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PORO-VISCO-ELASTIC COMPACTION IN SEDIMENTARY BASINS∗

ELEANOR HOLLAND† AND R. E. SHOWALTER†

Abstract. The porosity of a visco-elastic medium is shown to satisfy a nonlinear pseudoparabolic
partial differential equation of the form u′+A(u)(α(u) +ηu′) = G(t, u) in which u′ denotes the time
derivative, A(v) = −∇ · κ(v)∇ is a linear second order elliptic operator in divergence form with
coefficient depending on a function v(x), α(·) is affine-bounded and α(·) + kI is monotone for some
k ∈ R, G(t, u) is a linear first order operator in u, and η > 0. The third order nonlinear term
A(u)u′ distinguishes this equation from the classical porous medium equation. The solvability of an
elliptic boundary-value problem for (I + ηA(v))u = f for η > 0 and the continuous dependence of
the solution u on the function v is used to establish existence of the solution of the initial-boundary-
value problem for the pseudoparabolic equation. We establish bounds on the solution that prevent
degeneracy of the coefficient κ(·) and prove regularity properties of the solution. These results are
obtained by methods of monotonicity and compactness.

Key words. pseudoparabolic equations, visco-elastic rheology, monotone operators, evolution
equations

AMS subject classifications. Primary, 47J35, 47H05, 35F61; Secondary, 35Q35, 76S05

DOI. 10.1137/17M1141539

1. Introduction. Consolidaton is the process by which a load on a deformable
saturated porous medium such as soil will decrease its volume by means of the re-
arrangement and more efficient packing of the solid grains with the corresponding
expulsion of pore fluid and reduction of porosity. The load may be an overburden
stress applied to the structure or its own weight. Small deformations of the medium
can be partially reversed by a reduction of the load or an increase in the fluid pres-
sure. Compaction includes additional processes that may occur on larger scales and
at greater depth, such as the viscous flow of the medium due to higher pressures and
chemical compaction processes of pressure solution. Such coupled poromechanical
processes are of central importance in the description of subsurface flow and pressur-
ization by fluid injection that occur in oil well drilling operations, geothermal energy
production, and the removal of groundwater. Here we study the compaction of a sed-
imentary basin as indicated by the porosity φ(x, t), the local volume fraction of pore
space between the grains of the medium. We begin by reviewing conservation laws
and constitutive assumptions that lead to a single partial differential equation that de-
termines the evolution of porosity and pressure during the compaction process as the
grains of the medium rearrange and expel pore water. The mathematical model will
depend on the specific poromechanical constitutive assumptions on the medium. Here
we consider visco-elastic assumptions on the medium by which the porosity satisfies
an initial-boundary-value problem for the partial differential equation

(1)
∂φ

∂t
−∇ · κ(φ)∇

(
α(φ) + η

∂φ

∂t
+ P

)
= ∇ · (1− φ)∇∆−1F .

In the following sections, we shall develop the existence and regularity theory for this
problem. Equation (1) is of pseudoparabolic type, due to the third order term with η >
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0, and we shall show that the properties of the solution reflect remarkably well those
expected of the porosity. In particular, any discontinuity in the value or derivative
of the solution in the normal direction across a lower dimensional surface does not
disappear instantly, as it would for a parabolic equation (η = 0 and α monotone) but
rather decays at a rate determined by α(φ) and η. This is a pointwise manifestation
of the general fact that for pseudoparabolic equations the spatial regularity is not
improved with advancing time but is preserved.

There is an enormous literature of the applications and mathematical development
of pseudoparabolic equations. They arose in a range of classical applications including
radiation with time delay [36], soil mechanics [54], degenerate cases of double-diffusion
and heat-conduction models of composite systems [45, 6] such as fissured media [11],
flow of second order fluids [52], long waves [39], and the regularization of ill-posed
backward parabolic problems [47, 22, 29]. More recent applications include level set
methods [16] and models of lightning propagation [3].

Pseudoparabolic equations were first analyzed in [49, 53]; see Chapter 3 of [19]
for an extensive review and bibliography up to 1976 and [20] with its bibliography for
early extensions to doubly nonlinear equations. The more recent book [2] contains an
extensive bibliography of work on pseudoparabolic equations and the more general
class of partial differential equations of Sobolev type, i.e., equations in which the time
derivative of highest order is implicit in a differential operator in spatial variables.
Various regularizations of forward-backward parabolic equations [38, 37, 5] have led to
extensive current and emerging studies of doubly nonlinear pseudoparabolic equations;
see [21, 46, 8, 9] and their references. Similar regularizations of Navier–Stokes or Euler
systems [10, 31] and of long-wave equations [13, 30] have been analyzed.

Equations of the form (1) describe two-phase flow with dynamic capillary pressure
[28, 41, 40] as well as the compaction models [56, 51, 33] to be described below. If
the η-term is linear, e.g., a positive-definite tensor and κ(φ) = 1, that term dominates
the others and existence of a solution follows as in [11, 37, 42, 43, 23]. For the non-
degenerate case κ(φ) ≥ κ0 > 0 with α(·) Lipschitz and monotone, there are various
formulations [24] and uniqueness [17]; existence was established in [12]. The two-phase
flow model requires the degenerate case of (1) for which κ(φ) ≥ 0 and κ(0) = 0, while
α(·) is monotone but singular at 0. Large time existence was proved for this situation
by Mikelić [34]; the entropy method was previously used for a similar degenerate
pseudoparabolic problem [35]. This approach was used in [18] to prove existence for
a degenerate system which extends a single equation like (1).

We provide here an independent study of (1) as a model of compaction described
below. The existence results are most closely related to those in [12], but here we
develop them directly from elementary methods of monotonicity and compactness
without recourse to interpolation theory. Also we extend the coverage to let α(·) be
the sum of a monotone function and a Lipschitz function rather than requiring both
properties. This permits α(·) to be singular (with infinite slope) at isolated points and
includes the regularized forward-backward equations. (These are ill-posed if η = 0.)
However, we do assume κ(·) is nondegenerate; this is appropriate for the compaction
model, since the porosity is observed to be limited to the interval [0.1, 0.5], even at
depths up to 3 kilometers. We show that solutions will stay constrained by the limits of
the initial porosity, and thus will not lead to degeneracy of the elliptic coefficient. This
eliminates the need for the use of entropy estimates. These simpler proofs used here
should make the material accessible to a broader group of readers. The development
of (1) as a model of compaction of a sedimentary basin is the content of the remainder
of this introduction. In section 2 we will show that I + ηAu is invertible and develop
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continuity properties of the resolvent J(u, f) = (I + ηAu)−1f that will be used in
section 3 to establish existence of a solution to the initial-boundary-value problem
for (1). When u0 ∈ L2(G), a solution is obtained with u(t) ∈ L2(G) for 0 ≤ t ≤ T ;
see Theorem 23. If additionally ∇u0 ∈ L2(G0) for some measurable G0 ⊂ G, then
∇u(t) ∈ L2(G0) for 0 ≤ t ≤ T , and if u0 has a jump along a submanifold in G, the
jump is maintained there by the solution u(t) at every t ∈ [0, T ]; see section 5.

1.1. The rheology. A sedimentary basin is a saturated granular deformable
porous medium consisting of the particles of sand or silt that accumulate between
the sea bottom and (possibly) a confining bedrock. Such basins are ubiquitous and
frequently extend to depths of kilometers and widths of 10s or 100s of kilometers.
As sediments are deposited from above, they are subjected to increasing stress under
which the lower regions compact, expelling pore water by increasing pore pressures
well above hydrostatic levels.

First we recall the construction of mathematical models for the study of com-
paction of a sedimentary basin [4, 26]. The primary simplifying assumption in the
mechanics of the model is that the ratio of shear to bulk modulus of the granular
porous medium is extremely low, so the shear forces between grains will be ignored.
This holds well for sedimentary basins, since they are often well approximated by
one-dimensional models due to their wide extent, and this assumption holds also on a
smaller scale for media with a loose sediment containing substantial organic matter,
and likewise for deforming incompressible soft granular media, even on laboratory
scales. For such media, the effective stress is given by the tensor σeff = σδ, where the
scalar-valued ps = −σ is effective pressure within the sediment matrix of incompress-
ible particles. Since the sediment is cohesionless, it cannot support any tensile stress,
so the effective pressure is necessarily nonnegative. In the study of soil consolida-
tion, the porosity is related to the effective pressure by a normal consolidation curve
which represents nonlinear elastic compression and irreversible damage. This leads
to a nonlinear parabolic partial differential equation so long as the effective pressure
is increasing. Slow and small variations of effective pressure below this curve can be
described well by reversible elastic relations between porosity and effective pressure
in sediments at depths up to at most a kilometer. Such poroelastic consolidation due
to grain packing and rearrangement provides an adequate description of the rheol-
ogy only in these upper shallower regions. See section 7.10 in [26]. Somewhat faster
variations follow small hysteretic loops that can be modeled by local visco-elastic
rheology.

At greater depths and effective pressures, a viscous effect known as pressure solu-
tion becomes prevelant. This is the result of dissolution of the grains at contact points
due to the excessive local effective pressure followed by precipitation in adjacent pore
space, where pressure is essentially the lower fluid pressure. It is a consequence of
the enhanced solubility of minerals due to increased stress at the grain contacts.
This chemical compaction process results in an effective viscous creep of the granular
structure and leads to an increase in local grain contact area which distributes the
intergranular stress over a larger surface. The process is referred to as viscous com-
paction, viscous creep, or pressure solution and is described by a relation between
effective stress and strain rate, e.g., the rate of change of porosity. (See Chapter 5 of
[7].) It constitutes a fundamental deformation process in the upper crust of the Earth,
not only for sediment basins but also for the dynamics of faults, ground subsidence
due to fluid withdrawal, and even the propogation of magma through the Earth’s
mantle. Eventually the chemical compaction leads to a thermodynamic equilibrium
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at the grain contacts. This corresponds to a balance of all the forces acting at these
contacts and is determined by the limiting value of porosity. See section 7.11 in [26]
and [25, 44, 55].

Here we extend the rheology of the medium to include a nonlinear visco-elastic
model of Kelvin–Voigt type for the granular porous medium. This will apply not
only to small variations in effective pressure but also to larger variations so long as
the medium is not irreversibly consolidated. Such viscous contributions to the con-
solidation curves are observed as small hysteretic cycles at all depths. They become
increasingly important at depths below 500 m where grain creep within the medium is
already substantial, and they may be the predominant deformation mechanism a kilo-
meter lower in sedimentary basins. As noted above, the rheology model should have
two asymptotic limits, one for the viscous behavior at short time scales and a second
for the elastic behavior at long time equilibrium limits. These are characteristics of
the Kelvin–Voigt visco-elastic model

(2) σ = α(φ) + η
∂φ

∂t

in which the effective stress is the sum of a nonlinear strain component and a strain
rate component. The first is the bulk modulus of the medium and η is the viscosity.
This is a realistic model of material response (creep) to constant stress. We shall
assume that the function α(·) is continuous and affine-bounded and that α(·) + kI
is monotone for some k ∈ R. For the last condition, it suffices that α(·) is either
Lipschitz or monotone.

The added viscous forces change the corresponding partial differential equation
to one of pseudoparabolic type, and consequently the properties of the solution are
very different from those of the usual diffusion type problem. In particular, spatial
regularity of the solution is preserved in time, and any discontinuity in the solution
(or a derivative of the solution) does not disappear but remains at that location
and decreases at a rate which is directly computed from (2). This localization and
perseverence of smoothness are properties typical of materials.

1.2. The mathematical model. We recall the basic two-phase model for a
sedimentary basin [7, 4, 26]. Assume a fully saturated cohesionless sediment for
which porosity φ(x, t) denotes the volume fraction of the medium occupied by the
fluid, fluid velocity is vf (x, t), solid velocity is vs(x, t), and their respective densities
ρf , ρs are constant. The grains are heavier than the fluid, so ρs > ρf . Permeability
of the matrix of solid particles depends on porosity and is denoted by K(φ). Pressure
of the fluid is p(x, t) and µ is its viscosity. Since shear stress in the sediment matrix
is assumed to be negligible, the effective stress is given by the tensor σeff = −psδ,
where ps is effective pressure within the sediment matrix of solid particles.

Assume the domain G in RN is contained in the sediment basin. Let T > 0 and
set GT = G× (0, T ). The compaction model is given by the system

∂ρfφ

∂t
+ ∇ · (ρfφvf ) = ρfF,(3a)

∂ρs(1− φ)

∂t
+ ∇ · (ρs(1− φ)vs) = 0, and(3b)

φ(vf − vs) = −K(φ)

µ
∇p in GT .(3c)

The conservation of fluid is (3a), the conservation of solid is (3b), and (3c) is Darcy’s
law for the flow of fluid relative to the solid. Adding the two conservation equations
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gives

(4) ∇ · (φvf + (1− φ)vs) = F in GT

for the composite flow rate v ≡ φvf + (1− φ)vs. Assume this is irrotational. Then it
can be determined from (4) by solving a Neumann problem for ∆f = F with normal
composite flux ∇f ·n = v ·n known on the boundary to get v = ∇f . This yields the
composite volume flow rate

(5) φvf + (1− φ)vs = ∇∆−1F.

From (3c) and (5) we obtain

vs =
K(φ)

µ
∇p+ ∇∆−1F,

and inserting this into (3b) yields the porosity-pressure equation

(6)
∂φ

∂t
−∇ · (1− φ)

K(φ)

µ
∇p = ∇ · (1− φ)∇∆−1F .

(See equation 7.250 in [26].) The effective pressure of the solid shares the load of the
overburden pressure P with the fluid pressure, so we have

(7) P = p+ ps = p− σ.

Following [44], we substitute the Kelvin–Voigt visco-elastic stress-porosity constitu-
tive relation (2) with (7) into (6) to obtain the partial differential equation (1) for
the evolving porosity in the sedimentary basin. See [27] for discussion of elastic com-
paction, [25] for viscous compaction, and [55] for a model with visco-elastic rheology
of Maxwell type. The one-dimensional case of (1) was obtained for slow compaction
in [56]. A further approximation was made there by which (1) was replaced by a
weakly damped wave equation.

We shall denote by κ(φ) = (1 − φ)K(φ)
µ the coefficient arising in the porosity-

pressure equation (6). Since the grains cannot fit together perfectly, the porosity has
a positive lower bound, and it is bounded well below 1 since we are in the region of
sediment. We show that the solution remains within an interval [k, k̄] ⊂ (0, 1) when
∇P = 0 and F (·) = 0. Thus we assume in the following that κ(·) is bounded to an
interval (κ0, κ1) with 0 < κ0 ≤ κ1.

1.3. Laboratory scale models. It remains a challenge to design experiments
to study poroelastic deformations in the laboratory. When the fluid pressure exceeds
intergranular stresses in the solid, the stored energy is negligible. Since fluid pres-
sure must be comparable to the elastic modulus of the solid structure in order to
store elastic energy, the experiment requires either very high pressures or a very soft
medium. This limitation was circumvented in [51] by using soft open-cell polymer
foams. For the one-dimensional case these were modeled as poroelastic (η = 0 in (2))
and numerically simulated. The results were in agreement with the experiment when
small initial compactions were used. Since the model predictions were less accurate
for larger initial compactions, it was expected that omitted viscous lubrication forces
had become significant during the more rapid compaction. More recently, the visco-
elastic deformations of a soft granular structure have been remarkably recorded by
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injecting fluid into a layer of spherical particles confined between glass plates. These
experiments exhibit striking poroelastic phenomena at low pressures [33]. The high
resolution imaging and particle tracking enabled experimental observation of the full
deformation field, illustrating visco-elastic response as well as hysteresis. A linear
continuum model of the same type as (1) captures major macroscopic features of the
deformation.

1.4. The plan. We provide below an independent study particularly directed
toward (1). The results here are most closely related to those of [12], but here we
develop them directly without recourse to interpolation theory. In section 2 we will
show that I+ηAu is invertible, and in section 3 we develop continuity properties of the
resolvent J(u, f) = (I + ηAu)−1f that will be used in section 4 to establish existence
of a solution to the initial-boundary-value problem for (1). When u0 ∈ L2(G), a
solution is obtained with u(t) ∈ L2(G) for 0 ≤ t ≤ T ; see Theorem 23. If additionally
∇u0 ∈ L2(G0) for some measurable G0 ⊂ G, then ∇u(t) ∈ L2(G0) for 0 ≤ t ≤ T ,
and if u0 has a jump along a submanifold in G, the jump is maintained there by the
solution u(t) at every t ∈ [0, T ]; see section 5.

2. The elliptic operator. We shall start by fixing some notation. Let G be
a smoothly bounded region in R3 and denote its boundary by Γ = ∂Ω . We will
make use of the Lebesgue space Lp(G) of pth power summable functions, the cor-
responding Sobolev space Wm,p(G) of functions which with derivatives up to order
m belong to Lp(G) and the spaces C(Ḡ), C1(Ḡ) of uniformly continuous functions
or functions with derivatives in C(Ḡ), respectively. The reader is referred to any of
[1, 2, 48] for definitions and properties of these spaces. Mostly we use only the Hilbert
spaces L2(G), H1(G), H1

0 (G) and the dual space H−1(G) = H1
0 (G)′. We shall denote

corresponding spaces of vector-valued functions taking values in the Hilbert space H
by C([0, T ],H), L2((0, T ),H), H1((0, T ),H). In particular, we will use the notation
(·, ·) for the scalar product in L2(G). We use ‖ · ‖L2 to represent the norm of L2(G)
as well as the product space (L2(G))N . It should be clear from context which is being
used.

Let κ : R → R be a continuous function such that κ0 ≤ κ(s) ≤ κ1 with κ0 > 0.
For a measurable function u, consider the bilinear form

au(v, w) =

∫
G

κ(u(x))∇v(x) · ∇w(x)dx, v, w ∈ H1
0 (G).

Since κ is continuous and bounded, we have κ(u) is in L∞(G) for each measurable
function u. Thus, the bilinear form au(·, ·) is continuous on H1

0 (G) ×H1
0 (G). From

the definition of the weak derivative, the corresponding linear operator Au : H1
0 (G)→

H−1(G) given by Auv(w) = au(v, w) is the elliptic operator in divergence form

Auv = −∇ · κ(u)∇v

that arises in the partial differential equation (1). Equation (1) corresponds to κ(φ) =

(1− φ)K(φ)
µ . We note that I + ηAu is invertible and develop continuity properties of

the resolvent J(u, f) ≡ (I + ηAu)−1f .

Lemma 1. Let the measurable function u on G and η > 0 be given. The map
I + ηAu : H1

0 (G) → H−1(G) is an isomorphism, bounded in norm by max{1, ηκ1},
and the norm of (I + ηAu)−1 is at most 1/min {1, ηκ0} in L(H−1(G), H1

0 (G)). In
particular, the bounds are independent of the choice of u. Moreover, (I + ηAu)−1 :
L2(G)→ L2(G) is a contraction.
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Proof. From the calculation

((I + ηAu)v, w) = (v, w) + ηau(v, w) ≤ max {1, ηκ1} ‖v‖H1 ‖w‖H1

we get the upper bound, and the lower bound follows from

min{1, ηκ0} ‖v‖2H1 ≤ ‖v‖2L2 + ηκ0 ‖∇v‖2L2 ≤ (v, v) + ηau(v, v).

It follows from the Lax–Milgram theorem that the operator is an isomorphism. The
upper bound on the norm of (1 + ηAu)−1 follows directly. Finally, (I + ηAu)−1 is a
contraction on L2(G) as

‖v‖2L2 ≤ (v, v) + ηau(v, v) = ((I + ηAu)v, v) ≤ ‖(I + ηAu)v‖L2 ‖v‖L2

for all v ∈ H1
0 (G). The result extends to all of L2(G) by density.

We turn to the dependence of J(u, f) on u.

Lemma 2. Fix f in H−1(G) and u1, u2 measurable. Then we have

‖J(u1, f)− J(u2, f)‖H1 ≤ C ‖(κ(u1)− κ(u2))∇J(ui, f)‖L2 , i = 1, 2,

where C depends only on η and κ0.

Proof. Let v1 = J(u1, f), v2 = J(u2, f). For all w in H1
0 (G) we have

(v1 − v2, w) + η (κ(u1)∇v1 − κ(u2)∇v2,∇w) = 0.

Adding η(κ(u2)∇v1 − κ(u2)∇v1,∇w) and rearranging show

(v1 − v2, w) + η (κ(u2)∇(v1 − v2),∇w) = η ((κ(u2)− κ(u1))∇v1,∇w) .

Set w = v1 − v2 and note that κ0 ≤ κ(u2) everywhere to get

‖v1 − v2‖2L2 + ηκ0 ‖∇(v1 − v2)‖2L2 ≤ η ((κ(u2)− κ(u1))∇v1,∇(v1 − v2)) .

By applying the Cauchy–Schwarz inequality and ab ≤ 1
2

(
εa2 + ε−1b2

)
for a, b, ε

positive, we obtain

η ((κ(u2)− κ(u1))∇v1,∇(v1 − v2))

≤ η
2ε ‖(κ(u2)− κ(u1))∇v1‖2L2 + ηε

2 ‖∇(v1 − v2)‖2L2 ,

and combining this with the above and rearranging gives

‖v1 − v2‖2L2 + η(κ0 − ε
2 ) ‖∇(v1 − v2)‖2L2 ≤ η

2ε ‖(κ(u2)− κ(u1))∇v1‖2L2 .

Now take ε = κ0 and set

C2 = η
2κ0 min{1,ηκ0/2} = max

{
η

2κ0
, 1
κ2
0

}
to get the desired result for i = 1. The case i = 2 is identical.

This leads to an additional estimate and a continuity result.
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Proposition 3.
1. For f1, f2 in H−1(G) and u1, u2 measurable, we have

‖J(u1, f1)− J(u2, f2)‖H1

≤ C ‖(κ(u1)− κ(u2))∇J(ui, fi)‖L2 + ‖J(ui, f1 − f2)‖L2 , i = 1, 2,

with C as in Proposition 2. In particular, if f1, f2 are in L2(G), we then have

‖J(u1, f1)− J(u2, f2)‖H1 ≤ C ‖(κ(u1)− κ(u2))∇J(ui, fi)‖L2 + ‖f1 − f2‖L2

for i = 1, 2.
2. For each f in H−1(G), the map J(·, f) : L2(G) → H1

0 (G) is continuous.
More generally, if un converges to u in measure, then J(un, f) converges to
J(u, f) in H1

0 (G)

Proof. The first follows from the estimate

J(u1, f1)− J(u2, f2) = J(u1, f1)− J(u2, f1) + J(u2, f1)− J(u2, f2)

with Lemmas 1 and 2.
Since convergence in L2 implies convergence in measure, we only need to show

the latter to prove (2). Thus, we suppose un converges to u in measure and define
v = J(u, f), vn = J(un, f). From Proposition 2, we have the estimate

‖v − vn‖H1
0
≤ C ‖(κ(un)− κ(u))∇v‖L2 .

Recall that convergence in measure guarantees that for any subsequence {unk} of
{un}, we can find a further subsequence {unkj } such that unkj (x) → u(x) almost

everywhere. By the continuity of κ, we can conclude that κ(unkj (x)) converges to

κ(u(x)) almost everywhere. Further, we have∣∣∣κ(u(x))− κ(unkj (x))
∣∣∣ ‖∇v(x)‖RN ≤ 2κ1 ‖∇v(x)‖RN ,

where the right-hand side is a square-integrable function. By applying Lebesgue
dominated convergence, we can conclude that

lim
k→∞

∥∥∥v − vnjk∥∥∥H1
≤ C lim

k→∞

∥∥∥(κ(u)− κ(unkj ))∇v
∥∥∥
L2

= 0.

As this can be done for every subsequence, we can thus conclude that vn converges
to v in H1 norm. That is, J(un, f) converges to J(u, f) in H1

0 (G).

Next we show that J(·, ·) : L2(G)×H−1(G)→ H1
0 (G) is jointly continuous.

Proposition 4. Suppose un, fn converge to u, f in L2(G) and H−1(G), respec-
tively. Then J(un, fn) converges to J(u, f) in H1(G).

Proof. We have

‖J(u, f)− J(un, fn)‖H1 = ‖J(u, f)− J(un, f) + J(un, f)− J(un, fn)‖H1

≤ ‖J(u, f)− J(un, f)‖H1 + ‖J(un, f − fn)‖H1

≤ ‖J(u, f)− J(un, f)‖H1

+ ‖J(un, ·)‖L(H−1,H1
0 ) ‖f − fn‖H−1 .
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Note that the first term is known to go to zero by Proposition 3. Further, the second
term goes to zero, since ‖J(un, ·)‖ is uniformly bounded by some constant C ′. Thus
we have

lim
n→∞

‖J(u, f)− J(un, fn)‖H1 = 0,

which is the desired result.

Corollary 5. Fix f in H−1(G). The range of J(·, f) : L2(G) → L2(G) is
precompact. More generally, the set J(L2(G), B) is precompact in L2(G) for any set
B bounded in H−1(G).

Proof. We know that J(L2(G), B) is a bounded set in H1
0 (G). As the inclusion

map from H1
0 (G) to L2(G) is compact, this set is precompact in L2(G).

We recall the Schauder fixed point theorem. We note in passing that it implies
the map J(·, f) has a fixed point for each f .

Theorem 6 (Schauder). Let X be a Hausdorff topological vector space with non-
empty, closed, convex subset K. If T : K → K is continuous and T (K) is contained
in a compact subset of K, then T has a fixed point.

Corollary 7. For every f in H−1(G), there exists a u0 in L2(G) such that
u0 = J(u0, f). This solution is characterized by

u0 − η∇ · κ(u0)∇u0 = f in G,

u0 = 0 on ∂G.

Proof. For f in H−1(G), the map u 7→ J(u, f) is a continuous map on L2(G)
with range contained in a compact set. Schauder’s fixed point theorem then gives the
result.

Of course, this result is not at all optimal. In fact, one can resolve uniquely the
more general boundary-value problem

β(u0) ∈ H1
0 (G), u0 −∆β(u0) 3 f in H−1(G),

where β(·) is a maximal monotone graph [15, 48]. For the special case in which
β is also Lipschitz continuous, we have ∆β(u0) = ∇ · β′(u0)∇u0, and this recovers
Corollary 7.

3. The integral equation. We shall write the initial-boundary-value problem
for (1) in the form

(8) u′(t) +Au(t)(ηu
′(t) + α(u(t)) + P (t)) = ∇ · (1− u(t))∇∆−1F (t), u(0) = u0,

as an equation in H−1(G). At almost every t ∈ (0, T ) we have a Dirichlet boundary
condition on ηu′(t) + α(u(t)) + P (t) ∈ H1

0 (G), the fluid pressure, whereas the initial
value is prescribed for the porosity, u(t). By adding 1

η (α(u(t)) + P (t)) to both sides,
applying the resolvent, and then integrating, we obtain the integral equation

(9) u(t) + 1
η

∫ t

0

[α(u(s)) + P (s)] ds

= u0 +

∫ t

0

(I + ηAu(s))
−1
(

1
η (α(u(s)) + P (s)) +∇ · (1− u(s))∇∆−1F (s)

)
ds.
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When u0 ∈ L2(G), we shall show that there exists a function u ∈ H1((0, T );L2(G))
that satisfies (9), and we will henceforth refer to such a function as a solution to the
integral equation. It is also a solution of (8) obtained from (9) by differentiation.
The advantage of (9) is that the right side contains the elliptic resolvent operator in
spatial variables and the left side involves an ordinary differential equation in time.
This separation will be exploited throughout this section. Note, however, that the
ordinary differential equation and the elliptic resolvent operator are independently
nonlinear.

Our assumptions are as follows
(A1) κ : R → R is continuous, and there are constants κ0 and κ1 such that 0 <

κ0 ≤ κ(ξ) ≤ κ1 for all ξ in R.
(A2) α : R → R is continuous with affine bound and there exists k ∈ R such that

α+ kI is monotone.
(A3)

∥∥∇∆−1F (t)
∥∥
L∞
≤ C(t), where C(t) is integrable.

(A4)
∫ T

0
‖P (t)‖2L2 dt <∞.

The growth assumptions in (A2) are equivalent to requiring that α satisfy

|α(ξ)| ≤ Kα(|ξ|+ 1), ξ ∈ R, and(10a)

(α(ξ1)− α(ξ2))(ξ1 − ξ2) ≥ −k(ξ1 − ξ2)2, ξ1, ξ2 ∈ R.(10b)

The second condition (10b) follows if either α is monotone (k=0) or if α is Lipschitz
(with Lipschitz constant k > 0). In particular, it gives that α is a sum of a monotone
function and a Lipschitz function. Furthermore, it is readily checked that assump-
tion (A3) gives ∇ · (1− u)∇∆−1F (t) ∈ H−1(G) for all 0 ≤ t ≤ T and u in L2(G).

3.1. The elliptic resolvent operator. First we consider the integral operator
Q with integrand Q defined respectively by

Q(v)(t) =

∫ t

0

Q(v)(s)ds,

Q(v)(s) = J
(
v(s), 1

η (α(v(s)) + P (s)) + ∇ · (1− v(s)∇∆−1F (s)
)

for v in L2((0, T );L2(G)).

Proposition 8. The map Q : L2((0, T );L2(G))→ L2((0, T );H1
0 (G)) is bounded

and continuous.

Proof. Recall that the norm of the linear operator J(v, ·) : H−1(G) → H1
0 (G) is

uniformly bounded by a constant C ′. From the definition of J , we have

‖Q(u)(t)‖H1
0
≤
∥∥∥J(u(t), 1

η (α(u(t)) + P (t)) +∇ · (1− u(t))∇∆−1F (t))
∥∥∥
H1

0

≤ C ′
[

1
η ‖α(u(t)) + P (t)‖L2 +

∥∥∇ · (1− u(t))∇∆−1F (t)
∥∥
H−1

]
≤ C ′

[
1
η

(
‖P (t)‖L2 +Kα

(
‖u(t)‖L2 +m(G)1/2

))
+ C(t) ‖1− u(t)‖L2

]
.

That is, ‖Q(u)(t)‖H1
0

is dominated by a square-integrable function.

Further, we have that if un(t) converges to u(t) for each t, then Q(un)(t) converges
to Q(u)(t) for each t. This follows as a consequence of the continuity of v 7→ α(v) :
L2(G) → L2(G), ∇· : (L2(G))N → H−1(G) and the joint continuity of J . By
applying dominated convergence in L2((0, T );H1(G)), we have that Q(un) converges
to Q(u).
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Corollary 9. The integral operator Q : L2((0, T );L2(G))→ H1((0, T );H1
0 (G))

is bounded and continuous.

This is immediate from Q(v)(t) =
∫ t

0
Q(v)(s)ds.

3.2. The pointwise integral equation. We begin the second step by consid-
ering the remaining part of the integral equation (9), i.e., we replace Q(u) with a
prescribed v. This leads to the integral equation

(11) u(t) + 1
η

∫ t

0

(α(u(s)) + P (s)) ds = u0 + v(t), 0 ≤ t ≤ T,

where u0 is in L2(G), v is in H1((0, T );H1
0 (G)), and P satisfies assumption (A4).

Then u = W (v) defines the function

W : H1((0, T );L2(G))→ H1((0, T );L2(G)).

Since α + kI is continuous and monotone and v ∈ H1((0, T );L2(G)), the integral
equation (11) is equivalent to the initial-value problem

(12) u′(t) + 1
η (α(u(t)) + P (t)) = v′(t), u(0) = u0 + v(0),

for which there exists a unique solution u ∈ H1((0, T );L2(G)). This follows much
more generally by Brezis’ theorem for evolution equations with operators which are
subgradients of convex functions. (See Theorem III.3.6 and Proposition 3.12 in [14]
or Theorem IV.4.3 in [48].)

The first properties of W will follow from elementary Grönwall inequalities.

Lemma 10. Suppose that g(t) satisfies g(t) ≤
∫ t

0
a(s)g(s)ds+ h(t) with a(t) posi-

tive. Then g(t) also satisfies the estimate

g(t) ≤ h(t) +

∫ t

0

h(s)a(s)e
∫ t
s
a(τ)dτds

for all t. Additionally, if a(t) and h(t) are bounded, then

g(t) ≤ ‖h‖L∞(0,t) exp
(
t ‖a‖L∞(0,t)

)
.

Corollary 11. The map W satisfies the bounds

‖W (v)(t)‖L2 ≤ eKαt/η
(
‖v‖C([0,T ];L2) +H(t)

)
,

where H(t) = 1
ηKαm(G)1/2t + ‖u0‖L2 + 1

η

∫ t
0
‖P (s)‖L2 ds. Consequently, W is a

bounded map on C([0, T ];L2(G)).

Proof. Repeated use of the triangle inequality together with assumption (A2)
gives

‖W (v)(t)‖L2 ≤ Kα
η

∫ t

0

‖W (v)(s)‖L2 ds

+ ‖v(t)‖L2 + 1
ηKαm(G)1/2t+ ‖u0‖L2 + 1

η

∫ t

0

‖P (s)‖L2 ds.

The result follows from Lemma 10.
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The following is a special case of Lemma IV.4.1 in [48].

Lemma 12. Let k ∈ R, b(·) ∈ L1(0, T ) with b(t) ≥ 0, and let the absolutely
continuous w : [0, T ]→ R satisfy

1
2w
′(t) ≤ k w(t) + b(t)w

1
2 (t), t ∈ [0, T ].

Then

w
1
2 (t) ≤ w

1
2 (0)ekt +

∫ t

0

ek(t−s)b(s) ds, t ∈ [0, T ].

We obtain fundamental local estimates for (12).

Theorem 13. For v1, v2 in H1((0, T );L2(G)) and P1, P2 in L2((0, T );L2(G)),
let u1, u2 in H1((0, T );L2(G)) be corresponding solutions of (12). Then for each
measurable G0 ⊂ G we have

(13) ‖u1(t)− u2(t)‖L2(G0) ≤ e
k
η t ‖u1(0)− u2(0)‖L2(G0)

+

∫ t

0

e
k
η (t−s)

(‖v′1(s)− v′2(s)‖L2(G0) +
1

η
‖P1(s)− P2(s)‖L2(G0)) ds, 0 ≤ t ≤ T.

Proof. Taking the difference of the equations (12) gives

u′1(t)− u′2(t) + 1
η (α(u1(t))− α(u2(t))) = 1

η (P2(t)− P1(t)) + v′1(t)− v′2(t)

pointwise a.e. in G. Multiplying the difference above by u1(t)−u2(t) and using (10b)
lead to

(u′1(t)− u′2(t))(u1(t)− u2(t)) ≤ k
η (u1(t)− u2(t))2

+
(

1
η (P2(t)− P1(t)) + v′1(t)− v′2(t), u1(t)− u2(t)

)
,

and we integrate this over G0 and apply the Cauchy–Schwarz inequality to get

1
2

d

dt
‖u1(t)− u2(t)‖2L2(G0) ≤

k
η‖u1(t)− u2(t)‖2L2(G0)

+
∥∥∥ 1
η (P2(t)− P1(t)) + v′1(t)− v′2(t)

∥∥∥
L2(G0)

‖u1(t)− u2(t)‖L2(G0) .

The estimate (13) follows from Lemma 12.

The following theorem lists consequences of Theorem 13 on the map W , which
uses the case where P1(t) = P2(t) = P (t) and G0 = G.

Theorem 14. The map W satisfies the following:
• W is a bounded map on H1((0, T );L2(G)),
• W : H1((0, T );L2(G))→ C([0, T ];L2(G)) is continuous, and
• for v1, v2 in H1((0, T );L2(G)), we have

(14) ‖W (v1)(t)−W (v2)(t)‖L2 ≤ ‖v1(0)− v2(0)‖L2 e
k
η t

+

∫ t

0

e
k
η (t−s) ‖v′1(s)− v′2(s)‖L2 ds, 0 ≤ t ≤ T.
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Proof. This follows much more generally for evolution equations with maximal
monotone operators as indicated above. For the special case considered here, we give
the estimates independently.

That W is bounded from C([0, T ];L2(G)) to itself follows from Corollary 11,
and so W is bounded from H1((0, T );L2(G)) to L2((0, T );L2(G)). Since u = W (v)
satisfies (12), we have

‖u′(t)‖L2 ≤ 1
η

(
Kα(‖u(t)‖L2 +m(G)1/2) + ‖P (t)‖L2

)
+ ‖v′(t)‖L2(G) .

Equation (14) follows from Lemma 13. Continuity follows from the estimate (14).

We shall establish conditions that prove that W is a compact map when the
initial data belongs to H1(G). To this end, for each δ > 0 define Gδ ≡ {x ∈ G :
dist(x, ∂G) > δ}. Let v be a function in L2(G), and for each h ∈ R with |h| < δ define
a translate of v by

(15a) (τhv)(x1, x2, . . . , xn) ≡ v(x1 + h, x2, . . . , xn), x ∈ Gδ,

and the corresponding difference quotient by

(15b) ∇hv ≡ 1
h (τhv − v)

if h 6= 0. The following two results are well known and are used to establish compact-
ness of the operator.

Lemma 15. For δ > 0, we have for all v ∈ C1(Ḡ)

‖∇hv‖L2(Gδ)
≤ ‖∂1v‖L2(G) , 0 < |h| < δ.

Corollary 16. For each v in H1(G), limh→0(∇hv) = ∂1v in L2(Gδ) for every
δ > 0.

Lemma 17. Let u0 ∈ H1(G), P ∈ L2((0, T );H1(G)), and v ∈ H1((0, T );H1
0 (G)).

Then u = W (v) ∈ H1((0, T );L2(G)) with ∂1u ∈ C([0, T ];L2(G) and satisfies the
estimate

(16) ‖∂1u(t)‖L2(G) ≤ ‖u(0)‖H1(G) e
k
2 t

+

∫ t

0

e
k
2 (t−s)

(
‖v′(s)‖H1(G) +

1

η
‖P (s)‖H1(G)

)
ds, 0 ≤ t ≤ T.

Proof. Apply Theorem 13 to τhu(x, t) and u(x, t) and divide by h > 0 to obtain

‖∇hu(t)‖L2(Gδ)
≤ ‖∇hu(0)‖L2(Gδ)

e
k
2 t

+

∫ t

0

e
k
2 (t−s)

(
‖∇hv′(s)‖L2(Gδ)

+
1

η
‖∇hP (s)‖L2(Gδ)

)
ds

≤ ‖u(0)‖H1(G) e
k
2 t

+

∫ t

0

e
k
2 (t−s)

(
‖v′(s)‖H1(G) +

1

η
‖P (s)‖H1(G)

)
ds.

Hence, for each t > 0, {∇hu(·, t) : |h| < δ} is bounded in the Hilbert space L2(Gδ).
There is a sequence hn → 0 for which ∇hnu(t) converges weakly in L2(Gδ). But
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∇hnu(t) converges weakly to ∂1u(t), so the uniqueness of weak limits implies that
∂1u(t) ∈ L2(Gδ) and the original sequence converges weakly to ∂1u(t). Take the
lim inf as h goes to 0 to get ‖∂1u(t)‖L2(Gδ)

bounded by the right side of (16). Then
let δ → 0.

Theorem 18. Suppose that u0 is in H1(G) and P ∈ L2((0, T );H1(G)). Then
W : H1((0, T );H1

0 (G))→ C([0, T ];H1(G)) satisfies the estimate

(17) ‖∇W (v)(t)‖L2(G) ≤ K ‖u0‖H1(G) e
k
2 t

+K

∫ t

0

e
k
2 (t−s)

(
‖v′(s)‖H1(G) ds+

1

η
‖P (s)‖H1(G)

)
ds,

so it is a bounded map.

Proof. Lemma 17 holds with corresponding estimates for ∂2, . . . , ∂N , and so we
obtain the gradient estimate (17) for u = W (v).

Corollary 19. If u0 ∈ H1(G), then the map

W : H1((0, T );H1
0 (G))→ C([0, T ];L2(G))

is compact.

Proof. This follows from Theorem 18, Theorem 14, and the Aubin–Lions–Simon
lemma [50].

4. Existence of a solution. We will demonstrate that the integral equation (9)
has a solution by showing the existence of a fixed point for the map u 7→W (Q(u)) in
L2((0, T );L2(G)) if the ellipticity coefficient κ(·) is bounded as in assumption (A1).
Then we establish estimates on the solution that show this coefficient satisfies those
bounds in the case of (6) when F (·) = 0.

4.1. The fixed point. We use the Schaefer fixed point theorem to establish the
existence of a fixed point (see [32, p. 242]).

Theorem 20 (Schaefer fixed point). Suppose that X is a Banach space, and T :
X → X is a continuous compact map. If the set

{x ∈ X : x = λT (x) for some λ ∈ [0, 1]}

is bounded, then T has a fixed point.

Proposition 21. Suppose that u0 is in H1(G). Then W◦Q : L2((0, T );L2(G))→
L2((0, T );L2(G)) is compact and continuous.

Proof. By Corollary 9, Q : L2((0, T );L2(G)) → H1((0, T );H1
0 (G)) is continuous

and bounded. By Corollary 19, we have W : H1((0, T );H1
0 (G)) → L2((0, T );L2(G))

is continuous and compact. It follows that the composition is then continuous and
compact.

Proposition 22. For u ∈ L2((0, T );L2(G)), suppose u = λW (Q(u)) for λ ≥ 0.
Then u satisfies the estimate

‖u(t)‖L2 ≤ hλ(t)e
∫ t
0
aλ(s)ds,
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where

hλ(t) = λ ‖u0‖L2 + 2λKα
η m(G)1/2t+ λ

∫ t

0

(
2
η ‖P (s)‖L2 +Km(G)1/2C(s)

)
ds,

aλ = (1+λ)Kα
η +KC(s).

Consequently, the set {u : u = λW (Q(u)) for some 0 ≤ λ ≤ 1} is a bounded subset of
C([0, T ];L2(G)).

Proof. For λ = 0, there is nothing to prove. Otherwise, we have

1
λu(t) + 1

η

∫ t

0

[
α( 1

λu(s)) + P (s)
]
ds

= u0 +

∫ t

0

J
(
u(s), 1

η (α(u(s)) + P (s)) +∇ · (1− u(s))∇∆−1F (s)
)
ds.

Taking the norm of both sides gives

‖u(t)‖L2 ≤ λ ‖u0‖L2

+ λ
η

∫ t

0

∥∥α ( 1
λu(s)

)
+ P (s)

∥∥
L2 ds

+ λ

∫ t

0

∥∥∥J (u(s), 1
η (α(u(s)) + P (s)) + ∇ · (1− u(s))∇∆−1F (s)

)∥∥∥
L2
ds.

By assumption (A2) and Lemma 1, we get

‖u(t)‖L2 ≤ λ ‖u0‖L2 + λ
η

∫ t

0

Kα

(
1
λ ‖u(s)‖L2 +m(G)1/2

)
ds+ λ

η

∫ t

0

‖P (s)‖ ds

+ λ

∫ t

0

( 1
η

(
Kα

(
‖u(s)‖L2 +m(G)1/2

)
+ ‖P (s)‖L2

)
+K

∥∥∇ · (1− u(s))∇∆−1F (s)
∥∥
H−1)ds.

Here, K = ‖J(u, ·)‖L(H−1,L2). After simplifying, this becomes

‖u(t)‖L2 ≤ λ ‖u0‖L2 + 2λKα
η m(G)1/2t+ λ

∫ t

0

(
2
η ‖P (s)‖L2 +Km(G)1/2C(s)

)
ds

+

∫ t

0

(
(1+λ)Kα

η +KC(s)
)
‖u(s)‖L2 ds.

Applying Grönwall’s inequality finishes the proof.

As seen in the proof, u = W (Q(u)) is the form solutions must take.

Theorem 23. Suppose that u0 is in L2(G). Then there exists a solution to
(9) in H1((0, T );L2(G)). It is given by a fixed point u = W (Q(u)) with Q(u) ∈
H1((0, T ), H1

0 (G)) and W defined by (12), and it satisfies

ηu′ + α(u) + P ∈ L2((0, T );H1
0 (G)).

Proof. Assume that u0 ∈ H1(G). By applying the Schaeffer fixed point theorem
in L2((0, T );L2(G)), we see there exists a u ∈ L2((0, T );L2(G)) satisfying (9). But
then v = Q(u) and u = W (v) are necessarily in H1((0, T );L2(G)).
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For u0 ∈ L2(G), let un0 ∈ H1(G) be a sequence with ‖un0 − u0‖L2(G) → 0 with
un the corresponding solutions to (9) with initial data un0 . Then the previous propo-
sition guarantees that {un} is a bounded subset of C([0, T ];L2(G)). This implies
that {Q(un)} is a bounded subset of H1((0, T );H1

0 (G)) and is thus a compact sub-
set of C([0, T ];L2(G)). Furthermore, we also have that W (Q(un)) is bounded in
H1((0, T );L2(G)). Together, this lets us take a subsequence

{
Q(unj )

}
and a function

v ∈ H1((0, T );L2(G)) such that
∥∥v −Q(unj )

∥∥
C([0,T ];L2(G))

→ 0 and Q(unj ) ⇀ v in

H1((0, T );L2(G)). We now let w = W (v) ∈ H1((0, T );L2(G)) with initial condition
w(0) = u0. We will show that unj (t) → w(t) in L2(G) and v = Q(w). To simplify
notation, we rename our subsequence to uj .

For the former, we multiply ‖w(t)− uj(t)‖2L2 by the scaling factor e−2kt/η and
differentiate. We then have, by assumption (A2) and the definition of w and uj , that

d

dt
e−2kt/η ‖w(t)− uj(t)‖2L2

= 2e−2kt/η
(
w′(t)− u′j(t)− k

η (w(t)− uj(t)), w(t)− uj(t)
)

≤ 2e−2kt/η
(
w′(t)− u′j(t) + 1

η (α(w(t))− α(uj(t))), w(t)− uj(t)
)

= 2e−2kt/η (v′(t)−Q(uj)(t), w(t)− uj(t)) .

Integration then gives

‖w(t)− uj(t)‖2L2 ≤ ‖u0 − un0‖
2
L2

+ 2

∫ t

0

(
v′(s)−Q(uj)(s), e

2k(t−s)/η(w(s)− uj(s))
)
ds.

If we apply integration by parts to this last term, we have∫ t

0

(
v′(s)−Q(uj)(s), e

2k(t−s)/η(w(s)− uj(s))
)
ds

=
[(
v(s)−Q(uj)(s), e

2k(t−s)/η(w(s)− uj(s)
)]s=t

s=0

−
∫ t

0

(
v(s)−Q(uj)(s), e

2k(t−s)/η((w′(s)− u′j(s))− 2k
η (w(s)− uj(s)))

)
ds.

We have that Q(uj) converges to v uniformly and that the terms on the right of the
inner product are bounded in L2((0, T );L2(G)). We can thus conclude the limit of
the integral on the right is 0, and so limj→∞ ‖w(t)− uj(t)‖L2 = 0 uniformly. It then
follows that Q(uj)→ Q(w).

Uniqueness of limits then gives Q(w(t)) = v, and so w = W (v) = W (Q(w)),
which is the desired result.

4.2. The estimates. In this subsection, we show that when the overburden
pressure P is independent of space and there are no fluid sources, the solution u(t)
will remain strictly within the unit interval, so assumption (A1) holds. In particular,
we show that if the initial porosity u0 is bounded between k and k̄, then so is the
solution u(t).

Theorem 24. Assume that α is monotone (nondecreasing) with α(0) = 0. Also
assume that the overburden pressure, P , is independent of x, and that F ≡ 0. If both
u0(x) ≤ k̄ for all x and −P (t) ≤ α(k̄), then u(t, x) ≤ k̄ for all x ∈ G, t ≥ 0. If
k ≤ u0(x) for all x and α(k) ≤ −P (t), then we have k ≤ u(t, x) for all x ∈ G, t ≥ 0.
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Proof. The previous section establishes that there exists a u in H1((0, T );H1
0 (G))

such that
u′(t) +Au(t)(ηu

′(t) + α(u(t)) + P (t)) = 0.

Let A(t) ≡ Au(t) and σ(t) = ηu′(t) + α(u(t)). Rearranging this formula gives

u′(t) + 1
η (α(u(t))− σ(t)) = 0,

which can be substituted into our solution to give

A(t)(σ(t) + P (t))− 1
η (α(u(t))− σ(t)) = 0.

Multiplying these latest two equations by sgn+(α(u(t))−α(k̄) and sgn+(σ(t)−α(k̄)),
respectively, adding and integrating give

d

dt

∫
G

(u(t)− k̄)+dx

+ 1
η

∫
G

(α(u(t))− σ(t))(sgn+(α(u(t))− α(k̄))− sgn+(σ(t)− α(k̄)))dx

+ 1
η

∫
G

A(t)(σ(t) + P (t)) sgn+(σ(t)− α(k̄))dx = 0.

The monotonicity of sgn+ and α(·) makes the integrand of the second integral non-
negative. For the third integral, we consider replacing sgn+ by its Yosida approxima-
tion, sgn+

ε . We then have that σ(t, x) = −P (t) ≤ α(k̄) on the boundary as σ(t)+P (t)
is in H1

0 (G). This gives us that sgn+
ε (σ(t)−α(k̄)) vanishes on the boundary. As σ+P

is in H1
0 (G) and P is constant with respect to x, we have σ is in H1(G). Furthermore,

as sgn+
ε is Lipschitz, we can conclude that our composition is sufficiently smooth to

be in H1(G), and so vanishing on the boundary gives that it is in H1
0 (G). We then

have ∫
G

A(t)(σ(t) + P (t)) sgn+
ε (σ(t)− α(k̄))dx

=

∫
G

κ(u(t))∇(σ(t) + P (t)) ·∇ sgn+
ε (σ(t)− α(k̄))dx

=

∫
G

κ(u(t))(sgn+
ε )′ |∇σ(t)|2 dx ≥ 0.

By taking the limit as ε decreases to 0, we see that the third integral is nonnegative.
The only term left is the first integral. When integrated with respect to t, we have∫

G

(u(t)− k̄)+dx ≤
∫
G

(u0(x)− k̄)+dx = 0.

It follows with (u(t)− k̄)+ ≥ 0 that it must vanish, so we can conclude that u(t) ≤ k̄,
completing the result for this inequality.

For the other inequality, replace sgn+ in the previous with

sgn−(ξ) =

{
0, ξ > 0,

−1, ξ ≤ 0.

The change in direction of the inequality follows from the change the sign changes
introduced by sgn−.
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This tells us that if there exist constants k, k̄ such that 0 < k ≤ u0(x) ≤ k̄ < 1,
then we have 0 < k ≤ u(t, x) ≤ k̄ < 1 for all x ∈ G, t ≥ 0. In particular, an initial
condition that represents a porosity will lead to a solution that represents a porosity.

The importance of the assumptions on fluid source term and pressure are physi-
cally meaningful as well, as an unconstrained pressure or fluid could force our model
to no longer be applicable.

5. Regularity. In this section, we will show that assumption (A2) gives us in-
formation on how discontinuities of the initial condition propogate.

5.1. Local regularity. Let u0 ∈ L2(G) and u = W (v) ∈ H1((0, T );L2(G)),
v = Q(u) ∈ H1((0, T );H1

0 (G)) be the corresponding solution obtained above as a
fixed point. Theorem 18 implies that if u0 ∈ H1(G) and P ∈ L2(0, T ;H1(G), then
u ∈ C([0, T ];H1(G)). Moreover, local versions of this result follow similarly from
Theorem 13.

Let G0 be an open subset of G. We define

H1
j (G0) = {v ∈ L2(G0) : ∂jv ∈ L2(G0)}, j = 1, 2, . . . , N.

Let u0 ∈ L2(G). For each δ > 0 denote as before G0,δ = {x ∈ G0 : dist(x, ∂G0) > δ},
the subset of points bounded away from ∂G0. If additionally u0 ∈ H1

j (G0), we follow
the proof of Lemma 17 and apply (13) to the appropriate difference quotient on the
set G0,δ as before to get

(18) ‖∂ju(t)‖L2(G0,δ)
≤ ‖∂ju(0)‖L2(G0) e

k
2 t

+

∫ t

0

e
k
2 (t−s)

(
‖∂jv′(s)‖L2(G0) +

1

η
‖∂jP (s)‖L2(G0)

)
ds, 0 ≤ t ≤ T.

Then we let δ → 0 to get the corresponding bound on ‖∂ju(t)‖L2(G0) for j =

1, 2, . . . , N . This is summarized in the following.

Theorem 25. Let G0 be an open domain contained in G. Let u0 ∈ L2(G) and
u = W (v) ∈ H1((0, T );L2(G)) with v = Q(u) ∈ H1((0, T );H1

0 (G)) be the correspond-
ing solution obtained in Theorem 23. For each j = 1, 2, . . . , N , if u0 ∈ H1

j (G0) and

P ∈ L2(0, T ;H1
j (G0)), then u = W (v) ∈ C([0, T ];H1

j (G0)). Likewise, if u0 ∈ H1(G0)

and P ∈ L2(0, T ;H1(G0)), then u ∈ C([0, T ];H1(G0)).

These results show that regularity in individual directions is preserved up to
H1(G), locally as well as overall in G. In the next section we show that discontinuities
along interfaces are preserved, so such interfaces are necessarily autonomous.

5.2. Perseverence of interfaces. Assume that G is the interior of the closure
of two disjoint bounded domains G1, G2 in RN with corresponding piecewise C1

boundaries ∂G1, ∂G2 which intersect in a C1 manifold of dimensionN−1. By a change
of variable, we may assume that ∂G1 ∩ ∂G2 is flat, that is, G1 = {x ∈ G : x1 < 0}
and G2 = {x ∈ G : x1 > 0}. On the common boundary, ∂G1 ∩ ∂G2, the respective
unit outward normals are n1 = −n2 = (1, 0, . . . , 0).

Denote the corresponding continuous trace maps by γi : H1(Gi) → L2(∂Gi),
i = 1, 2. We can identify each v ∈ H1(G) as an element of H1(G1) ⊕ H1(G2) via
restrictions, v = [v1, v2] ∈ H1(G), vi = v|Gi with γ1(v1) = γ2(v2) on ∂G1 ∩ ∂G2.
Conversely, [v1, v2] ∈ H1(G1) ⊕ H1(G2) belongs to H1(G) if γ1(v1) = γ2(v2) on
∂G1 ∩ ∂G2.
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Let Γ be a relatively open domain in the flat interface ∂G1 ∩ ∂G2 such that
Γ̄ ∩ ∂G = ∅, and define the space

H1
Γ(G) ≡ {v ∈ H1(G1)⊕H1(G2) : γ1(v1) = γ2(v2) on ∂G1 ∩ ∂G2 ∼ Γ}.

Then we have the saltus or jump on Γ of v ∈ H1
Γ(G) given by the trace difference

sΓ(v) = (γ1(v1)− γ2(v2))|Γ. By construction sΓ : H1
Γ → L2(Γ) is a continuous linear

map, and its kernel is H1(G). Finally, we note that each trace map γi agrees with the
trace map γ : H1(G)→ L2(∂G) on ∂G ∩ ∂Gi, i.e., γ(v) = γi(vi) on this intersection,
for i = 1, 2 and v ∈ H1(G).

For v ∈ H1(Gi), we define the translate and difference on L2(Gi,δ) by (15), but
only for h < 0 if i = 1 and only for h > 0 if i = 2. These correspond to the forward
translate and backward difference operators on G1. Likewise, they are the backward
translate and forward difference operators on G2. The proof of Lemma 15 yields the
following.

Lemma 26. For i = 1, 2 if v ∈ L2(Gi) and ∂1v ∈ L2(Gi), then

‖∇hv‖L2(Gi,δ)
≤ ‖∂1v‖L2(Gi)

for those h of appropriate sign and 0 < |h| < δ. For each v in H1(Gi), the corre-
sponding one-sided limit satisfies limh→0(∇hv) = ∂1v in L2(Gi,δ) for each δ > 0.

Theorem 27. Assume that G is constructed from the two disjoint bounded do-
mains G1, G2 as above. Let u0 ∈ L2(G) and u = W (v) ∈ H1((0, T );L2(G)) with
v = Q(u) ∈ H1((0, T );H1

0 (G)) be the corresponding solution obtained in Theorem 23.
If u0 ∈ H1

Γ(G) and P ∈ L2(0, T ;H1(G)), then u = W (v) ∈ C([0, T ];H1
Γ(G)). The

boundary trace satisfies the initial-value problem

(19a) η(γu)′(t) + α((γu)(t)) + γP (t) = 0, (γu)(0) = γu0 in L2(∂G),

and the saltus satisfies

(19b) (sΓu)′(t) + 1
η sΓ(α(u(t))) = 0 in L2(Γ)

for 0 ≤ t ≤ T .

Proof. Let u = W (Q(u)) with u0 in H1
Γ(G). Then as previously argued, we have

u is in C([0, T ];H1
Γ(G)). The continuity of α gives γiα(u(t)) = α(γiu(t)), and so

(γiu)′(t) + 1
η (α(γiu(t)) + γiP (t)) = γiQ(u)(t), i = 1, 2.

These give (19a) on ∂G, and by taking the difference of the equations for i = 1 and
i = 2 on Γ we obtain (19b) since Q(u)(t) ∈ H1(G).

The solutions of the pointwise equations (19) can be easily estimated.

Corollary 28. The saltus satisfies the estimate

|sΓu(t)| ≤ e
k
η t |sΓu0| .

If additionally for fixed K ∈ R, α satisfies

(20) (α(ξ1)− α(ξ2))(ξ1 − ξ2) ≤ K |ξ1 − ξ2|2 , ξ1, ξ2 ∈ R,

then

|sΓu(t)| ≥ e−
K
η t |sΓu0| .
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Proof. By our assumption (10b) on α, we have

(sΓα(u(t)))(sΓu(t)) ≥ −k sΓu(t)2,

so multiplying (19b) by (sΓu(t)) gives

1
2
d
dt (sΓu(t))2 = − 1

η (sΓα(u(t)))(sγu(t)) ≤ k
η sΓu(t)2.

This gives the first estimate. The second estimate follows similarly from (20).

From (19a) similar estimates hold as well for the trace, γu(t). Note that if α is
Lipschitz continuous, then (10b) and (20) follow and both of the estimates hold. In
this case, a discontinuity in the initial porosity is maintained and may grow or decay
at most exponentially. If α is strongly monotone (k < 0), then any discontinuity
introduced in the initial porosity decays exponentially. Finally, we note that if α is
monotone, then (20) is equivalent to α being Lipschitz.
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[14] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973.
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