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DIFFUSION IN FISSUREDMEDIA*

MICHAEL BOHM" AND R. E. SHOWALTER

Abstract. The nonlinear initial-boundary value problem

0u 1
0--" +-- (a(.)-- v) --fl,

u(x,O)=uo(x inG,

-div(kgradv)+l (v-a(u))=f2 in G(O,T),

v(s,t)=O on[GX(O,r)

is a well-posed model of diffusion in a fissured porous medium. Special features of the solution include the
perseverance of local spatial continuity or singularities in the concentration u, the instantaneous propagation
of the partially-saturated region throughout G, the delayed and limited advance of the fully-saturated region
into G, and the concentration discontinuity on the boundary of the fully-saturated region. Weak maximum
and order-comparison principles are obtained as L and L estimates on a solution and a difference of
solutions, respectively.

1. Introduction. Our objectives here are to derive a system of partial differential
equations as a model for nonstationary flow of a fluid through a fissured porous
medium, to demonstrate that the appropriate initial-boundary-value problem is
mathematically well-posed, and to describe special features of such a flow model which
distinguish it from the classical porous medium equation. The system obtained is
actually equivalent to a single evolution equation, the fissured medium equation, which
can be regarded as a regularization of the porous medium equation. Also, the porous
medium equation is known to be the homogeneous limit of the fissured medium
equation with increasing degree of fissuring [7].

Section 2 contains the derivation of the system of differential equations for flow in
fissured media. Initially we follow [1], where only a special linear case was considered,
but we include in our model the nonlinearities arising from fluid type (liquid or gas),
concentration (porosity, absorption or saturation), and the exchange rate [6], [11]. The
essential requirement is that the fluid be compressible. The considerably more difficult
case wherein permeability is concentration-dependent will be discussed in [2]. We
briefly describe an analogous heat conduction model. In 3 we show the Cauchy
problem for the fissured medium equation has a unique generalized solution and we
give weak maximum and order-comparison principles in the form of L and L
estimates. In contrast to the case of (possibly degenerate) parabolic equations, we find
that for the fissured medium equation the local spatial regularity or a singularity in the
solution is stationary and may persevere for all time. We consider in 4 the evolution of
a system originating with a uniform positive pressure in a portion G’ of G and with null
concentration in the complement of G’ in G. It is shown that the partially-saturated
region expands instantly to all of G, the positive-pressure set is nondecreasing, propa-
gates only after a delay, and an upper bound is given for its measure.
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Our notation is standard. G is a bounded domain in Euclidean space RN, Q G
(0, T) is the indicated space-time cylinder, and OG denotes the boundary of G. LP(G)
and wm’p(G) are the usual Lebesgue and Sobolev spaces, and cm’x(G) is the Schauder
space of functions whose derivatives of order m are HiSlder-continuous with exponent
X, 0 < ?t < 1. For a Banach space B, we let zq(0, T; B) and C(0, T; B) denote the spaces
of q-summable or uniformly-continuous B-valued functions on [0, T], respectively, and
W1’ q(0, T; B) denotes those strongly absolutely continuous functions whose derivatives
belong to zq(0, T; B). The positive and negative parts of uR are given by u/=

max(u, 0) and u- min(u, 0), respectively, so u u / + u- The Heaviside function is
Ho(u)=l for u>0 and H0(u)=0 for u_<0; its maximal monotone extension [3] is
denoted by H(u)= (H0(u)} for u 4:0 and H(0)= [0,1]. Likewise the sign function is
sgno(u)=u/lu for u4:0, sgn0(0)=0, and sgn denotes the maximal monotone exten-
sion. The gradient in R N will be denoted by and similarly - denotes the corre-
sponding divergence operator.

2. Fissured medium equation. We consider the flow of a liquid or gas through a
fissured porous medium, a structure consisting of porous permeable blocks separated
by a system of fissures. The distribution of fissures prevents direct diffusion between
adjacent blocks, and the system of fissures occupies a region of negligible relative
volume. Thus the blocks provide for the local storage of fluid mass, and the fissures are
the essential flow-paths for all the diffusion. The essential point in the construction of
the fissured medium model is to introduce at each point in space two fluid pressures,
the pressure/71 in the blocks and the pressure P2 in the fissures, where each is an
average over a neighborhood which contains a substantial number of blocks.

The fluid under consideration may be any compressible liquid or gas whose
density p and pressure p are related by an equation-of-state t)=s(p) for which the
compressibility satisfies s ’(p) > 0 for p >= 0 and s(0) >= 0. The total concentration of fluid
is given by u P(s( PX)-- S(0) d-(L+ s(0))) where P > 0 is porosity of the blocks, L _>_ 0
is that density of fluid which is immobilized due to absorption or chemical reaction
with the medium, and the saturation level 0 =< =< 1 is that fraction of L + s(0) already
immobilized or absorbed. Note pl(1-)=0 so H(pl), the Heaviside graph. Thus u
is a monotone graph of P whose inverse p et(u) is a monotone function Lipschitz-
continuous with constant K. The medium is completely saturated when u _>_ P(L + s(0)),
hence, 1, and partially saturated (strictly partially saturated) when u > 0 (respectively,
0 < u < P(L + s(0)).)

The exchange of fluid between blocks and fissures occurs with a volume rate per
volume of medium given by (p2-p)/le where/ is the viscosity of the fluid and 1/e is
a characteristic of the medium related to the degree of fissuring or the surface area
common to the blocks and fissures. Thus the mass of fluid which flows from blocks to
fissures per unit time is given by p(p-p2)/te where p is the average density on the
pressure-interval [Pl,P2]- Denoting by S(p) fs(r)dr the antiderivative of s(p), or
"flow potential" [6, p. 60], we have p=(pz-p)-lf2s(p)dp=(p2-Pl)-l(S(p.)
S(pl)). The fluid mass exchanged per unit time is (S(pl)-S(p2))/te. Thus the
continuity equation for conservation of fluid mass in .the blocks gives

3u 1
(2.1) --- + (S( Px)- S(P2)) =fl(x, t),

where fl is the volume-distributed source rate in the blocks.
We shall assume the velocity of the fluid in the fissures is given by Darcy’s law.

Thus, V= -(k/lx)XTp2 where k is the permeability of the system of fissures. The flux in
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the fissures is computed by the chain rule as o2V-- -(k/#)VS(p2). Since the relative
volume of the fissure system is null, the enclosed concentration is negligible and the
conservation of fluid mass in the fissure system gives

(2.2)
1-. 1--x7.k7S(p2)+ (S(P2) S( ))=fE(x,t)_-7 Pl

Heref2 denotes a volume-distributed source rate in the system of fissures.
The porosity and permeability may depend on the pressures. Given the small

volume of the fissures the pressure P2 will not appreciably affect the block porosity, so
we may expect a mild dependence P=P(pl)>O of block porosity on block pressure.
This does not alter the assumptions above on the relationp a(u). Due to the relative
volumes of blocks and fissures, any variation of the fissure permeability is essentially
due to the block pressure P l- This is equivalent to the assumption that the fluid in
fissures does not participate in the support of the structure. In contrast to the slight
variations of k(pl) for P > 0, any swelling of the blocks due to saturation or absorp-
tion of fluid can result in a dramatic decrease of fissure permeability owing to their
relative volumes. This sensitivity of permeability to saturation due to swelling is typical
of consolidated sandstones containing clay or silt [6, p. 13]. We shall account for such
phenomena by setting k=k(u) in (2.2). The function k(.) is continuous, positive and
nonincreasing on 0 _< u; furthermore, the model suggests k(u) is essentially constant for
u >= P(L + s(0)), the saturated zone.

In summary, the process of diffusion in a fissured medium is prescribed by the
system of partial differential equations (2.1), (2.2) with pl=a(u) and k=k(u). The
initial concentration u(x,O)=uo(x) is given over the region G of interest; this is
equivalent to specifying initial block-pressure pl(x) and initial saturation 0(x) with
o(X) H(p(x)). The description is completed by setting fissure-pressure P2 0 on the
boundary of the region G. Note that no boundary conditions are given for Pl, since all
fluid flow in the blocks is accounted for in (2.1), even in a neighborhood of the
boundary. Similarly, the initial pressure distribution in the fissures is determined by
(2.2).

We shall write the above system as a single nonlinear evolution equation. Thus, for
a function u on G of a type made precise below, let Au(v)= -(1//)X7 .k(u)X7v be the
indicated linear elliptic partial differential operator in divergence form subject to null
Dirichlet boundary conditions. By adding (2.1) and (2.2), then substituting (2.2) we
obtain

(2.3) ( I+ qzA ,,( ) "7 +A u(t) ( S( ol( u))) ( I+ el3,au(t) ) fl(t) q-k(t ).

Alternatively, we may resolve (2.2) for S(P2) and substitute in (2.1) to obtain

3u 1 -]-ff- + -g I ( I+ etxA ) S ( ot ( u ) ) f ( ) + ( I+ elZA ) tf2(t )

The equation (2.4) we shall call the fissured medium equation. It is actually equivalent to
the above system. When S(a(u)) is smooth and satisfies the Dirichlet boundary condi-
tion, i.e., belongs to the domain of A,(t), then (2.4) implies the stronger form (2.3). Note
that formally taking e- 0 + in either one leads to the classical porous medium equation

(2.5)
Ou 1-.

V. k(u) S(a(u)) =f +f2
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when L=0 and to the Stefan free-boundary problem in weak form when L > 0. This
corresponds to increasing the degree of fissuring, l/e, and thereby approximating the
homogeneous limiting ease (2.5) [3], [7].

We shall briefly describe an analogous model for heat conduction in a heteroge-
neous medium consisting of two components. This thermal conduction model is form-
ally equivalent to the fissured medium equation. Thus, assume the first component
occurs in small blocks isolated by the second component which is distributed throughout
the medium with negligible measure. We permit the first component material to un-
dergo a phase change as in a Stefan free-boundary problem. A model for the situation
is water (the first component) contained in a metal (second component) structure of
thin walls forming a structure much like an ice-cube tray. Letting T and T2 denote
temperatures (averaged) in the water and metal, respectively, we obtain the system

0--U-u + 1 (T1 T2) =flt e

(2.6) _kATz+I (T2_ T)=f2,
u C(T) +LH( T1).

Here the heat content u is given by the specific heat C(T) in water and the latent heat
L in the melted region (Tx > 0), k is the conductivity of the second component material,
and the heat exchange between water chambers and metal dividers is assumed propor-
tional to the difference of their temperatures. The local description and derivation of
the equations follows exactly as in [13]. This system is formally equivalent to a special
case of (2.1) and (2.2). Unlike the diffusion model, we are interested in temperatures
which are not necessarily nonnegative; these are permitted in our discussion below. A
completely-saturated region in the diffusion model corresponds to a completely melted
or water region (u>__L) in the conduction model, and a strictly-partially-saturated
region corresponds to a region of mush, a mixture of ice and water in equilibrium at the
freezing temperature. As we shall see below, the solution to such a conduction model is
dramatically different from the classical Stefan problem solution. Specifically, (2.6) is
not the Stefan problem for the pseudo-parabolic equation of heat conduction [5] as
given in [8].

3. The Lipschitz case. We begin our discussion of (2.4) by considering the special
case in which k(u) is independent of u but is a function of (x, t) Q. In the diffusion
problem this corresponds to the case of a rigid structure in which the permeability is
not affected by the total concentration (density and saturation). We shall denote by

the indicated elliptic differential operator whose coefficient kL(Q) is assumed to
satisfy O<ko<=k(x,t), a.e. (x,t) Q. In the Banach space LI(G) the domain of A(t) is
dom(A(t))= (v W0’(G): A(t)v LI(G)), where A(t)v is understood in the sense of
distributions. This L-realization of A(t) can be obtained as the Ll-closure of its
restriction to L P(G), 1 <p < + . Each such restriction, including A(t) itself, is a linear
m-accretive operator on the corresponding Banach sapce, LP(G). See [4], [10] for these
and additional properties of these elliptic operators in LP. Here we shall consider the
realization of the fissured medium equation (2.4) in L(G) in the form

(3.1) u’(t)+l--(I-(I+eA(t))-’)a(u(t))=f(t), O<t<T.
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Without loss of generality we have set/=1, S=I, and f(t)=fl(t)+(I+eA(t))-lfz(t)
in LL(G). We assume hereafter that a is a nondecreasing Lipschitz continuous function
on R with a(0)= 0. Thus the substitution operator v a(v) is Lipschitz on each LP(G)
and we easily obtain the following L P-existence-uniqueness result.

LEMMA 1. If uoLP(G) and fLq(O,T; LP(G)), l<=p, q<= +, then there is a
unique u W’ q(0, T; L P(G)) which satisfies (3.1) and u(0)= u 0.

Proof. Since each (l+eA(t))- is a contraction and a(.) is Lipschitz on each
L P(G), it follows that the u-dependence in (3.1) is Lipschitz, uniformly in t. From [12]
it follows that the operator-valued map (I+eA(t))- is strongly-measurable into
oSP(H-(G), H(G)) and an elementary closure argument shows it is strongly-measura-
ble into(L P(G)). The classical successive-approximations finishes the proof.

In order to obtain "pointwise estimates" on solutions of (3.1) we write it in the
form

(3.2) u’(t)+-a(u(t))=-(I+eA(t)) (u(t))+f(t), O<__t<=T.

This splitting of (3.1) displays explicitly its structure as an ordinary differential equa-
tion (in t) and an elliptic partial differential equation (in x). Moreover, it suggests we
consider the ordinary initial-value problem

(3.3) w’(t)+
1-a(w(t))=g(t), O<t<_T, w(0)=w0.

For each g L(0, T) and w0 R there is a unique solution w W’(0, T). If wj(j= 1, 2)
are solutions corresponding to data gs, wd, we subtract the equations, multiply by
Ho(wL(t)-Wz(t)) and integrate to obtain (since (a(%)-a(Wz))Ho(% w2)>0

+= + for[g1 )--g2[w(t)-w2(t)] < [w w] + (s (s)]+ds

Moreover, if each g.jLt(Q) and wLI(G), the above holds for a.e. xG and a
further integration over G yields

[I[W1 (t)-- w2(t )l + [[/)(G) II[Wo WO2]+llLI(G)q-fotll[ gl(S)--g2(s)l+llLl(o)ds, O<t<T.

Thus, the operator W: LI(G)XLX(Q)C(O,T; L(G)) defined by (3.3) with w=

W(wo,g is an order-preserving contraction. The elliptic operator A(t) satisfies a
similar estimate [4, Lemma 3*]

geL!(G),

and trivially so also does a: L(G) LX(G).
The relevance of the preceding remarks is that a solution of (3.1) is characterized

by

(3.4) u W(uo,(1/e)(I+eA)-la(u)+f).
The right side of (3.4) is Lipschitz with an integral bound implying it has a unique fixed
point. This provides an alternate proof of Lemma 1 withp q 1 but, more important,
it yields the following comparison principle.

LEMMA 2. Let u and u z be the respective solutions of the initial-value problem for
(3.1) with data ul),u)L(G) and fl,fzeL(Q). If ulo>=U2o a.e. in G and iffl>=f2 a.e. in

Q, then u u in Q.
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Proof. Forj=l,2, we have uj=lim,_o Uj.(")(u6) in C(0, T; LI(G)) where
=W(uo,(1/e)(I+eA)-la(v)+). The preceding remarks show
whenever v v2 anduu, so he desired follows.

In a similar manner, we can deduce an L estimate on the solution. However, this
procedure is inefficient and does not yield the optimal estimates in either case; these
will be obtained below. Although (3.2) has so far served only to motivate the compari-
son and maximum principles and to provide elementary proofs, it will be used below to
directly obtain very distinctive and surprising results on local regularity of solutions.
All of these we state as follows.
EOM 1. Let { A(t)’O T } be the uniformly elliptic family of elliptic opera-

tors on LI(G) as given above. Suppose e > 0 and a is monotone with a(O)= 0 and Lipschitz
constant K.

(a) For each uoLP(G) and fLq(O,T; LP(G)), lp, q +, there is a unique
solution u wl’q(0, T; Le(G)) of (3.1) with u(0)= uo.

(b) This solution satisfies

and similar estimates for Ilu(t)-II L(G), Ilu(t)ll L(G)"
(C) For j= 1,2 &t uy be the solution with corresponding data u L(G), L(Q).

Then

II[ui(t)-u(t)l+[llzll[u-ugl+lll+’ll[fl(S)-f(s)l+llds, OZtZT,

and similarly for II[u(t)-uz(t)]-[l andll[Ul(t)-u(t)]ll.
(d) Assume p > N/2 and G’ is a subdomain whose closure is contained in G. There

are constants C > O, X > 0 such that

[U(Xl,t)-u(x,t)] +S [Uo(Xl)-uo(xa)] +

+ f(Xl, -f(x, )1 +e + cl xl
Xl,XG’, ONtNT,

and similarly for [u(x,t)-u(x,t)]- andlu(x,t)-u(xa, t)l.
(e) Assume p > N/2, and let x G, v N be a unit vector, and denote the saltus or

jump 4 a Nnction w at x by o(w(x))limhoW(x+hv)-w(x)). Assume there is a
g L(O, T) for which

If(x+hv,t)lSg(t), O<h<ho, ONtNT
and each 4O(Uo(X)), o(f(x,t)) exists. Then o(u(x,t)) exists for each t[O, T] and

o(u(x,tl)+zO(Uo(X))++ o(y(x,sl) ,
o(u(x,t))+ze ’/ O(Uo(X))++ e (f(x s))-ds

with similar estimates for o( u(x, )) and o( u(s, )).
Proof. Part (a) is just Lemma 1. To prove (b) note first that the Yoshida approxi-

mation

(tlL(_(/+(tI-1)
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satisfies the resolvent identity

(1+ XA,(t)) -1= (e/(e + ?t))I + (X/(e + ))(I+ (X + e)A(t)) -1, X>O,

which implies that A(t) satisfies the conditions in [4, Theorem 1]. From (3.1) in L(G)
subtract IIf(t)+ll. and multiply by Ho(u(x,t)-k-JlJf+(s)J}Loods) where k>__0 will
be chosen below. Integrating the product gives

The second term is nonnegative by the fundamental [4, Lemma 2] and the first term is
equal to ,f[u(x,t)-k- f IIf(s)+llds] + dx. Thus we obtain

dx<_ [Uo(X)-kl+dx,

and choosing k--Ilu3l]= proves (b). Part (c) is proved similarly: subtracting (3.1) for
j= 1, 2 and multiplying by H0(u -u2) yields- u:(x,t)-u:(x,t)] +dx+ (t)(a(u:)-a(u:))Ho(u:-u2)dx

The second term is nonnegative as before and this leads to the end of proof of (c).
Consider the situation of part (d). Since the solution u is bounded in LI(G), so

also is a(u) and it follows that v(t)--(l+eA(t))-aa(u(t)) is bounded in a Schauder
space c’x(G ’) [10, p. 192]. Thus, there is a constant C for which

IO(Xl,t)-o(x,t)l <= CllXl-Xlx, xa,x:G’ O<=t<=T.
The splitting (3.2) and the estimates following (3.3) with wj(t)= u(xj, t) lead directly to
the proof of (d).

For (e) we difference (3.2) at x x + hv and x: x and use the preceding estimates
and the Lebesgue theorem to obtain

d 1
-o(u(x,t))+ -o(a(u(x,t)))=o(f(x,t)).e

Since o(a(u))=a(o(u)), the desired estimates follow as above or by Gronwall’s in-
equality. This finishes the proof.

Estimates of the forms in (b) and (c) are known as weak maximum principles and
as comparison principles, respectively. Those given are optimal as can be seen by taking
a-= 0. They imply that nonnegative data yield nonnegative solutions.

If the coefficients k(.,t) and the boundary of G are smooth, then in the situation
of (d) we get v(t) bounded in W2’p(G), hence, in CI’X/2(G). This leads to pointwise
estimates on smoothness of first-order spatial derivatives of the solution. Such estimates
on higher (than first) order derivatives appear to require assumptions on the global
regularity of the data.
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From (d) it follows the solution is exactly as smooth in x as u0(. ) and ff(.,s)ds,
up to Hiblder continuity with constant , in each neighborhood in G. Likewise, (e) shows
any jump discontinuity in data persists at the same point for a positive time interval,
and for all time if o(f-)o(u0)+=0 at that point. This striking persistence of local
regularity is a consequence of the form (3.2) of the fissured medium equation.

We consider the meaning of a jump discontinuity in the solution of (3.1) when the
equation is used as a model for diffusion. First, recall that the variables introduced in
the diffusion model were defined pointwise as averages over a neighborhood of an
idealized variable, e.g., pressure. It follows for an integrable ideal variable that such
averaged variables are necessarily absolutely continuous in their spatial dependence.
Thus within the medium the data and hence the solution are continuous. Second, we
note that a discontinuity in data can be induced by fitting together two regions with
independently prescribed concentration distributions. This discontinuity along the com-
mon interface will then persist on that stationary interface. This is consistent with the
fissured medium diffusion model, because the two regions are coupled only by way of
the fissure system, a relatively weak coupling.

4. Propagation and saturation. We conider now the fissured medium equation
(3.1) and assume for definiteness that a(u)=0 for O<_u<=L and that a(u)> 0 for u> L.
The medium is called partially saturated (or strictly partially saturated) at (x, t) Q if
u(x, t)> 0 (respectively, 0 < u(x, t)< L). From Theorem 1 it follows that each strictly-
partially-saturated point remains so over some time interval. In order to follow the
advance of the fluid through the medium we consider for each t[0, T] the set
P(t) (x G’u(x,t)> L}= (x G’a(u(x,t))>O} wherein the block-pressure is
strictly positive and, hence, the medium is completely saturated.

TrI.OREM 2. In the situation of Theorem 1 assume further that a-l(0)=[0,L],
p > N/2 and both uo andfare nonnegative. Thus u >= 0 and we also have the following:

(a) The set P(t) is nondecreasing in t[0, T]. If P(to) is nonempty then the medium
is partially saturated at every (x, t) Q with >= o.

(b) Assume f-= O, let G be a measurable subset of G, P0 and L be strictly positive,
and set Uo(x) Po + L for x G1, and Uo(X) 0 for x G G1. Denoting Lebesgue
measure by m(.) we have

m(G)<=m(P(t))<=(1 +t)o/L)m(G), O<=t<=T.
(c) Assumefurther that k= k(x) is autonomous, there is a > 0 with a(s)>= 8(s- L) +,

and m(G1)> 0. Then for each x G there is a C(e,x)>O such that p0/L> C(e,x) implies
that x P(t) for all sufficiently large.

Proof. (a) Since K is the Lipschitz constant for a and a(L)= 0 we have

eut+ K(u- L) >= eut+ Or(u)-ot(L) (I+ eA)-lot( U) +ef( t) >= O,
SO there follows

u(x,t)-L>=e-(g/)(t-t)(u(x,to)-L), t>_to, xP(to).
This shows P(t)D P(t0). Similarly, we have

eut + Ku >= (I+ eA)-la( u) + ef
If for some (Xo, to) we have a(U(Xo, to))>O, then by the strong maximum principle
[10, pp. 188-189] ((l+eA)-la(u))(X, to)>O for all xG and there follows u(x,t)>O
for all >= o.
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(b) The first inequality follows from (a) since P(0)= G1. The second is obtained
from the Ll-estimate

Lm(P(t))<= f, u(x,t)dx<=[lu(t)[l<=[lUol[l=(Oo+L)m(Gx).
(t)

(c) For x G--- G1, u0(x)=O so by continuity the number T(x)-- sup{ " >=
O’u(x,t)<=L for all O=<t=<} is strictly positive. We shall show T(x)< . From the
proof of (a) follows

( u(x,t)) _> ( u(xl,t)-L ) >= 8poe-Icily, xG, t>=O.

Define Xl as the characteristic function of G and q)a=(I+eA)-lX1. By the strong
maximum principle p(x)>0 for every xG. Since a(u(x,t))Poe-gt/exl(x ) we
obtain from the comparison principle

(I+ eA)-la(u(x,t)) >= 8Ooe- m/*COl ( X ), xG, t>=O.

Thus, for x G-- G and O<=t<_ T(x) we have a( u(x, ))= O and from (3.1)

ut x, ) > ( 6Oo/e) e- ( x )

and therefore

U( X, t) >= ( Spo/g )(1 e-Kt/)q) x), xG-"G1, O<=t<=T(x).

Thus, if Po/L>=g/q)l(X), then there is a t*= T(x) for which u(x,t*)=O and ut(x,t* )
> 0. This finishes the proof of the theorem.

The property expressed in (a), that every point in the medium is partially saturated
as soon as any point has positive pressure, is a consequence of the instantaneous
diffusion through the system of fissures. Although such infinite propagation speeds are
standard for linear parabolic equations, the porous medium equation (2.5) is known to
have finite propagation speeds for certain nonlinearities.

In the diffusion model leading to the situation described in (b), L is the amount of
fluid required per volume to fill the voids or to overcome an absorption characteristic
of the medium, and P0 is the density of excess fluid available in the region G1. The
estimate in (b) is an explicit upper bound on the advance of the pressure set P(t) in
terms of the ratio PolL.

Similarly, (c) shows that for each point x G there is a value of the ratio PolL
which drives P(t) to enclose x. The qualitative dependence of C(e,x) is clear from the
proof and interesting. Specifically, for xG---GI we note C(e,x) increases as x ap-
proaches OG or as e decreases to 0, C(e,x) decreases as x approaches Gx, and C(e,x)
approaches 2k/8 for x near G and e near 0.

Our knowledge of the regularity of the solution permits a description of its
behavior along the "free-boundary" or interface F bounding the pressure set. Thus, let
Q+= ((x,t)Q’u(x,t)>L) and Qo ((x,t)Q’O<_u<=L) in the situation of Theo-
rem 2, and set F )Q/. At each point of F denote the unit normal by (nl, n2,...,nN, nt)
and let n be the unit vector in R N with direction of (nl,..-,n N)- Let or denote the jump
or saltus along F. The standard computation of (2.1) over Q/, Q0 and the divergence
theorem lead to the interface condition

Or(u)n,=O onF.
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Thus, at each point of F, either the concentration is continuous or the interface is
stationary. A similar computation on (2.2) shows

or k-n(S(p2) ) =0 on F.

Thus flux is continuous across F. Note that in the classical Stefan problem it is only the
sum of the preceding values which vanishes, thereby giving a constraint on the velocity
n//ll(nl,-. ",nv)ll of F. The regularity of a generalized solution of (3.1) will not permit a
nonstationary singularity.

Finally, we note that the above remarks have physically meaningful consequences
for the thermal conduction model (2.6). In contrast to the completely contrary property
of the classical Stefan problem, the solution of (2.6) will permit the appearance of a
mush zone even if one were not present initially and no outside sources are present.
Moreover, Theorem 3.2(a) implies that such mush regions always form over large
regions from initial conditions containing both pure ice (u=0) and water at positive
temperature.
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