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Homework 6

Problem 1

Consider the following system {
ẋ = a11x+ a12y

ẏ = a21x+ a22y

Which can be written in the form Ẋ = AX where X = [x, y]T and A = {aij}. Note that by
the definition of A we have that by letting p = a11 + a22 and q = a11a22− a12a21, det(A) = q
and tr(A) = p. Finally let 4 = p2 − 4q = tr(A)2 − 4 det(A).

(a) Show that x0 = [0, 0]T is a critical point of the system.

(b) Show that x0 is a node if q > 0 and 4 ≥ 0.

(c) Show that x0 is a saddle if q < 0.

(d) Show that x0 is a spiral if p 6= 0 and 4 < 0.

(e) Show that x0 is a center if p = 0 and q > 0.

(f) Show that x0 is asymptotically stable if q > 0 and p < 0.

(g) Show that x0 is stable if q > 0 and p = 0.

(h) Show that x0 is unstable if q < 0 or p > 0.

Solution: Assume the problem as presented.

(a) To check that x0 is a critical points, we simply plug in the values into the system and
check that it equals [0, 0]T .

Ax0 =

(
a11 a12
a21 a22

)(
0
0

)
=

(
0
0

)
.

For the following portion of the problem we will be doing analysis of the critical points
in which we need to consider det(A − λI) = 0. So we compute that here and it will be
used for the remaining portion of the problem.

det(A− λI) =

∣∣∣∣a11 − λ a12
a21 a22 − λ

∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21

= a11a22 − (a11 + a22)λ+ λ2 − a12a21
= λ2 − pλ+ q
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Finding zeroes of the characteristic equation we have

λ± =
p±

√
p2 − 4q

2
=
p±
√
4

2
.

(b) Assume that q > 0 and 4 ≥ 0. Thus we have that
√
4 ∈ R which implies that λ± ∈ R.

This in turn implies that x0 is a node.

(c) Assume that q < 0. Let q = −g where g > 0. With q < 0 we have that 4 ≥ 0 so√
4 ∈ R, which implies that we have a node. Note that

λ± =
1

2

(
p±

√
p2 − 4q

)
=

1

2

(
p±

√
p2 + 4g

)
.

Furthermore, since
√
p2 + 4g > p we have that p −

√
p2 + 4g > 0. From these two

inequalities we have that for any value of p, λ+ > 0 and λ− < 0. Since λ± are real and
have opposite signs we have that x0 is a saddle.

(d) Suppose that p 6= 0 and 4 < 0. Since 4 < 0 we have that
√
4 ∈ C, which implies that

we have a spiral or a center. But since p 6= 0 we cannot have a center but in fact we we
have that λ± = p±

√
4

2
in which, if p < 0 we have that x0 is a stable spiral and if p > 0

we have an unstable spiral.

(e) Assume that p = 0 and q > 0. Thus we have

λ± =

√
−4q

2
=
i
√

4q

2
∈ C.

Since the real part of λ± is zero we in fact have a center.

(f) Assume that q > 0 and p < 0. By the formula for λpm we can note that the only term
that we need to be worried about is 4 since if 4 < 0 we have that x0 is a spiral and
if 4 ≥ 0 we have that x0 is a node. So if we have that 4 ≥ 0 we have the following
implications

p ≥ 4q =⇒ p2 > p2 − 4q =⇒ |p| >
√
p2 − 4q

The last inequality tells us that λ± < 0 which implies x0 is a stable node which in
turn implies asymptotically stable. Now suppose that 4 < 0 we have the following
implications

p2 < 4q =⇒ λ± =
1

2

(
p± i

√
4q − p2

)
∈ C.

Furthermore since p < 0 we have that x0 is a stable spiral which in turn implies asymp-
totically stable.

(g) Assume that q > 0 and p = 0 then we have

λ± = ±1

2

√
−4q = ±i√q ∈ C.

Since p = 0 we have that x0 is a center which in turn implies it is stable.
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(h) Assume that q < 0 first. Let q = −g with g > 0. Then we have 4 > 0 so λ± ∈ R which
implies we are dealing with a node. Since we have that λ± is real all we need to worry
about is the signs of λ. Since we have p2 − 4q > 0 and q < 0 we have

√
4 > |p|. With

this information we have 3 cases

(i) If p < 0 then we have that λ+ > 0 and λ− < 0.

(ii) If p > 0 then we have that λ+ > 0 and λ− < 0.

(iii) If p = 0 then we have that λ+ > 0 and λ− < 0.

In all the cases above we have that x0 is a saddle which implies unstable.

Now assume that p > 0. Then we have the following 3 cases.

(i) If q < 0 then we have 4 > 0 and
√
4 > p which implies that λ+ > 0 and λ− < 0.

From this we conclude that x0 is a saddle which implies unstable.

(ii) If q = 0 we have that λ+ = p and λ− = 0 which implies we have an unstable
system.

(iii) If q > 0 then we have the following two cases.

(1.) If 4 > 0, then we consider p <
√
4 in which we have λ+ > 0 and λ− < 0

which corresponds to a saddle which is unstable. We also need to consider if
p ≥
√
4 in which we have λ± > 0 so it is unstable.

(2.) If 4 < 0. Then we have that λ± ∈ C and since p > 0 we have that x0 is an
unstable spiral.

In all the cases shown we have x0 being unstable.

Problem 2

Consider the following system {
ẋ = −x+ y − 2xy

ẏ = −4x− y + x2 − y2

(a) Find all the critical points.

(b) Determine the local linear stability of the critical points.

(c) Draw a slope field for the system.

Solution: Consider the system as given.

(a) To solve for the critical points we solve for when the system is ẋ = 0 and ẏ = 0 at the
same time. Looking at it as system of equations, from ẋ = 0 we have

−x+ y − 2xy = 0 =⇒ y =
x

1− 2x
.
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Substituting this into ẏ = 0 we have

−4x− x

1− 2x
+ x2 − x2

(1− 2x)2
= 0 =⇒ x(4x3 − 20x2 + 18x− 5) = 0.

Clearly x = 0 is a root, then to solve for the others we use MATLAB’s ’roots’ function
and attain x = {3.9379, 0.5311 + .1881i, 0.5311− 1.881i}. Since we only care about the
real roots we have the critical points to be considering being the set x = {0, 3.9379}
with corresponding y = {0,−0.5727} respectively.

(b) To determine the stability we first compute the Jacobian of the system. That is we
consider

J(X) =

(dẋ
dx

dẋ
dy

dẏ
dx

dẏ
dy

)
=

(
−1− 2y 1− 2x

−4 + 2x −1− 2y

)
.

Using the Jacobian we are also going to use this particular formula for the characteristic
formula roots

λ± =
1

2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
such that A = J(X0) and X0 are the roots found in (a).

Consider X0 = (0, 0). Thus we have

J(X0) =

(
−1 1

−4 −1

)
.

From this we can calculate tr(J) = −2 and det(J) = 5. Furthermore we have

λ± = −1± 2i.

Here we see that λ± ∈ C and since the real part of λ± is negative we have X0 = (0, 0)
being a stable spiral.

Consider X0 = (3.9379,−0.5727). From this we have

J(X0) =

(
2.1454 −6.8758

3.8758 .1454

)

From this we can calculate tr(J) = 2.2908 and det(J) = 26.9612. Furthermore we have

λ± = 1.1454± 5.0645i.

Here we see that λ± ∈ C and since the real part of λ± is positive we have X0 =
(3.9379,−0.5727) is an unstable spiral.

(c) MATLAB was used to produce the following figures.
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From the first image we can see that our analysis was correct in determining the systems
dynamics. The second image provides some traces with initial starting points following
the arrows given in the direction field.

Problem 3

Consider the following system

Ẋ =

(
1 1
−ε 1

)
X
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where |ε| � 1. Show that the stability of the system chances as ε changes in the value from
slightly negative to slightly positive.
Solution: Consider the problem as given. Note that the system can be written in the form
Ẋ = AX where A is the coefficient matrix provided. The first thing we do when determining
the systems dynamics is solve for the characteristic function. That is we have

det(A− λI) =

∣∣∣∣1− λ 1
−ε 1− λ

∣∣∣∣ = λ2 − 2λ+ (ε+ 1).

The roots of the resulting quadratic take the form of

λ± =
1

2

(
2±

√
4− 4(ε+ 1)

)
= 1± 2

√
−ε.

Now assume that ε < 0 this implies that −ε > 0. Then we have that λ± = 1 ± 2
√
−ε are

two real distinct eigenvalues. Furthermore since we are assuming that ε is small and near
zero we have that both eigenvalues are positive. All of this information collectively imply
that we have an unstable node.
Now assume that ε > 0 this implies that −ε < 0. Then we have that

λ± = 1± 2i
√
ε.

Here we see that λ± ∈ C and since the real part is positive we have an unstable spiral.
Thus we can conclude as ε goes from slightly negative to slightly positive the system goes
from having an unstable node to an unstable spiral.

Problem 4

Consider the following predator-prey model{
ẋ = x(1− σx− 0.5y)

ẏ = y(0.25x− 0.75)

where σ > 0.

(a) Find all the critical points.

(b) How do they change as σ increase from 0? Observe that there is a critical point in the
interior of the first quadrant only if σ < 1

3
.

(c) Determine the stability of the critical points. item Find the value ψ < 1
3

where the
nature of the critical point in the first quadrant changes. Describe the change that takes
place in this critical point as σ passes through ψ.

(d) Draw the slope field for a σ value between 0 and ψ, and another for σ between ψ and 1
3
.

(e) Describe the effect on the populations as σ increases from zero to 1
3
.

Solution: Consider the problem as given.
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(a) To solve for all the critical points we we evaluate this by visually analyzing the system.
From ẋ = 0 we can clearly see that x = 0 will work. With x = 0 we have that y = 0.
Now looking at ẏ = 0 we see that y = 0 would work and form there we can solve for x
in ẋ to get x = 1

σ
. Also from ẏ = 0 we can see that x = 3 would work and solving for y

in ẋ we get y = 2− 6σ. Thus collectively we have the critical points of the system being

X0 =

{
(0, 0),

(
1

σ
, 0

)
, (3, 2− 6σ)

}
= {A,B,C}.

(b) Consider A, we see that there is no dependence on σ so it does not change as σ increases
from 0. For B we see that as σ increases from 0 the critical points moves from infinity
to (0, 0), or A, along the x-axis. For C we have the critical point moving along the line
x = 3 from y being large and positive, through the x-axis and then to negative and large
in magnitude. We can note that for 0 < σ < 1

3
we have C being in the first quadrant,

and for σ > 1
3

the critical points moves into the fourth quadrant. Now for σ = 1
3

we
have that B = (3, 0) and C = (3, 0), that is to say when σ = 1

3
the critical points B and

C meet.

(c) For the stability of the critical points we use the same trick as done in Problem 2. So
we first compute the Jacobian

J =

(
1− 2σx− 1

2
y −1

2
x

0.25y 0.25x− 0.75

)
.

So consider the critical point A first. Then we have

J(A) =

(
1 0
0 −0.75

)
Then by computing det(J(A)− λI) we have

det(J(A)− λI) =

∣∣∣∣1− λ 0
0 −0.75− λ

∣∣∣∣ = λ2 − 0.25λ− 0.75.

Solving for the roots of the resulting polynomial we get λ+ = 1 and λ− = −0.75. Since
they are both real distinct and opposite sign values we have that A is a saddle node, so
unstable.

Now Consider the critical point B. Here we have

J(B) =

(
−1 − 1

2σ

0 1
4σ
− 0.75

)

Then by computing det(J(B)− λI) we have

det(J(B)− λI) =

∣∣∣∣∣−1− λ − 1
2σ

0 1
4σ
− 0.75− λ

∣∣∣∣∣ = λ2 +

(
1.75− 1

4σ

)
λ+ (0.75− 1

4σ
.
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Here we can let ω = 1.75− 1
4σ

and solve for the roots of the resulting polynomial to get

λ+ωλ+ (ω − 1) = 0 =⇒ λ± =
1

2

(
−ω ±

√
ω2 − 4(ω − 1)

)
=

1

2
(−ω ± (ω − 2)) .

From this we see that λ+ = −1 and λ− = −ω+1 will have to be broken down into cases.
Taking it back to σ we have λ− = 1

4σ
− 0.75 and have the following two cases:

(i) For 0 < σ < 1
3

we have λ− > 0 which implies we have a saddle node, so unstable.

(ii) For σ ≥ 1
3

we have that λ− < 0 which implies we have a stable node.

Now consider the critical point C. here we have

J(C) =

(
−3σ −3

2

1
2
− 3

2
σ 0

)
.

Then by computing det(J(C)− λI) we have

det(J(C)− λI) =

∣∣∣∣∣−3σ − λ −3
2

1
2
− 3

2
σ −λ

∣∣∣∣∣ = λ2 + 3σλ+

(
3

4
− 9

4
σ

)
.

Solving for the roots of the resulting polynomial we have

λ± =
1

2

(
−3σ ±

√
9σ2 + 9σ − 3

)
.

Here we nee to be concerned when the term inside the square root becomes negative
because that would be mean λ± ∈ C. Thus the first thing we note is the sign of
9σ2 + 9σ − 3. Since it is simply a polynomial of degree two we can look at the roots
and check around the roots for the sign. From this we conclude that the term is positive
when σ ∈ (−∞,−1.2638)∪ (0.2638,∞) and negative when σ ∈ (−1.2638, 0.2638). From
this information we can note that if σ ∈ (−1.2638, 0.2638) we have that λ± ∈ C, more
precisely for σ ∈ (−1.2638, 0) we have an unstable spiral, σ = 0 we have a center, and
σ ∈ (0, 0.2638) we have a stable spiral.

From this we only need to determine the the λ± values for σ in (−∞,−1.2638) and
(0.2638,∞). From the formula of λ± (or looking at a the graph) that λ+ > 0 and
λ− > 0 in (−∞,−1.2638) which corresponds to an unstable node. Now for λ± values
for σ in (0, 0.2638) we have λ+ > 0 and λ− < 0 which corresponds to a saddle node. All
of this information can be displayed in a table format to make it easier to see.
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(d) The σ1 was actually solved for in the previous part. That is we noticed there was a
change in dynamics when σ passed through 0.2638. Thus the σ1 the questions ask for is
σ1 = 0.2638.

(e) MATLAB was used to generate the following figures. First we consider σ ∈ (0, σ1).

From these figures we can go back and notice that our analysis is correct.

Now we consider σ ∈
(
σ1,

1
3

)
.
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Again we can use these figures to check our analysis.

(f) As σ increases from 0 to 1
3

we have that the population will tend towards the critical
point (3, 2− 6σ) up until σ hit σ1 in a circular fashion, that is to say there is some give
in take in the population numbers. After σ passes σ1 we see that the population will go
towards the same fixed point but a lot faster then circling around the fixed point. That
is to say there is not that much give and take in the population numbers.
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Problem 5

Consider the population model

dP

dt
= aP

(
E1P

−c − E2

)
where t > 0, 0 < c ≤ 1 is the ”competition constant’, P is the number of individuals, a, E1,
and E2 are constants.

(a) Find the equilibrium populations.

(b) Determine their stability.

(c) Plot the slope field.

(d) Interpret c.

(e) Further dynamics.

Solution: Consider the problem as stated with the assumption that a,E1, and E2 are
positive constants.

(a) From looking at the system it is clear P = 0 is one equilibrium point. By solving

(E1P
−c − E2) = 0 we attain the other equilibrium point being P =

(
E2

E1

)− 1
c
.

(b) To determine the stability we consider a small perturbation to the fixed points and see
what the system tells us. First lets consider P = 0 + ε = ε. We get that

dP

dt
= aε(E1ε

−c − E2).

Since we are assuming that ε � 1 and since 0 < c ≤ 1 we have that ε−c is going to
be really large. With this in mind as long as E1 and E2 are comparable, E1ε

−c will
dominate the term in which it is positive. So the fixed points P = 0 is unstable.

Now we consider a small perturbation for the other fixed point to have P =
(
E2

E1

)− 1
c

+ ε

in which we get

dP

dt
= a

((
E2

E1

)− 1
c

+ ε

)E1

((
E2

E1

)− 1
c

+ ε

)−c
− E2


= E1a

((
E2

E1

)− 1
c

+ ε

)((E2

E1

)− 1
c

+ ε

)−c
− E2

E1


From this we can see that the only term we need to worry about is right handed paren-
thesis since the whole first portion is positive. Since we are making the assumption

that E1 and E2 are comparable we can make the argument that

((
E2

E1

)− 1
c

+ ε

)−c
will

be much smaller then E2

E1
. That is to say E2

E1
is the dominating term in which making

dP
dt
< 0, so this fixed point is stable.
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(c) The figure was generated using MATLAB.

(d) To interpret the figures from (c) we note to plot the slopes we let a = 2, E1 = 10,
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E2 = 9.5 and c = .5 which were found through experimentation. From the plots we
can see that if the population starts at any point between 0 and approximately 1.1,
the population will rise until it hits the carrying capacity of the system, which again
is approximately 1.1. Now if the population starts above that, we are exceeding the
carrying capacity of the system which means the population needs to die down until we
hit the carrying capacity, which can visually be seen by the figures.

(e) For further dynamics into the system we can proceed by scaling the argument. Let ,

P ∗ =

(
E1

E2

) 1
c

, P̃ =
P

P ∗
, and t̃ = aE2t.

Using the chain rule that we have done before we get

∂

∂t
=

∂

∂t̃

∂t̃

∂t
= aE2

∂

∂t̃
.

By substituting these values in we get the system to take on the form of

dP̃

dt̃
= P̃

(
P̃−c − 1

)
.

Note that we have the related growth rate to be

1

P̃

dP̃

dt̃
= P̃−c − 1.

Plotting these equations for c ∼ 1 and c� 1 gives some more insight into the system.
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From the above two figures we can see that the related rates for c ∼ 1 decreases rapidly
compared to c� 1. For stability we can look at dP̃

dt̃
plotted against P̃ .
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For c ∼ 1 we see that we have explosive growth away from zero and then see it slow
down at P̃ = 1. Then from c � 1 we see the gradual growth away from 0 and slows
down at P̃ = 1. In other words the different value of c determine the growth away from
zero, but still slows down near its carrying capacity.
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