VIBRATION OF A SHAPE MEMORY ALLOY WIRE

K.-H. HOFFMANN! AND R.E. SHOWALTER?

1. Introduction.
We shall prove local-in-time existence of the unique solution of an initial-boundary-value
problem for the nonlinear system

(11&) Vit — (,Uq’U;,;t + T(a Uy, Ua;t) RU:)::I::):) - fl (377 t)
(1.1.b) Ut — (%(9,%) + /1'2ua:t):1: = fg(.’L',t)
(1.1.e) — 9(1[)9 (0, uw))t — k(alys 4 02) 0 = p1v2; + pou?, + R(vges)? + f3(z,t)

in which g1, p2, @, k and R are positive numbers, T'(0,e,n7) = T1 + 9:(0,¢) + pan, and
the function (6, €) has the special structure to be specified below. The partial differential
equations (1.1) are to hold in a region 0 < z < £, 0 < t < Ty, and we require the solution
to satisfy the boundary conditions

(1.2.a) ©v(0,t) =v,(0,t) =0, wv(lt)=v,({,t)=0,
(1.2.b) u(0,t) =u(£,t)=0,
(1.2.c) —k0,(0,¢) +k1(0(0,¢) — g1(t)) =0, Kkb5(€,t) + k1 (0(4,t) — g2(t)) =

for 0 < t < Ty and the initial conditions

(1.3.a) v(z,0) =vo(z) , ve(z,0) =v1(z),
(1.3.b) u(z,0) = ug(z) , u(z,0) =usi(z),
(1.3.¢) 0(x,0) = bo(x)

for0 <z < /.

In Section 2 we shall describe how such a system arises as a thermomechanical model
for a vibrating wire composed of shape memory alloy. There v(z,t) represents the vertical
displacement of the wire, u(z,t) is the horizontal displacement, and 6(z,t) is the absolute
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temperature. The major difficulties in the resolution of this system arise from the non-
convex character of the free energy function ¥ (6, €) which defines the material. The strictly
positive numbers p1, pe2, @ permit the estimates which make the problem tractable. These
can be identified as viscosity coefficients in the model and they distinguish it from a highly
nonlinear system consisting of a beam equation, a wave equation, and a parabolic equation.
All three of these viscosity terms will be used in essential ways below.

The vibration problem considered here arises from the mathematical modeling of the
dynamics of martensitic transformations in a shape memory alloy. These are diffusionless
solid state phase transitions due to a deformation of the crystal lattice and which pro-
duce a substantial macroscopic stain as well as a remarkable shape memory phenomenon.
Nickel-titanium alloys known as nitinol provide examples of such material, exhibiting an
impressive shape memory effect by recovering over 8% strain through heating and being
able to deform at 50% of fracture strain. We shall adopt the continuum model for such
phase transitions as developed in [2], [6], [8], [9], [5], and this model is incorporated in
(1.1.b) and (1.1.c). Results from numerical simulations have demonstrated that these two
equations reproduce the experimentally observed phase transitions, and further numerical
experiments on the full system (1.1) have rather dramatically illustrated the exchange of
energy due to the phase transitions in the material induced by the strain vibration and
heat generated by flexing of the wire.

We shall use the following notation for the function spaces in which we work. The
continuous dual space of a Banach space B is denoted by B'; £(B;,By) denotes the Banach
space of (uniformly) bounded operators from B; to B;. For each p, 1 < p < oo, we
denote by LP(0, £) the space of p‘® Lebesgue-integrable (equivalence classes of) real-valued
functions on the interval (0, ) for p < oo and the essentially bounded functions on (0, £)
for p = co. If k > 0 is integer, then W*P(0,4) is the space of those functions which
together with all distributional derivatives through order k belong to L?(0, £). In particular,
WO%P(0,£) = LP(0,£). For the Hilbert space case, p = 2, we also denote W*2(0,/) by
H*(0,£), and we let HE(0,£) be the subspace of those functions in H¥(0,£) for which all
derivatives through order k — 1 vanish at the endpoints, 0 and £. The dual of H}(0,£) is
traditionally denoted by H~1(0,£), and we shall do so here. We shall often suppress the
mention of the interval (0, /) and write these spaces as LP = LP(0,£), Wk»? = Wk-»(0, £),
H* = H*(0,¢), Hf = HE(0,¢) and H~! = H~1(0,4). Finally, if B denotes a Banach
space, we have similar constructions for B-valued functions on the interval (0,7}), and
these spaces of vector-valued functions are denoted by LP(0,Tp;B), W1P(0,Ty;B) and
HF(0,Ty; B). See [1] or [7] for information on these Sobolev spaces.

Now we can present our existence results for the system (1.1), (1.2), (1.3) together
with the statement of hypotheses and an indication of the roles played by these various
assumptions. The formal proof will be given in Section 3.

Consider the system (1.1) for which we assume the following:

A1 Each of the constants u1, ps, «, k and R is positive.
A, The function ¢ belongs to C*(Rx R) and there are constants C and 6, > 0 for which
Yg(0,e) = 0 for 6 < O,; we have the estimates

- 9¢99(9;5) 2 0 ) |02¢96(076)| S C|€| ’
pe(8,€)| < Clel,  [Yhee(b,6)| < C for 6 >0, ;
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and

| / 62gse (0, ) d| < Cle] .
s
A3 The function T is given by
T(97 &, 77) = Tl + ¢6(97 6) + 2t

where T7 is a given constant.
A4 The (input) functions in (1.1) satisfy

fi€ H(0,1; H(0,0)) ,

f2 € L?(0,1; L*(0,£)) n H*(0,1; H(0,4)) ,
f3 € L?(0,1; L*(0,£)) + L>=(0,1; L*(0,4)) ,

and f3 is non-negative.

A5 The data in the boundary conditions (1.2) satisfies k& > 0 and g1,g2 belong to
H'(0,1) with g/(t) > 0 a.e. and g;(t) > 0, for t € [0,1], j = 1,2.

Ag The initial data in (1.3) satisfies

Vg € Hg((),é) , V1 € H&(O,K) ,
ug € H?(0,4) N H}(0,2) , uy € H}(0,4) ,
0o € H*(0,£) , 6Oo(x) >0, for = €[0,4].

Theorem. From the assumptions A,1-Ag it follows that there exists a unique solution of
the system (1.1), (1.2), (1.3) on some time interval (0,Tp), where 0 < Top < 1, and this
solution satisfies

(1.4.a) v € WhH(0,To; HY) N W2°°(0, To; L?) N W22(0, To; HY)
(1.4.b) u € H?(0,Ty; Hy) N H(0, Ty; H?)
(1.4.c) 0 € H'(0,Ty; H?)

Remarks. 1. The positivity of the viscosity coefficients is absolutely crucial for the esti-
mates obtained for this problem.

2. The structural assumptions differ from those of [8], [6] only for very large and very
small temperature and for very large strain. Thus from the physical viewpoint we have
the same model. It is noteworthy that the non-negativity of the coefficient of 6; in (1.1.c)
is assumed here, and this prevents this parabolic component of the system from becoming
backward-in-time, a rather unrealistic situation that had to be reckoned with in [8].

3. Although the addition of uy > 0 appears essential for the estimates obtained from
(1.1.b), its appearance in (1.1.a) through the tension T'(6,¢€,n) requires more regularity of
u than was available in previous works.
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2. The Model.

We show that the nonlinear system of partial differential equations (1.1) provides a
model for the vibration of a thin wire composed of a shape memory alloy. The material
undergoes structural phase transitions which affect the tension and stiffness of the wire and
which lead to hystereses. The internal heat created by these vibrations in turn modifies the
temperature dependent stress-strain relationship for the alloy. Our objectives here include
the following:

e Describe the internal dynamics of the material with the general theory of structural
phase transitions due to Landau [5], specifically with the Landau-Devonshire potential for
the Helmholtz free energy. This thermodynamic potential is a (non-convex) function of the
temperature f and the order parameter ¢ (= strain) by which the phases are recognized.
The model equations are obtained from foundations of thermodynamics-mechanics and are
not ad-hoc constructions to match observed phenomena.

e Formulate the model to permit external time-dependent sources of heat, stress or
displacement in horizontal or vertical directions. Such inputs will provide various strategies
to control or stabilize the structure and to activate the phase transitions.

e Restrict the methods to those which might apply to higher dimensional situations in
which a membrane or solid has been reinforced with fibers of the shape memory alloy. Thus
the results and techniques may be directly applicable to these more general situations.

The state of the system is given by the thermodynamic temperature, 6(z,t), the horizon-
tal displacement, u(x,t), and the vertical displacement, v(z,t), where position is denoted
by 0 < z < £ and time by ¢t > 0. The vertical stress at a point on the wire is given by the
classical linear combination

T'U.'E - (Rvmx)m + H1Ugt

where T is the tension in the wire, R > 0 is rigidity, and p; > 0 is the apparent viscosity
due to vertical strain rate. Since we assume |v,| < 1, the vertical component of tension is
approximated by

_ Y= ~ Ty, .
V1402

The rigidity R results in a difference of the bending moments over an interval [z, 23] which
gives in the limit the upward force

T

RUmz (-7:1) - szm (:B2)

T2 — T1

= (_vaa:)w

distributed over the interval. The segment [z, z2] has its length changed due to vertical
displacement by the amount

/2(\/1+v§—1)dx2/2%(v$)2da:

which represents stored energy, and the internal friction generates a force piv,: due to
this length-rate-of-change. (This term provides a source of internally generated heat; the
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rate-of-change of bending moment is another such source.) Combining the above effects
to balance the linear momentum, we obtain

(2.1.3,) (p'Ut)t = (Tva: - (va$)w + vawt)m +pf1 -

This equation is linear in v, but 7" and R are material properties which depend on the
temperature and strain,

T=T(,ee) , R=R(0,e),

in a highly nonlinear fashion to be described below.

The macroscopic behavior of a shape memory alloy is determined by the crystal lattice
structure at the microscopic level. A single lattice particle has either of two equilibrium
configurations, a highly symmetric austenitic form or the two twining martenistic forms
obtained as sheared structures. The internal dynamics of the alloy are determined by a
thermodynamic potential 1)(6,e) which characterizes the material. Equilibrium states of
the system at a given temperature # are determined by the minimum of (0, -). In order
to describe the shape-memory alloy, this potential should have the following properties:

e at low temperatures, 6 < 61, (0, -) has two symmetric minima,
e at somewhat higher temperature, 6, < 6 < 03, ¥ has two symmetric and one central
minima,
e and at yet higher temperature, 5 < 6, only the central minimum remains.
A typical progression of such curves is shown below.

0 < 6, 01 <0 <0y 0y < 6

The simplest form for ¢ which fulfills the preceding required conditions is the Landau-
Devonshire potential

(2.2) ¥(0,€) = %o(0) + ¢1(0)e” + 2(0, )

in which 9g(0) = ag(f — 01n6) represents pure heat conduction, v (0)e? = a1(0 — 61)e?
gives rise to the shape memory, and ¥5(0,e) = —aze* + a3e® accounts for a nonlinear
elasticity. Such a form is the simplest in structure which is capable of reproducing all
of the required shape-memory effects. Here we follow [9] and permit the last term to be
temperature dependent and alter the structural assumptions on (2) from those of [8], [6]
only for very large or very small temperatures and for large strain. Thus in the region
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in which shape-memory effects are to be found, we have the very same model from the
physical viewpoint.

The free energy functional (2.2) corresponds to the autonomous situation with no load.
The response of the autonomous system to a change of the order parameter € is the
quasiconservative component of stress

and the dissipative part of the stress is given by puse;, where p is the density and po is the
viscosity arising from an internal dissipation proportional to the rate-of-change of strain.
The strain is assumed linearly related to the horizontal displacement u(z,t) by

€=Uy ,

so we consider only the case |e| < 1. Thus the balance of (linear) horizontal momentum
requires that

0 ou
(2.1.b) 5 (pg> = 05+ (ppoct)s + pf2

where fs is the distributed horizontal load.
For the balance of mass we have

dp
-£ =0.
i P

If, in addition, we assume p is independent of temperature, p = p(g), then we obtain

p = poexp(—e) ,

and for small ¢ we may assume p = pg is constant. Hereafter we shall set p = 1.
The response of the system to a change of temperature is given by the entropy, —1iy,
and the corresponding internal energy of the system is

(2.4) e=1— 0y .
The conservation of internal energy leads to

Oe
(2.5) 9 = U + (0 + p2es)er + fa+ p1(vat)® + R(vgat)?
where q is the heat fluz, f3 is a distributed heat source, o¢; arises from internal heating
due to rate of increase of 1(0, €) at constant temperature, and p2e? accounts for the heat
generated due to the internal motion.
For the heat flux we assume the constitutive equation

(2.6) q=—k(0+ ab),



VIBRATION OF A SHAPE MEMORY ALLOY WIRE 7

in which k is conductivity and a > 0 corresponds to the characteristic delay time of a
short thermal memory. Such constitutive laws arise in the work of Gurtin and Chen [4];
see also [3]. In such a model there is a conductive temperature, ¢, possibly different from
the thermodynamic temperature, 6, and the conservation of energy is given by the pair of
equations

1 1
0;+—(0—¢)=0 —(p—0) — (kpg)s =
chy+ (0 —¢) v =) = (kee)a = f
in which cf is the stored energy, ¢ = —k¢, is the heat flux, and é(ﬁ — () is the rate of
exchange of heat energy between these two temperature fields. Thus the thermodynamic

temperature 6 follows the conductive temperature ¢ according to its recent history,

0(t) = i/ e e o(s)ds .

co J_ o

By eliminating ¢ one obtains the effective flux in terms of thermodynamic temperature as
postulated above in (2.6). Also we note this system is equivalent to the pseudoparabolic
fissured medium equation [11],

c6’t - aketm - k@m = f .
An application of the chain rule to (2.4) shows

et = g0y + Yeer — 01hor — O11hg

from which we cancel the first and last terms to obtain

er = —0(Yg)r + Vet -

The conservation equation (2.5) then can be written as

(2.1.c) —0(2hg)t = =G + p2e? + p1(vat)? + R(vaat)® + f3 -

To complete the system it remains only to specify T'(6,¢) and R(6,€). Since we consider
only small vibrations with |v;| < 1, the tension in the wire will be approximated by the
horizontal forces

(21d) T(H, g, St) =T+ ’lﬁs(e, 8) + UoUgy

obtained as the sum of the applied load 77 and the local stress o + pse; due to local
expansion (2.3) and to expansion rate. Finally, for the existence-uniqueness theory to be
developed here we shall assume the rigidity is constant, R(6,¢) = R.

3. The Proofs.

Our plan is to resolve the system (1.1), (1.2), (1.3) by obtaining the solution as the
fixed point of a mapping which is a contraction on appropriate spaces for a sufficiently
small time interval, [0, Ty]. The strategy is to iterate between the single viscoelastic beam
equation (1.1.a) and the system of thermomechanical state equations (1.1.b), (1.1.c) in
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order to exploit the linear structure of the former and the known estimates from [8], [9]
for the latter.

We consider (1.1.a) as an abstract wave equation in the form

(3.1) b(t) + Bo(t) + A(t)v(t) = f(t)

in a triple of Hilbert spaces V <— W < H. Here each space is dense and continuously
imbedded in the following one, and we identity H = H' by the Riesz map, so we also have
H — W' < V' by restriction. The operators in (3.1) are given with

Be LWW') , A®)eL(V,V), 0<t<T,

so B corresponds in examples to a partial differential operator of order less than that of
A, and the equation (3.1) holds in V.

Lemma 1. Assume A(t) is a regular [10] family of symmetric operators with,

At)o(v) > cllvlly, ,  veV,
IA Oy <g(t), ae t€[0,1],
Bu(w) > ellwllyy, ,  weWw

withe >0, ¢c> 0 and g € L*(0,1). Then for each triple
fer?0,;W), weV, veH
there exists a unique solution v of (3.1) and v(0) = vg, 0(0) = v, satisfying

veL®0,1;V), ©eL®0,1;H)NL*0,1;W) .

Proof. The essential estimate for this result is obtained by applying (3.1) to 2v(t) to get

B0 + AvO(w(0)} + 2Bi0)(6(0) = 21 (110 (1) + A (B)o(H)(w(1))
from which we obtain the inequality
o'(6) + ello@)y < IFOI + o))

in which o(t) = [0(¢)|% + A(t)v(t)(v(t)). This Gronwall inequality yields the estimate
which leads by standard techniques to the desired result [7].



VIBRATION OF A SHAPE MEMORY ALLOY WIRE 9

Lemma 2. Assume in addition that
A Ol evwn < GR),  ae te(0,1]
with G € L?(0,1). Then if
feHY 0, ;,W), v, €V, Bv+ A(0)vy — f(0) € H
it follows that the solution v satisfies

€ L>®(0,1;V), ¥eL*®0,1;H)NnL*0,1;W) .

Proof. Proceeding formally, differentiate (3.1) to see that w = v satisfies
W+ B+ At)yw = f — A'(t)v .
Just as in Lemma 1 we obtain
o'(0) + il < ~9@o(t) + = (1l + GOl lzeey)”
and this leads by the Gronwall inequality to the desired estimates on ©(¢). This provides
the basis for the desired result by standard arguments as before.

Consider two solutions, v1,ve of (3.1) corresponding to A;(t), Ax(t) in the situation of
Lemma 2. Then their difference v = v; — v9 and its derivative w = v satisfy

b+ Bo 4+ Ay (t)v = (A2(t) — As(t))vs ,
W+ Bu + Ajw = (A5 () — AL (2))va + (A2(t) — A1(2)) 02 — AL(E) (v) ,

so we obtain estimates as above which show the following.

Lemma 3. In the situation of Lemma 2, the mapping A — w : HY(0,1; L(V,W")) —
L>(0,1;V) is Lipschitz.
At

Remark. Suppose that B is symmetric. By making the change-of-variable v — e™"'v,
f e 2 fin (3.1), it follows that the preceding results all hold if we replace B by B+ 2\
and A by A+ A\B + A\2I in the hypotheses.

Next we turn to the pair of equations (1.1.b), (1.1.c) with their corresponding boundary
and initial data in (1.2) and (1.3). The local existence of solutions to this pair of equations
was proved in [8] by the construction of a very special Galerkin approximation, and the
uniqueness was established in [6]. Alternatively, one can consider a linearization of this
pair in the form

(323) Ut — H2Uggt = d’s(éa ’aa:)a: + f2(wa t) )
(3.2b)  — Otee(0, iz)0s — k(0Bat + 00) 0 = pi2ti2, + Ooe (0, tig)iar + f3(z, 1)

where 0(x,t), @(x, t) are given. It can be shown by standard but tedious arguments that the
mapping @,  — u, § is a contraction on the spaces determined by the a-priori estimates of
[8], but only for a short time interval, [0, Tg]. Moreover, in the situation of our assumptions
A;1-Ag, global-in-time a-priori estimates were obtained in [9] for the solution of (3.2) with
0 =0, 4=u, (see (3.3) below) and these yield from above the existence of a unique global
solution of this pair. We summarize the essential results from [9] with some modifications

necessary for our purposes here.
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Lemma 4. Assume Ay, Ay, Ay—Ag. Then there exists a unique solution
uw€ H*(0,1; H)n H'(0,1; H?) , 0 € H'(0,1; H?)
of the system

.3.a) Ut — U2Ugzt = %(9, uw)w + f2('7"’ t)
(3.3.b) — 0(g(0,us)), — k(abgt + 05)z = poul, + f3(z,t)

satisfying (1.2) and (1.3).

Proof. According to the main result of [9] we obtain a solution v € H'(0,1; H} N H?) N
C'(0,1; H'). The additional estimates needed to get u € H?(0,1; H}) then follow as in
Lemma 2 above. The assumption in [9] was that f3 € L2(0,1; L?). However, by modifying
the procedure there to treat f3 similar to the way the term pou2, was handled there, it
follows that we may obtain the same estimates if f3 € L°°(0,1; L1).

Corollary. There is a function K : Ry — Ry and a number Ty, 0 < Ty < 1, such that
the solution u, 0 of (3.3) with initial and boundary data from (1.2) and (1.3) satisfies

lullx + 110]ly < K (]| f3]|z,)
and the mapping fs — u,0 of Zy = L>°(0,Ty; L') + L%(0,Tp; L?) into X x Y with
X = H*(0,To; HY) N HY(0,To; H*) , Y = H'Y(0,Ty; H?)

1s a strict contraction.

Finally we set up the mapping whose fixed-point will yield the desired solution of (1.1),
(1.2), (1.3). Define the space Z = W1°(0,Tp; V) with 0 < Ty < 1. Note that in the
situation of Lemma 2, the solution of (3.1) belongs to Z. Now choose V = HZ(0,4) and
consider the mapping of Z = W1:%°(0, Ty; H2) into L>(0,Tp; L') given by

w > powr, + Rwl,, + fs .

This mapping is Lipschitz continuous on bounded sets. Thus, for each w € Z we can by
Lemma 4 uniquely solve (3.3) with “f3” replaced by “pow?2, + Rw2,, + f3” as suggested
by (1.1.c), and the mapping

w—u,0: 7 —-XxY

is Lipschitz on bounded sets. Moreover, it is a contraction for Tp > 0 chosen sufficiently
small, and we denote this mapping by §: Z — X x Y, i.e., S(w) = [u, 0].

Consider the mapping 7 : X x Y — H(0,Ty; L?) suggested by the tension-coefficient
in (1.1.a): 7 (u,0) = a, where

(34) G,(CU, t) = T(ea Uy, U’wt) - Tl + ¢6(07 uw) + HoUgt -

It is straightforward to check that this mapping is Lipschitz on bounded sets.
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In order to recover the equation (1.1.a) with boundary conditions (1.2.a) from the
abstract evolution equation (3.1), we choose W = H}(0,4) and define

¢
(3.5.a) Bu(y) = ,ul/ VW) dx | v,p e W
0

£
(35b) A(t)v(@b) = / {a(xﬁt)vw¢w + R'U:cac'@bmx} d:[; ) /Ua/Qb € V ’ 0 S t S TO )
0

where the coefficient a(z, t) is chosen according to (3.4) in H'(0, Tp; L?). Then the inclusion
B € L(W,W') is clear and the W-coerciveness follows by Poincaré’s inequality. The
corresponding results are not quite so easy for the operators A(t).

Lemma 5. There is a A > 0 for which A(t) + A\B is V -coercive, uniformly in t.

Proof. The difficulty is that a(x,t) as given by (3.4) is not uniformly lower-bounded; the
pivotal term is ug; € H'(0,Ty; L?) N L2(0, To; H'). From (3.5.b) we have

A(t)v(v) > Rllveslz> — lla(; t)llz2]lvgllze
= Rl[vzallz2 — lla(-; t)l|z2[|vel|Zs

and we know that ||a(-,¢]| < as < co. The space H is compactly imbedded in Wy,
which in turn is continuously imbedded in H}. Thus, there is a constant C(R,a,) for
which

R
tool|velzs < S llvaallzz + C(R, aco)llvellz= , veEV,

S0 we obtain R
A(t)v(v) + C(R, aco)Bu(v) > 5llvmll%z , vEV,

as desired.

Note that C(R, aw) depends on the norm of a(-, ) in L>(0, Ty; L?), and this is bounded
for a(-,-) chosen by (3.4) with u,6 bounded in X x Y. In order to apply Lemma 2, we
compute

Y/
A (B () = /O 0z, ) v tby da

and note that
ag = ¢599t + wesgt + UoUgyt € L2 (07 TO; L2) .

Again, the last term is pivotal, and the indicated norm of a; is bounded by that of u, 6 in
X x Y. Using the estimate

[ve]lLee < lvllmz ,  veV,

we obtain || A'()| zcv,w) < llag(-,t)]|z2 and hence Lemma 2 applies. Thus, we have shown
that the function W : H'(0,Ty; L?) — Z defined by W (a) = v, where v is the solution of
(3.1) with operators chosen by (3.5), maps bounded sets into bounded sets. It follows from
Lemma 3 that it is Lipschitz on bounded sets, and one can check that it is a contraction
for Ty sufficiently small. In summary the composition Wo 7T oS : Z — Z has a unique
fixed point for T sufficiently small, and this is the desired solution of (1.1), (1.2), (1.3).
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