subsets Z, and I', vary “smoothly
from below” at the point 7, then from the variational boundary condition
(4.7) we obtain

oufs, 1) _ JOu(s, 1) _
o =0, sedQ ~T,~3Z, ; o =0, sedQ~T,,
and
al(s,r)a—u&—f)=az(s,r)a—q§;’%), sel, ~ 2, .

The new thing in this example is that the coefficient b(z, t) need not have a
(strictly) positive lower bound, so (4.5) is a non-uniformly parabolic equation
[13]. Our technique is a direct extension of the case b(x, {) = 1 given in [22,
pp. 103-105]. When our problem describes a heat conduction or diffusion process,
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then the monotonicity conditions on {T',} and {Z,} require that these respective
surfaces of contact between the two media and between the medium €, and
the outside, respectively, be non-decreasing.

(b) Degenerate elliptic-parabolic-Sobolev equation. Leta,,a,b,,be L°(Q2 X T),
Bre L2 X T) and B, ¢ L™ (92, X T) be real-valued regular functions, and
assume the restrictions a;(- , t) and b,(- , £) of a(- , ) and b(- , ¢), respectively,
are uniformly continuous on @, for¢ = 1,2. Let H = L*(@),V = W = H'(Q,) ®
H'(Q,), and V, = H'(Q,), @ H'(Q), . Let the subsets I', and =, determine
subspaces defined as above. Define the regular families

ati o, ¥) = [ a@, OVe@) VD) do + [ asle, D@D do,
0, 9) = [ ble, O(Tel@) VI@) de + [ b, 069G do

+ fa . Bi(s, Drvie(s)yy1¥(s) ds + fa ) Ba(s, hv20(8)v29(s) ds

for ¢, ¢ ¢ V. = W. The operators of Theorem 4 are given by (4.1) and

B(typ = — E Dy(b(-, )Dsg) + bol-, Do,

and from the Divergence Theorem we have (4.2) and
(4.8)

b(t; ¢, ¥) — BOe, ¥)r = fa § (bl g;ji + Blw)J/ ds + fa } (b2 ;’7“’ + m«:)& ds

for smooth ¢ and ¢ ¢ W.
Assume the coefficients satisfy

b(z, 0) = 0, (8/0t)b(x, t) + Nb(x, t) = O;

the above with b, , 8, , 8: in place of b;

a(z,t) = 0, ao(x, t) = 0; a(z, t) + Nb(z, t) = c,
ao(z, 1) 4+ Nbo(x, t) = ¢

for (z,t)eQ X T, where X = Oand ¢ > Oarereal. Let uoe Wand Fe L*(Q@ X T)
be given and set f(f) = F(- , t) for t & T. Then, there is a unique solution of the

Cauchy problem of Section 2 which satisfies in D'((2, U Q,) X T) the partial
differential equation

aule, Dule, ) — 3 Dy(alz, HDyu(s, 0)

+ Dt[bo(x) thu(z, t) - n; D;(b(z, t)Diu(xr t)):l = F(zx, t))
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the initial condition
(4.9) b0; u(0) — uy,v) =0, >0, veV(r)
and the boundary conditions

u(t) e V()
(4.10) f [ a—“+D(b L >] d
. N a, an, A0 3 ) v ds
ou ou
+ o0, I:az 57_1,—2 + Dc<b2 6—722 + Bzu)]v ds =0
for a.e. t ¢ (0, ) and each v e V(r), where the second part of (4.10) is obtained

from (4.2), (4.8) and (2.11). From the initial condition (4.9) we have
BO)w(0) — up) =0 in H™'(Q) D H (2)

bi(s, 0) o (uls, 0) = w(e) + buls, 0) o (uls, 0) — wa(s)

+ (Bl(sr 0) + BZ(S; O))(u(sr 0) - uo(s)) = 0, sedQ, U aQ, ~ 2,

with the understanding that b, = 8, = 0on dQ, ~ F'and b, = 8, =0ondQ, ~ T
in the above. We can interpret the boundary conditions (4.10) as follows:

'YIu(Sy t) = 0: Se Et ;

u
viu(s, 1) = vouls, ), and (a, — a,) .
1

+ Dt[(bl — by) g’::_ + B, + Bz)’U/] =0, seTl, ;
1
algg+Dt<bl%+Blu>=0, sedQ ~T, ~Z,;

du u
(423 a_/nz "l" Dt<b2 5‘772 + B2u) = O, Se 892 N.I‘, .

Such boundary conditions can appear in applications to fluid flow problems
[1] in which they represent the specification of linear combinations of pressure
and flow rate.

(c) Problems with time derivatives on interface or boundary. Let the functions
ao,aand bin L°(Q@ X T), ae L"(Z) and a, and Bin L"(Z X T) be given, where
2 is a proper open subset of dQ, . Assume that each of these is a real-valued
regular function on its corresponding domain, (4.4) holds, and that

> >

ag(s, t) + NB(s, ) = O, a(s) = 0
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for a.e. (s, t) ¢ 2 X T. Let the restrictions a,(: , £) and b,(- , ¢) of a(- , t) and
b(- , t), respectively, be uniformly continuous on @, , ¢ = 1, 2. Define the Hilbert
spaces H = L*(Q), W = H'(Q,) @ L*(Q,), and

V = {oe H(Q) : (@(-)!V'yie(-) e L¥(Z)}

where V'’ is the gradient differential operator in local coordinates on . Wa
note that the condition defining V can be expressed in terms of differential forms,
since

4.12) f wdlyig) A, don) = f )V Y10V 1 ds,

and is independent of the choice of coordinates [11, 12]. V is a Hilbert space
with the inner product

(% lﬁ)v = (‘P; ‘/’) o + (4‘12)-
We take V(t) = V, all t e T, and define the sesquilinear forms

alt; ¢, ¥) = f ae, HVe(x) V() de + f ao(z, (@) Y(x) do
+ f o) "y 10(s) - 'y 1 9(s) ds + f s, DeVE) ds, o, Ye V,

b(t; e, ¥) = fﬂ bz, He(x)(x) dv + fz B(s, Dvie(shiv(s) ds, o, veW.
Lemma 2 shows that these are regular families of sesquilinear forms, and we

also find that the operators of Theorem 4 are given by (4.1) and (4.3). We
obtain (formally) from the Divergence Theorem

4.13)
alt; 0, ¥) = (A(t)e, ¥ = fa s, 0 g,‘f— Jds + fé s, ) a%‘f 7 ds

+ [ a9V ) V) ds + [ als, 0 ds

=>£m anll;"l‘f azg'rzz'kf/

+ f {ae(yie) — V'@V (vie)}d + f 6(7140) )

where ¢, ¢ ¢ V, ¢ is smooth, and the term in brackets contains distribution
derivatives on 2. Finally we note the identity

4.149) bt e, ¥) — B, Y)u = f B(s, v ds, Bltee H, ¢eW.
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Let uoe Wand Fe L*(Q X T) be given. Then f(t) = F(- , t) defines fe L*(T, H)
and the results of Section 2 imply the existence and uniqueness of the generalized
solution u(t) = u(- , t) of the partial differential equation (4.5) in (2, U Q,) X T
and (Theorem 5)

anols, uls, ) — V' (als)V uls, ) + au(s, 1) "_u%i)
(4.15) n,

+ auls, ¢ )"’“(s’ D+ D.8Gs, duts, )} =

in ©'(Z X T), where u(s, t) = v,u(t)(s) and a,(s, t) = 0 when s ¢ I. V is clearly
dense in W, so Theorem 3 implies initial conditions

b(x, 0){u(x, 0) — ue(x)} = 0, ae.xe Q,

B(s, 0){u(s, 0) — uo(s)} = 0, ae. se2.

The boundary conditions arise from the requirement that w(t) € V, hence

(4.16) Yu(t)(s) = vau(t)(s), seT,
and from (2.11), which with (4.5) and (4.13) gives
al( t) au(s t) 2( ) au(s, t) 0, Se an U 692 ~ E,
2

where we set a;, = 0 on 92, ~ I’ and a, = 0 on 92, ~ T, and remember that

ny(s) = —ny(s) for s ¢ I. Finally, from (2.11), (4.13) and (4.15) we obtain
by the Divergence Theorem on =

af)- du(t, 1)

s =0, EedZ

where nz is the unit outward normal to 92, the (n — 2)-dimensional boundary
of Z.

Boundary value problems like our example arise from the consideration of
fluid flow problems in a region containing a narrow fracture = which is char-
acterized by very high permeability. In such a fracture, the flow across the
fracture is negligible compared to that in tangential directions, and this ac-

counts for the appearance of terms like (4.12) in the problem. See [4] for further
discussion and references.

(d) Boundary value problems of fourth and fifth type. For our last example,
we illustrate how our results of Section 2 give existence and uniqueness of
solutions of some new boundary value problems [0]. Although variable domain
models can be easily obtained, we omit this here. For simplicity, we let @, = &,
hence @ = @, , and let Z be a measurable subset of Q2. Suppose we are given a
function « € L(dQ) with a(s) = 0, a.e. s ¢ 2. Then we define Hilbert spaces
H=LQ), W = {¢e H(Q): ()"*(3¢/0n) e L’(0Q)}, and V() = V = {¢p e W:
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¢ + a(d¢/0n) = constant on Z}. The inner product on V and W is taken to be
@ Vv = @ Vuww T+ [ a(06/0n)(3¢/0n) ds. Suppose we are given the
regular functions a(- , -), b(- , -) and a,(- , ) on @ X T which satisfy (4.4),
and a non-negative and absolutely continuous real-valued function g8 on T.
Then we can give two regular families of sesquilinear forms on V by

a6, ¥) = [ (alw, 098 T + aala, 8@ do+ [ aats, ) 22 gy

450, 9) = [ 0, 0653 o + 80 [ o+ 2 2)(s + o« 2) a

The operators of Theorem 4 are given by (4.1) and (4.3), and we have the
identities

a(t;d’; ‘I/) - (A(t)d’y ‘I’)H = j;n a(s’ t) n {‘I/ + a a‘p} ’

bt 9, ) — BO# 9 = 0 [ (0 +a2)(v + a2,

for appropriate ¢, y £ V. If uo ¢ W and F ¢ L*(@ X T) are given, we define f ¢
L*(T, V) by f(t) = F(- , t), te T. The assumptions (4.4) imply the estimates
(2.4) and (2.5), so there is a unique solution u(t) of the Cauchy problem (2.1).
Then the function u(- , t) = wu(t) is the weak solution of the partial differential
equation (4.5). The inclusions «(t) € V imply that for each e T,

6u(s, t)

(4.16) u(s, t) + als) — g(t), se =,

That is, the indicated combination is independent of s on Z, hence gives a
function of ¢ as shown. This is a non-local boundary condition. We obtain from
Theorem 5 (formally) the additional boundary conditions

du(s, t)
as, t) ——=—ds + D.(B(t)g())- | ds =0, teT
(4.17) = 37% L

ats, 0 220 1 (500 uts, ) + a0 222]) = 0,

sed@~3, tel.

Theorem 3 gives the initial conditions

b(x, 0){ulz, 0) — ue(x)} = 0, ze
6(0){9(0) fz ds — f (uo(S) + afs) 8“"(3)) dS} =0,

6(0){(u(8, 0) — uo(s)) + als) 6—% (u(s, 0) — uo(s)} =0, $edQ~ 3.
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The boundary conditions (4.16), (4.17) are called the conditions of the fourth

type where a(s) = 0 and the conditions of the fifth type wherever a(s) > 0 [0].
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