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Abstract. We begin with the initial-boundary-value problem for a coupled system
of partial differential equations which describes the Biot consolidation model in poro-
elasticity. Existence, uniqueness and regularity theory is developed for the quasi-static
case as an application of the theory of linear degenerate evolution equations in Hilbert
space, and this leads to a precise description of the dynamics of the system. Current
work on the foundations of the model and appropriate extensions to models with elastic-
viscous-plastic media or nonhomogeneous media will be briefly described.
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1. Introduction. Analysis of the quasi-static deformation and asso-
ciated pressure distribution in a porous fluid-saturated elastic structure is
generally based on poroelasticity theory. This consists of the mathemat-
ical description of the dynamics of the pore-fluid pressure and the solid
stress fields of the structure formulated by coupling the partial differential
equations of the diffusion process with those of the elasticity theory for the
structure. Any model of fluid flow through a deformable solid matrix must
account for this coupling between the mechanical behavior of the matrix
and the fluid dynamics. For example, compression of the medium leads
to increased pore pressure, if the compression is fast relative to the fluid
flow rate. Conversely, an increase in pore pressure induces a dilation of the
matrix in response to the added stress. This coupled pressure-deformation
interraction is the basis of the development of poro-elasticity starting with
the work of Terzaghi (1925) [39], (1943) [40]. The concept of total stress
is the essence of coupled deformation-flow behavior within porous media
and sets it apart from the theory of flow through a rigid structure. The
first detailed studies of the coupling between the pore-fluid pressure and
solid stress fields were described by Biot (1941) [9]. The basic constitu-
tive equations relate the total stress to both the effective stress given by
the strain of the structure and to the pressure arising from the pore-fluid.
Time dependent fluid flow is incorporated by combining the fluid mass
conservation with Darcy’s law, and the displacement of the structure is
described by combining Hooke’s law for elastic deformation with the mo-
mentum balance equations. The transient flow and deformation behavior
in a deformable porous medium may result from changes in either the fluid
pressure, flux, displacements, or traction conditions applied to the bound-
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ary of the medium. The model for consolidation requires the quasi static
assumption that the dynamic momentum equations are replaced by the
corresponding equilibrium equations.

We briefly recall this classical model of diffusive flow in a porous de-
formable medium. Let Ω be a smoothly bounded region which represents
the porous and permeable elastic matrix with density ρ, and assume it
is saturated by a slightly compressible and viscous fluid which diffuses
through it. The displacement of the solid matrix is denoted by u(x, t) for
each point x ∈ Ω and time t > 0. Let ρs be the density of the solid and
φ the porosity of the medium, i.e., the volume fraction available to the
fluid. Let ρf be the density of the fluid and w be the fluid velocity. The
Darcy relative bulk velocity of the fluid is defined by v ≡ φ(w − u̇) . For
each subdomain B ⊂ Ω, the momentum of the corresponding portion of
the matrix is given by

∫

B
(ρu̇(x, t)+ρfv(x, t)) dx . Here ρ = φρf +(1−φ)ρs

is the total density, and so ρu̇+ ρfv = (1−φ)ρsu̇ + φρfw is the combined
momentum of solid and fluid. The forces acting on the body B consist of
the traction forces applied by the complement of B across its boundary
∂B with normal n. These are given by

∫

∂B σij(x, t) nj dS , where the stress
σij is the symmetric tensor that represents the internal forces on surface
elements. Thus we obtain the equation for balance of momentum

∂

∂t

∫

B

(ρ
∂u(x, t)

∂t
+ ρfv(x, t)) dx =

∫

∂B

σ(·, t,n) dS +

∫

B

f(x, t) dx

for each subdomain B, where f(·, t) denotes the volume-distributed exter-
nal forces. The components of the normal stress σ(·, t,n) are given by
σ(·, t,n)i = σij(·, t) nj . With the divergence theorem this gives the mo-
mentum equations

∂

∂t

(

ρ
∂ui(x, t)

∂t
+ ρfvi(x, t)

)

− ∂jσij(x, t) = fi(x, t) , 1 ≤ i ≤ 3 .

The mass of fluid in each such subdomain B is
∫

B η(x, t) dx, and this defines
the fluid content η(x, t) of the medium. The flux is the mass flow rate
q(x, t) of fluid relative to the matrix, so the rate at which fluid moves across
the boundary ∂B is given by

∫

∂B q(x, t) · n dS. Then the conservation of
mass of fluid takes the integral form

∂

∂t

∫

B

η(x, t) dx +

∫

∂B

q · n dS =

∫

B

ρfh(x, t) dx , B ⊂ Ω ,

in which h(·, t) denotes any volume distributed source density . When the
flux and content are differentiable, we obtain the equations of mass balance
in the differential form

∂

∂t
η(x, t) + ∇·q(x, t) = ρfh(x, t) , x ∈ Ω .
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For the corresponding constitutive equations, we assume the total stress
and fluid content are given respectively by

σij = λδijεkk(u) + 2µεij(u) − αδij p ,

η = ρf (c0 p + α∇·u) ,

where p(x, t) denotes the pressure distribution within the medium Ω and
the small local strain of the solid is denoted by εkl(u) ≡ 1

2 (∂kul + ∂luk) .

The positive Lamé constants λ and µ are the dilation and shear moduli of
elasticity, respectively. The coefficient α > 0 is the Biot-Willis constant
that accounts for the pressure-deformation coupling; it is a measure of the
fluid volume forced out of the solid skeleton by a dilation. The coefficient
c0 ≥ 0 is the combined porosity of the medium and compressibility of the
fluid and solid. We also assume the flux q is given by Darcy’s law

q = ρfv , v = −k∇p ,

for the laminar flow through the medium. We ignore the effects of gravity,
as the corresponding term does not affect the structure of the problem.
The momentum balance equations for the displacement of the medium and
the mass balance equation for the pressure distribution are then given by
the (fully dynamic) classical Biot system

∂

∂t
(ρ

∂u

∂t
) − (λ + µ)∇(∇·u) − µ∆u + α∇p = f(x, t) ,(1.1)

∂

∂t
(c0 p + α∇·u) −∇·k∇p = h(x, t) in Ω .(1.2)

Here the inertia of the Darcy velocity is assumed to be relatively negligible,
so the variation of ρfv has been deleted. This additional simplification
results in a system of mixed wave-parabolic type for the solid displacement
and fluid pressure. The small deformations of the matrix are described
by the Navier equations of linear elasticity, and the diffusive fluid flow is
described by Duhamel’s equation. We shall consider such diffusion and
deformation processes in the case for which the remaining inertia effects
are negligible, so the first term in this system is deleted. This quasi-static
assumption arises naturally in the classical Biot model of consolidation.

We note finally that the Biot system is formally equivalent to the
classical coupled thermo-elasticity system which describes the flow of heat
through an elastic structure. In that context, p(x, t) denotes the tempera-
ture, c0 > 0 is the specific heat of the medium, and k > 0 is the conductivity.
Then α∇p(x, t) arises from the thermal stress in the structure, and the term

α∇· ∂u(x,t)
∂t corresponds to the internal heating due to the dilation rate. We

have not made the uncoupling assumption in which this term is deleted
from the diffusion equation. See Norris (1992) [30] for the static case.
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2. Remarks on Literature. For a small sample of fundamental work
on the storage equation and its application in reservoir simulation, see Bear
(1972) [4], Collins (1961) [19], Peaceman (1977) [31], and Huyakorn-Pinder
(1983) [26]. For a history of developments in soil science, see the recent
book of de Boer (2000) [15].

The fully dynamic system with ρ > 0 was developed by Biot (1956)
[11, 12], (1962) [13], (1972) [14] to describe (higher frequency) deformation
in porous media. For the theory of this system in the context of thermo-
elasticity, see the fundamental work of Dafermos (1968) [20], the exhaustive
and complementary accounts of Carlson (1972) [17] and Kupradze (1979)
[28], and the development in the context of strongly elliptic systems by
Fichera (1974) [24]. By contrast, very few references are to be found in the
thermoelasticity literature for the mathematical well-posedness of even the
simplest linear problem for the coupled quasi-static case in which the sys-
tem degenerates to a mixed elliptic-parabolic type. Such a system in one
spatial dimension was developed by classical methods in the book of Day
[21]. According to a scaling argument in Boley-Wiener [16], it appears that
the reasons for taking ρ = 0 apply as well to simultaneously delete the term
α∇·u̇(t) and thereby uncouple the system, so these two assumptions are
frequently taken together. This may explain in part the limited attention
given to this case in the thermoelasticity literature. Although this decou-
pling assumption is appropriate in many thermoelasticity applications, it is
never permissible for the consolidation problems of poroelasticity [32, 47].

The consolidation model of Biot requires the quasi-static case, ρ = 0;
see Biot (1941) [9] and (1955) [10], Rice and Cleary (1976) [32], Zienkiewicz
et al. (1980) [47]. An additional degeneracy occurs in the incompressible
case in which we have also c0 = 0, and then the system is formally of elliptic
type. The mathematical issues of well-posedness for the quasi-static case
were first studied in the fundamental work of J.-L Auriault and Sanchez-
Palencia (1977) [1]. They derived a non-isotropic form of the Biot system
by homogenization and then proved existence and uniqueness of a strong so-
lution for which the equations hold in L2(Ω). In the later paper of Zenisek
(1984) [46], a weak solution is obtained in the first order Sobolev space
H1(Ω), so the equations hold in the dual space, H−1(Ω) (see below). Ad-
ditional issues of analysis and approximation of this case are developed in
[13, 14, 29, 33, 45, 48]. A complete development of the existence, unique-
ness, and regularity theory for the Biot system together with extensions
to include the possibility of viscous terms arising from secondary consol-
idation and the introduction of appropriate boundary conditions at both
closed and drained interfaces were recently given in [36].

3. The Differential Operators. We shall formulate the system (1.1,
1.2) together with appropriate boundary and initial conditions in the ab-
stract form of evolution equations in Hilbert space. In order to carry this
out, we construct the relevant stationary operators within the system.
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3.1. The Elasticity Operator. We recall the Navier system of par-
tial differential equations which describes the small displacements of a
purely elastic structure and the variational formulation of the associated
boundary-value problem in Sobolev spaces. Let Ω be a smoothly bounded
domain in R3, and denote by Γ0 and Γt two complementary parts of a
partition of the boundary, ∂Ω. The general stationary elasticity system is
given by the equations of equilibrium

−∂jσij = fi in Ω(3.1)

ui = 0 on Γ0 , σijnj = gi on Γt(3.2)

for each 1 ≤ i ≤ 3. Thus the boundary condition on Γ0 is a constraint on
displacement, and on Γt it involves the surface density of forces or traction
σ(n) with i-th component given by σijnj and value determined by the unit
outward normal vector n = (n1, n2, n3) on Γt. In order to obtain the weak
formulation of this boundary value problem, we define the Sobolev space

V =
{

v ∈ H1(Ω) : v = 0 on Γ0

}

of admissable displacements in H1(Ω)3. We shall assume that Γ0 has
strictly positive measure. Thus, we write the elasticity system ( 3.1, 3.2)
in the form

u ∈ V : E(u)(v) = h(v) , v ∈ V,(3.3)

where the elasticity operator E : V −→ V
′

and the conjugate linear func-
tional h(·) ∈ V′ are defined by

E(u)(v) =

∫

Ω

(λ(∂kuk) (∂ivi) + 2µεij(u)εij(v)) dx ,

h(v) =

∫

Ω

fivi dx +

∫

Γ1

givi ds , v ∈ V .

For u ∈ V we define the restriction of E(u) ∈ V
′

to C∞
0 (Ω) by E0(u);

this is the distribution E0(u) ≡ −(λ + µ)∇(∇·u) − µ∆u. Then the weak
form of the boundary-value problem (3.1, 3.2) is just (3.3). If the closures
of Γ0 and Γt do not intersect, and if the boundary is sufficiently smooth,
then the regularity theory for strongly elliptic systems shows that whenever
E0(u) ∈ L2(Ω) we have u ∈ H2(Ω) ∩ V, and then from Stokes’ theorem
there follows

E(u)(v) = (E0(u),v)L2(Ω) + (σij(u)nj , vi)L2(Γt), v ∈ V.

This shows how E decouples into the sum of its formal part E0 on Ω and its
boundary part σ(n) on Γt. From Korn’s inequality and Poincare’s theorem
it follows that E is V coercive, so E is an isomorphism. (See Duvaut-Lions
[22] or Ciarlet [18].
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3.2. The Diffusion Operator. Suppose we are given the function
k ∈ L∞(Ω) satisfying k(x) ≥ k0 > 0, x ∈ Ω. This determines the Neumann
problem

−∇ · (k∇p) = h1 in Ω ,(3.4)

k
∂p

∂n
= h2 in Γ .(3.5)

Let V = H1(Ω) and define the conjugate linear functional h(·) and the
symmetric and monotone operator A : V −→ V

′

by

Ap(q) =

∫

Ω

k∇p · ∇q dx, p, q ∈ V ,

h(q) =

∫

Ω

h1q dx +

∫

Γ

h2q ds , q ∈ V .

Then the Neumann problem (3.4), ( 3.5) is given by

p ∈ V : A(p)(q) = h(q) q ∈ V.(3.6)

The restriction to C∞
0 (Ω) of A(p) is the formal part in H−1(Ω) given by

the elliptic operator A0(p) = −∇·k∇p. If p ∈ V , A0p ∈ L2(Ω), and if k(·)
is smooth, then the elliptic regularity theory implies that p ∈ V ∩ H2(Ω),
and we obtain the decoupling of A

Ap(q) = (A0p, q)L2(Ω) + (k
∂p

∂n
, γq)L2(∂Γ) , q ∈ V .

into a formal part A0 on Ω and a boundary part k ∂p
∂n on Γ.

3.3. The Pressure-Dilation Operators. Let the function β(·) ∈
L∞(Γt) be given; we shall assume that 0 ≤ β(s) ≤ 1, s ∈ Γt. Then define

the corresponding gradient operator, ~∇ : V → L2(Ω) ⊕ L2(Γt), by

〈~∇p, [f ,g]〉 ≡

∫

Ω

∂jp f j dx −

∫

Γt

β pnj gj ds ,

p ∈ V, [f ,g] ∈ L2(Ω) ⊕ L2(Γt) .

This consists explicitly of a formal part ∇p in Ω and a boundary part −β pn

on Γt, and we denote this representation by

~∇p = [∇p, −β pn] .(3.7)

Define ~∇· : L2(Ω) ⊕ L2(Γt) → V ′ to be the negative of the corresponding

dual operator. This is the divergence operator ~∇· = −~∇′ given by

〈 ~∇·[f ,g], p〉 ≡ −〈~∇p, [f ,g]〉 , [f ,g] ∈ L2(Ω) ⊕ L2(Γt), p ∈ V .
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The trace map gives a natural identification v 7→ [v, γ(v)|Γt
] of

V ⊂ L2(Ω) ⊕ L2(Γt) ,

and this identification will be employed throughout the following. It also
gives the identification p 7→ [p, γ(p)|Γt

] of

V ⊂ L2(Ω) ⊕ L2(Γt) .

We note that both of these identifications have dense range, and so the
corresponding duals can be identified. That is, we have

L2(Ω) ⊕ L2(Γt) ⊂ V′, L2(Ω) ⊕ L2(Γt) ⊂ V ′.

For smoother functions v ∈ V ⊂ L2(Ω) ⊕ L2(Γt) we have the Stokes’
Formula

〈 ~∇·v, p〉 = −

∫

Ω

∂jp vj dx +

∫

Γt

β pvjnj ds

=

∫

Ω

∂jvjp dx −

∫

Γt

(1 − β)v · n p ds , p ∈ V.

This shows the restriction satisfies

~∇· : V → L2(Ω) ⊕ L2(Γt)

and that the divergence operator has a formal part in Ω as well as a bound-
ary part on Γt. We denote the part in L2(Ω) by ∇·, that is, ∇ · v = ∂jvj ,
and the identity above is indicated by

~∇·v = [∇ · v, −(1 − β)v · n] ∈ L2(Ω) ⊕ L2(Γt), v ∈ V.(3.8)

Now we can extend the definition of ~∇ from V up to L2(Ω) ⊕L2(Γt).

This extension is obtained as −( ~∇·)′, the negative of the dual of the re-
striction to V of the divergence. This dual operator

( ~∇·)′ : L2(Ω) ⊕ L2(Γt) → V′

is defined for each [f, g] ∈ L2(Ω) ⊕ L2(Γt) by

〈( ~∇·)′[f, g], v〉 = ( ~∇·v, [f, g])L2(Ω)⊕L2(Γt)

= (∂jvj , f)L2(Ω) − ((1 − β)v · n, g)L2(Γt)

= (f, ∇ · v)L2(Ω) − (g, (1 − β)v · n)L2(Γt) , v ∈ V .

For the smoother case of [f, g] = [w, w|Γt
], with the indicated w ∈ V

identified as a function on Ω and its trace on Γt, the Stokes’ formula shows
that

−〈( ~∇·)′[w, w|Γt
], v〉 = −(w, ∇ · v)L2(Ω) + (w, (1 − β)v · n)L2(Γt)

= (∂jw, vj)L2(Ω) − (βw, v · n)L2(Γt)

= (~∇w,v)L2(Ω)⊕L2(Γt) , w ∈ V, v ∈ V ,
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and this shows that − ~∇·
′

provides the desired extension of ~∇ from V to
L2(Ω) ⊕ L2(Γt). Note that by taking [f, g] = ~∇·v = [∇·v, −(1 − β)v · n]
above, we obtain

〈( ~∇·)′ ~∇·v, w〉 = ( ~∇·v, ~∇·w)L2(Ω)⊕L2(Γt)

= (∇·v, ∇·w)L2(Ω) + ((1 − β)v · n, (1 − β)w · n)L2(Γt) v, w ∈ V .

The preceding constructions are summarized in the following diagram.

L2(Ω) ⊕ L2(Γt)
~∇·=−~∇

′

−→ V
′

⋃ ⋃

V
~∇·

−→ L2(Ω) ⊕ L2(Γt)
~∇=−( ~∇·)

′

−→ V
′

⋃ ⋃

V
~∇

−→ L2(Ω) ⊕ L2(Γt)

4. The Quasi-static Biot System . Using the notation introduced
in the previous section, we first display an initial-boundary-value problem
for the system of partial differential equations (1.1), (1.2) and then discuss
the relation of these boundary conditions to the Biot consolidation prob-
lem. This problem is written as an evolution equation in Hilbert space.
The Cauchy problem for this abstract Biot evolution system has a unique
solution in two situations. With L2-type data prescribed, it has a strong
solution, and when H−1-type data is prescribed, it has a weak solution.
These results will appear in [36], and we provide here a summary of that
work.

4.1. The Initial-Boundary-Value Problem. Denote the charac-
teristic function of the traction boundary, Γt by χt. The first objective is
a study of initial boundary value problems of the form

E0u(t)) + ∇p(t) = 0 and(4.1)

∂

∂t
(c0p(t) + ∇·u(t)) + A0(p(t)) = h0(t) in Ω ,(4.2)

u(t) = 0 on Γ0,(4.3)

σij(u(t))nj − p(t) ni βχS = 0, 1 ≤ i ≤ 3, on Γt ,(4.4)

−
∂

∂t
(u(t) · n) (1 − β)χt + k

∂p(t)

∂n
= h1(t) χt on Γ ,(4.5)

lim
t→0+

(c0p(t) + ∇·u(t)) = v0 in L2(Ω) ,(4.6)

lim
t→0+

(1 − β)(u(t) · n) = v1 in L2(Γt) .(4.7)

The partial differential equations (4.1), (4.2) are just the Biot system (1.1),
(1.2). We discuss the meaning of the boundary conditions in the context
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of the poroelasticity model. The boundary conditions (4.3), (4.4) con-
sist of the complementary pair requiring null displacement on the clamped
boundary, Γ0, and a balance of forces on the traction boundary, Γt. The
boundary condition (4.5) requires a balance of fluid mass. The function
β(·) is defined on that portion of the boundary Γt which is not (drained
or) clamped, and it specifies the surface fraction of the pores which are
sealed along Γt. For these the hydraulic pressure contributes to the total
stress within the structure. The remaining portion 1 − β(·) of the pores
are exposed along Γt, and these contribute to the flux. On any portion of
Γt which is completely exposed, that is, where β = 0, only the effective
or elastic component of stress is specified, since there the fluid pressure
does not contribute to the support of the matrix. On the entire boundary
there is a transverse flow that is given by the input h1(·) and the relative
normal displacement of the structure. This input could be specified in the
form h1(t) = −(1 − β)v(t) · n, where v(t) is the given velocity of fluid or
boundary flux on Γt. The first term and right side of this flux balance is
null where β = 1, so the same holds for the second terms in (4.5), that

is, we have the impermeable conditions k
∂p(t)
∂n = 0 on a completely sealed

portion of Γt. We also note that in (4.5) the first term on the left side and
the right side of the equation are null on Γ0, so the same necessarily holds
for the second term on the left side. That is, we always have the null flux
condition k ∂p

∂n = 0 on Γ0.

4.2. The Strong Solution. We show that the quasi-static system
(4.1 – 4.7) is essentially a parabolic system which has a strong solution
under minimal smoothness requirements on the initial data and source h(·).
Let P : (L2(Ω) ⊕ L2(Γt))

2 −→ (L2(Ω) ⊕ {0})2 be the indicated projection
operator onto the first components. In terms of the operators constructed
in Section 3, the quasi-static system (4.1) – (4.7) is equivalent to

E(u(t)) + ~∇p(t) = 0 ,(4.8)

d

dt
(c0Pp(t) + ~∇·u(t)) + A(p(t)) = h(t) ,(4.9)

c0Pp(0) + ~∇·u(0) = [v0, −v1] .(4.10)

The first system (4.8) corresponds to the equilibrium system for momen-
tum and the second system (4.9) consists of the mass balance for double-
diffusion. The first equation holds in the space V

′

and the second in V
′

.
The first system is elliptic, and the second equation is of mixed elliptic-
parabolic type with c0 ≥ 0. The forcing term h(t) represents any external
sources. Note that we can assume without loss of generality that first
system is homogeneous by a simple translation, since E os surjective.

Note that (4.9) requires that p(t) ∈ V , so both terms of (4.8) are
necessarily in (L2(Ω) ⊕ L2(Γt))

3, and this forces additional regularity on
the displacement u(t). By a strong solution, we mean that equation (4.9)
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holds in the smaller space L2(Ω) ⊕ L2(Γt) ⊂ V
′

, so this solution has the
additional regularity necessary to decouple the partial differential equations
and the boundary conditions implicit in (4.9).

The fundamental point is the following.
Lemma 4.1. The operator B = − ~∇·E−1~∇ : L2(Ω) ⊕ L2(ΓS) →

L2(Ω) ⊕ L2(ΓS) is continuous, monotone and self-adjoint with Ker(B) =

Ker(~∇), and each of the Sobolev spaces (Hm(Ω) ∩ V ) ⊕ Hm− 1
2 (ΓS) is in-

variant under B.
The system (4.8), (4.9) can be written as a single equation

d

dt
(c0P + B)p(t)) + A(p(t)) = h(t) ,

for which we can show the dynamics is described by an analytic semigroup.
This gives the following.

Theorem 4.1. Let T > 0, v0 ∈ L2(Ω), v1 ∈ L2(ΓS), and the
pair of Hölder continuous functions h0(·) ∈ Cα([0, T ], L2(Ω)), h1(·) ∈
Cα([0, T ], L2(ΓS)) be given with

∫

Ω

v0(x) dx −

∫

ΓS

v1(s) ds = 0,(4.11)

∫

Ω

h0(x, t) dx +

∫

ΓS

h1(s, t) ds = 0, t ∈ [0, T ] .(4.12)

Then there exists a pair of functions p(·) : (0, T ] → V and u(·) : (0, T ] →
V for which c0p(·) + ∇·u(·) ∈ C0([0, T ], L2(Ω)) ∩ C1((0, T ], L2(Ω)) and
u(·)·n ∈ C0([0, T ], L2(ΓS))∩C1((0, T ], L2(ΓS)), and they satisfy the initial-
boundary-value problem (4.8 – 4.10) with t 7→ tA(p(t)) belonging to the
space L∞([0, T ], L2(Ω) ⊕ L2(ΓS)) ∩ C0((0, T ], L2(Ω) ⊕ L2(ΓS)) and

∫

Ω

(c0p(t) + ∇·u(t)) dx −

∫

ΓS

(1 − β)u(t) · n ds = 0 , t ∈ (0, T ] .

The function u(·) is unique. When Ker(c0P +B+A) = {0}, p(·) is unique,
and if Ker(c0P + B) = {0} we delete the integral constraints (3) and (4).

When the data h0(·), h1(·) is smooth, we can show that the solution
p(·) is C∞(Ω × (0, T ]). Thus, the system is parabolic, even if c0 = 0.

4.3. The Weak Solution. For another approach, we differentiate
the first equation to obtain the system

d

dt

(

E ~∇
~∇· c0P

) [

u(t)
p(t)

]

+

(

0 0
0 A

) [

u(t)
p(t)

]

=

[

0

h(t)

]

The holomorphic case for the weak solution is given by
Theorem 4.2. Let T > 0, v0 ∈ V ′

a, and h(·) ∈ Cα([0, T ], V ′
a) be given.

Then there exists a pair of functions p(·) : (0, T ] → V and u(·) : (0, T ] → V
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for which c0Pp(·)+ ~∇·u(·) ∈ C0([0, T ], V ′
a)∩C1((0, T ], V ′

a), and they satisfy
the initial-value problem

E(u(t)) + ~∇p(t) = 0,(4.13)

d

dt
(c0Pp(t) + ~∇·u(t)) + A(p(t)) = h(t), t ∈ (0, T ],(4.14)

lim
t→0+

(c0Pp(t) + ~∇·u(t)) = v0 in V ′
a .(4.15)

The function u(·) is unique. When Ker(c0P + B + A) = {0}, the function
p(·) is unique.

Related problems arise in the modeling of clays, and there one finds an
additional term to represent the secondary consolidation effects. A typical
system is given by

−µ∗~∇
d

dt
( ~∇·u(t)) + E(u(t)) + ~∇p(t) = h(t) ,(4.16)

d

dt
c0Pp(t) + A(p(t)) +

d

dt
~∇·u(t) = h(t) .(4.17)

The solution of this degenerate viscous system is even less regular than
the weak solution of Theorem 4.2. Specifically, not only is the diffusion
equation (4.17) in V ′

a , but the momentum equation (4.17) is in V′, so
neither of them has the appropriate regularity to be decoupled into a system
of partial differential equations and boundary conditions. Finally, we note
that many of the above results for quasi-static systems are extensions of
related and somewhat easier results for the fully dynamic models such as

ρü(t) − µ∗∇(∇·u̇(t)) + E(u(t)) + ∇p(t) = h(t) ,(4.18)

c0ṗ(t) + A(p(t)) + ∇·u̇(t) = h(t) .(4.19)

This is a coupled wave-parabolic system.

5. Projects. Here we briefly describe various systems that are being
developed in order to model less restrictive and more realistic situations.

5.1. Non-Darcy flow, plastic deformation. More general consti-
tutive equations are required for many applications. We indicate such
an extension of the theory with the following non-Darcy flow model with
plasticity. An additional momentum equation for the velocity of the pore
fluid, w(t), and an elementary plasticity model of Prandtl-Reuss type are
included in the system

c0ṗ(t) + ∇·w(t) + ∇·u̇(t) = h(t) ,(5.1)

ρf ẇ(t) + ρf ü(t) + K−1w(t) + ∇p(t) = 0 ,(5.2)

ρf ẇ(t) + ρü(t) + F(u̇(t)) + E1/2σ1(t) + ∇(σ2(t) + p(t)) = f(t) ,(5.3)

σ1(t) + E1/2u(t) = 0 ,(5.4)

σ̇2(t) + ∇·u̇(t) + ∂ϕ(σ2(t)) = 0 .(5.5)
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This fully dynamic coupled system is of mixed parabolic-hyperbolic type.
The third equation is the momentum balance for the solid-fluid structure,
and the second equation is momentum balance for the fluid. The matrix
K is the permeability , so the term K−1w(t) is the resistance of the solid
structure to the diffusing fluid. In the case of a rigid solid, this equation
takes the form

ρf ẇ(t) + K−1w(t) + ∇p(t) = 0 ,

which is a Darcy law with momentum. If we ignore the fluid momentum,
i.e., if we set ρf = 0, then this is the classical Darcy law. The last equation
is the plastic component of the total stress. Here ϕ(·) is the indicator
function of a convex set which represents the yield surface for the plastic
flow. Plastic behavior is prescribed in terms of the relative change of stress
with respect to strain, and thereby it permits a dynamic formulation which
is rate independent and contains hysteresis effects [38]. Additional nonlinear
problems such as partially saturated flow and deformation are currently
under investigation.

5.2. Composite media. The representation of porosity and perme-
ability in naturally occuring materials often requires several distinct spatial
scales. Thus the need arises for more general models incorporating qual-
itatively different characteristics. We briefly mention some ongoing work
on two classes of models of composite media.

5.2.1. Parallel models. In problems of fluid flow in subsurface reser-
voirs and aquifers, the simplest and most frequently used model is the dual-
porosity/dual-permeability medium which consists of two distinct compo-
nents, both of which occur locally in any representastive volume element
and behave as independent diffusion processes which are coupled by a dis-
tributed exchange term. In order to describe the flow of a single phase,
slightly compressible fluid in a composite medium, that is, a porous medium
composed of two interwoven (and possibly connected) components, we in-
troduce at each point in space a density, pressure or concentration for each
component, each being obtained by averaging in the respective medium over
a generic neighborhood sufficiently large to contain a representative sample
of each component. This construction and its application to the description
of composite diffusion processes are generally attributed to Barenblatt et
al. (1960) [3]. A straightforward unification of the models of Barenblatt
and Biot is the system

E(u(t)) + α1∇p1(t) + α2∇p2(t) = 0 ,(5.6)

c1ṗ1(t) + A1∇p1(t) + α1∇·u̇(t) + γ(p1(t) − p2(t)) = h1(t) ,(5.7)

c2ṗ2(t) + A2∇p2(t) + α2∇·u̇(t) + γ(p2(t) − p1t)) = h2(t) ,(5.8)

where u is the displacement of the solid skeleton, and the pressures p1 and
p2 have the meaning described above. For the case of a fractured medium,
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the first component is a matrix of porous and somewhat permeable mate-
rial, and the second component is a system of highly permeable fractures,
so both dual-porosity and dual-permeability characteristics are exhibited.
The common characteristics of fractured media are that the solid matrix
occupies a much larger volume than the fractures and that it is relatively
much more resistant to fluid flow than is the fracture system. As a con-
sequence, most of the flow passes through the system of fractures, while
the bulk storage of fluid takes place primarily inside the porous matrix.
The flow in the composite is enhanced by the exchange of fluid which takes
place on the matrix–fracture interface. The theory described above for the
Biot system (1.1), (1.2) has been recently extended to the Barenblatt-Biot
system (5.6), (5.7), (5.8). For the development of such models, see [2], [6],
[7], [8], [37], [41], [42], [43], [44].

5.2.2. Distributed microstructure Models. The introduction of
distributed microstructure models represents an attempt to recognize the
geometry and the multiple scales in the problem as well as to better quan-
tify the exchange of fluid and momentum across the intricate interface
between the components. Such models are frequently obtained as the limit
by homogenization of corresponding exact but highly singular partial differ-
ential equations with rapidly oscillating coefficients. This provides not only
a derivation of the model equations, but shows also the relation with the
classical but singular problem on the microscale, and it provides a method
for directly computing the effective coefficients which represent averaged
material properties. For example, one can start on the microscale with
Darcy flow models for each component, possibly with scaled permeability
parameters, and obtain in the limit as the spatial scale goes to zero such a
model for the macroscale behavior. This technique was used to derive the
Biot system [1]. There the Navier elasticity system was coupled to a Stokes
flow system on the microscale to obtain the Biot system in the limit as the
macroscale model of the deforming porous medium. See the book [25] for
a survey and perspectives.

We have investigated the limiting behavior of various combinations in
the micromodel of a deforming porous medium at the mesoscale. For a
fractured medium model, for example, we have used a Biot system for the
matrix and Darcy flow for the fissures. One can use Biot systems for each
component and scale the parameters for each component appropriately for
the situation. Also, one can start with a Biot system for the structure
coupled to a fluid flow model either of Stokes type or of slightly compress-
ible flow type and then investigate the limiting form of the composite for
various scalings of the parameters. An important technical aspect for each
case is the appropriate set of boundary conditions to use at the interface
between the porous medium and the fluid. Experience suggests that the
distributed microstructure models provide accurate models which include
the fine scales and geometry appropriate for many situations.
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