John Zaheer

MTH 581
11/18/16
Homework 5
Problem 1
Consider
i + wiu = etu’u
u(0)=A u = u(t)
u(0) =0

Find the leading order and first correction approximation to u. Use Poncaré Lindstedt
(Optional: try regular perturbation)

Solution: To find the leading order terms and the first approximation to u using the
Poincaré Lindstedt we consider the transformation 7 = wt. From this we can consider the
following approximation expansion with the associated derivative operator

u = ug + euy + 2y + O(e”)

w = wp + ewy + 82(,02 + 0(53)
d d dr d

at —drdt  Vdr
2, >

a ~ Y ar

Then we can rewrite the system of equation to be the following (written in summations to
shorten the notation for this part):

w? Yoy diE’ + Wi Yot uiet — ew? (302 uigi)z (> uie') =0
Zzio u;(0)e" = A
wy oy u;(0)e =0
Now considering the ODE we have the following
0= (wo + ewy + 2wy + 0(53))2 (ilo + ety + %y + 0(63))
+ wg (Uo —+ cuy + 621@ + 0(83))
— & (wo + wy + 2wa + 0(63))2 (o + ety + %0a + 0(53))2 (uo + eur + %uz + O(%))

Combining the terms in order to have it easier to pick out the order of € terms we have

0 = [wiiio + (wgiin + 2wowriip) + O(?)]
+ [wiuo + (wiur) + O(%)]
— [0+ e(uotigwy) + O(e?)]



Now considering the order of €’s. First we consider " and solve the system:

w2ty + wiug = 0
up(0) = A = wuy = Acos(T)

Grouping the terms for !, making the substitution with the uy and then solving for u; we
have

Wity + 2wowyip + wauy — ugtidws =0 iy +uy = —A%cos(7) sin(7) 4 22 A cos(7)
u1(0) =0 i (0) =0

iy +uy = (%A + %‘A:ﬂ) cos(7) — + A3 cos(37)
= qu1(0) =0

Now in order to eliminate the secular term we can solve for w; to do so. That is we solve
2 1 A?
U B =0 = = O
Wy 4 8

With this we get the system to be

iy +uy = —5 A% cos(37)
i (0) = 0

Solving this using the same methods as we have been using, then applying the conditions

we have that
43

uy (1) = e cos(37) (cos(1) — 1).
Thus we can write down the approximation as

u(t) = Acos(wt) + 5% cos(3wt) (cos(wt) — 1) + O(e?)

w0A2
8

+ O(e?)

Ww=wy—¢€

Problem 2

Consider the boundary layer problem

/! / — 1
BVP — ey +y +y=20 0<zx<
y(0) =a, y(1) =4 o, 8>0



Find the exact solution y(x).
Show BVP is singular.

Find an inner and outer approximation to the solution, to the lowest order, to within
constant(s)

Find the matching condition that determines the unknown constants in (c).

Show that the inner and outer solutions approximate the exact solution in each of the
regions.

Solution: We will be considering the problem given in the problem.

(a)

To solve for the exact solution we note that it is a second order linear equation with
constant coefficients. Applying the method of characteristics we have the characteristic

equation to be
p(A) =X + A+ 1.

Here we see the roots of the equation are

For e < 1 we have M, 5 being real and distinct so we have the solution being
y = CeMt 4 Che2t,

Applying the boundary conditions we have the following solutions for the unknown
constants:

o B — aeM
= Y — —
! eM2 — el
o B — aeM

27 My — ey

To show that the BVP is singular we first attempt to apply the regular perturbation
method and see what goes wrong. We first make the assumption that y can be written
as

y=1yo+ep +y +O().

Thus the system can be re-written as

Yoo ye T Y Syt + > yiet =0
Zzo yi(o)fi =
Z?io yi<1)5i =f



Now considering the cases for the different orders of . First we consider €°, in which
the system and its solution becomes

Yo +yo =0 Cre™®

Cl =«
%(0) = a = w0 =a = {C =e'B
yo(l) = yo(l) = '

Now unless we have that o = '3 we have that the system is singular. Furthermore if
assume this relationship to be true, one can check, that the very next consideration (g!)
will imply that o = 0 and S = 0. This would mean that the only solution to the system
would indeed be the trivial solution

Consider the following notation to simplify the expressions

Yinner = Yi Youter = Yo

We first start by writing down the outer solution. Since the singularity occurs near x = 1
we set ¢ = 0 and consider the condition near x = 1. That is we have and solve

/ 0:0
yo+y — yo:ﬁelfx
yO(l):ﬁ

To find the inner approximation we first introduce 7 = & with Y(7) = yi(x) as a
scaling. From this we have that

d _ddr 1 d 21>

i il T A Gl Rl T R

Thus from here we have the system to be

13 14 lA .
52(E)Y + 5e )Y +Y =0
Y(0) =«
Y(1)=p8
From this we have three terms to balance:
€ 1 1
0%(¢) J(e)

Here we can deduce two balances to consider to estimate d(¢) = €” focusing on the inner
region.

i) == ~ 1 in which we need §(¢) = 1. However from this we have the last term -
42 (¢e) 2 o(e)
being large

1) == ~ in which we need §(g) = . From this we have 1 < ==, so this balancing
52 (e 5(5) 4(e)
wilf work.



From the cases above the following system and then solution

Y+ 1Y +Y =0 Y'+Y' +eY =0
Y(0) =« —= (Y (0) =«
Y(1)=p Y(1) =5
Y = + Cye”
— (Y (0) =« — Y(r)=a+Cy (e —1)
Y(1)=p

— y(z) =a+ Cy (6_5 — 1)

(d) To figure out the matching condition that determines the unknown constants we consider
the following.

lim y,(v/en) = lim Be' V" = ge'
e—0 e—0

lim y;(ven) = lima + Cy (6_\/?; - 1) =a— 0y
e—0 e—0

Now setting the conditions equal to each other we have
Cy =a — Be'.

Since we have in essence constructed the inner and outer approximation we can construct
the uniform approximation below

Yu = i + Yo — Be’
= Be" " +a+ (a—fe)(e7F —1) — pe'

No simplifying was done due to the programming for the next portion, it just makes it
a little simpler to throw in and make some interesting graphs.

(e) To show that the approximations were good we first can plot them in order to make sure
that the approximations are close within each respective region. Here we can arbitrarily
choose a =1, f =2 and € = .01. € was chosen to be large with respect to a realization
of the problem so we can clearly see the plots. Decreasing ¢ in the code will show in
increase in accuracy for the approximations. This can be done in a 'for’ loop to show
different values of ¢, but again beyond the scope of the homework.



test for correct approximation

05 1 1 1 1 1 1 1 1 1 ]
0 0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 049 1

Here we can see that each approximation does fairly well visually in approximating the
exact solution. From this we can move on to looking at the uniform approximation.

exact v, unifarm

exact
5 unifarm

05 1 1 1 1 1 1 1 1 1 ]
0 0.1 o2 03 04 05 06 07 08B 08 1

From this figure we can see that the uniform also does pretty well, in terms of having
such a large e respectively. However, one way to analyze the approximation is by looking
at the absolute error.



absolute errar: exact ve. unifarm

absolute error

From this figure we can see that where the approximation is at its worse is where we have
the inner and outer being forced together. The code produced also shows the maximum
error which for € = .01 is 0.0486. The code that produces the graph is located at the
appendix for the homework towards the end. The code was produced in order to be
understandable for novice MATLAB users, but also have the structure to be adapted
into a ’for’ or 'while’ loop to compare different values of ¢ for this particular problem.

Problem 3

Consider the boundary layer problem:

"_ =1 1
BVP — ey —y 0<z<
y(0) = a, y(1) =B a,8>0

(a) Find the exact solution.
(b) Plot the exact solution.

(c) Argue why we expect a boundary layer close to x = 1. (use the plot for guidance, but
use the BVP for the argument).

(d) Find the inner and outer approximate solutions, use the transformation { = ls_—f in the
boundary layer and show that A = 1 balances the BVP terms in the layer.

(e) Use matching to fully determine constraint(s) on the inner and outer solutions.

Solution:

(a) To find the exact solution we first note that is a 2nd order non-homogeneous boundary
value problem. So we have to solve for the homogeneous and non-homogeneous versions
of the ODE in the problem. Considering the homogeneous problem

ey’ —y =0,



we can note that since ¢ is just a small number, the ODE has constant coefficients. With
that being said we can seek out the characteristic function and solve the characteristic
polynomial. That is by letting \* = y(™ where y™ is the nth derivative of y with respect
to x. Thus we get the following

EX¥—A=0 = AeA—-1)=0.

Hence we have that A =0, —% being the roots of the characteristic equation. Since they
are both real and distinct roots we have the solution to the homogeneous ODE being

yH(ZL’) = Cl + 026%.

For the particular solution we will simply guess and check our answer. That is, we can
guess that the solution to
ey’ —y =1,

will take the form y = Az, for some constant A. To solve for A we plug it into the ODE
in which we get —A = 1 directly. Thus we have

yp(x) = —x.
Hence |
y(r) = yu(z) +yp(r) = Cy + Che= — 1.

Now applying the boundary conditions to solve for the unknown coefficients we have
that )
ae: — [ —1

1
es — 1

B—a+1

C, =
' e%—l

Cy =
(b) The plot of the exact solution is plotted below.

The Exact Solution




Since the MATLAB code from Problem 2 can be used to produce the same graphs that
show the inner and outer approximation, uniform, and absolute error simply by changing
the exact, approximation, and matching constant it was done so. The code is included in
the Appendix, however the graphs where not produced on this homework to save some
space.

If we look at the ODE in our boundary value problem, we can note that by setting ¢ = 0
we have

—y =1 = y=—x+P.
We note that this solution drops linearly, and at if P > 1, then it will not be able to
pass through # > 0. In any event, we need to set

a=y0)=P

Hence, y(0)) can be satisfied by P = a.

We reiterate that the assumption is that o, > 0. At the other end, at x = 1, the
constraint (y(1)) will not be satisfied unless we restrict § = —1 + a. Since we have an
issue using y(1) =  we can argue that there will be a boundary layer near = = 1: if
beta > —1 + « there is consistency. If beta > —1 + « the presumed exact solution to
the problem must develop very large derivative in the neighborhood of x = 1 in order
to pass through S. We thus have enough evidence to suspect that the boundary layer,
if present, will be on the z = 1.

Note that we will be using the following notation

Yinner = Yi Youter = Yo,

to shorten the subscripts dealing with the inner and outer approximation. Considering
Y, first, we set ¢ = 0 in which we are dealing with

—y, =1 Yo(0) = .
Solving this by integration we have that y, = —x + P;. Then applying y,(0) = «a, we
attain
Yo = —T + Q.

Now considering the inner approximation, we consider the transformation given in the
problem. With this transformation and the chain rule we have that

d_dd_ 1d & 1 &
dv  dCdr e dC dz? ~ e dc2’

Thus we have that the problem with Y(¢) = y;(z) and (-)' = d% becomes

€ " 1 I

Here we see that we have two balancing terms and make the following arguments.



(i) If we want 3z and 1 to be dominant, it implies that A = % However with this

implication we have the other term E% = L% to be dominant. So this balancing will

not work.
(ii) If we want 5 and Z to be dominant, it implies that A = 1. With this A value we
see that the other term, 1, is not dominant. In other words this balancing works.

Now that we have A = 1, the ODE to be given by

1 1
V'YV =1 = YV'+Y =¢.
€ €

Solving the ODE, we use the same strategy from part (a). Note that for y(1) = 3, we
will have Y (0) = /3 since we are using the designated scaling. Solving the system now
we have

Y = Q1+ 62267C

(e) Using matching to fuller determine constant(s) in the inner solution (since the outer was
already solved for), we first use y(1) = S to put y; in terms of one unknown constant.
Using this boundary value we have that

Qr=0+0Q1 = yizﬁ_Ql‘i‘Qlei%-

Now trying to match y; and y, we have the following limits to consider with n = 1’759”

lim y,(n) = li —l=a-1
Bl = g ot Ve -1 =a

61_1)1(1)1 yi(n) = B — Q1

Thus we have that a — 1 = 8 — ()1, solving for ()1 we get Q1 = (5 — a + 1.

Appendix

Problem 2

clear

clc

%parameters

a =1;

b = 2;

e = .01,

t = [0:.00001:17;

$building coefficients

M1 = (—1l+sqgrt(1—4xe))/ (2xe);

M2 = (—1—sqrt(1—4xe))/ (2xe);

Cl = (a*xexp(M2)—Db)/ (exp (M2)—exp (M1)) ;
C2 = (b—axexp(Ml))/ (exp (M2)—exp (M1));
$solutions

yexact = Clxexp (Mlxt)+C2xexp (M2xt) ;
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youter = bxexp(l—-t);

yinner = bxexp(l)+(a—b*exp(l))*rexp(—t./e);
%plots to test solutions before making uniform
figure

hold on

plot (t,yexact, 'r")

plot (t,yinner, 'g'")

plot (t,youter, 'b")

title ('test for correct approximation')
ylabel ('y"')

xlabel ('t")

legend ('exact', 'inner', 'outer')

%$plot with solution and uniform
yuniform = youter + yinner —bx*exp(l);
figure

hold on

plot (t,yexact, 'r")

plot (t,yuniform, 'b'")

title ('exact vs. uniform')
xlabel ('t")
ylabel ('y")
legend ('exact', 'uniform')
%$plot absolute error and out put max error
aberr = abs(yexact — yuniform);
max (abs (yexact — yuniform))
figure
hold on
plot (t,aberr)
title ('absolute error: exact vs. uniform')
xlabel ('t")
ylabel ('y")
legend ('absolute error')
Problem 3
clear
clc
close all
$parameters
a=1;
b = 2;
e = .01,
x = [0:.0001:17;
%$building coefficients
Cl = (a*xexp(l/e)—b—1)/(exp(l/e)—1);
C2 = (b—a+l)/(exp(l/e)—1);
Q1 = b—a+l;
$solutions
yexact = Cl+C2xexp (x./e)—x%;
youter = a—Xx;

yinner = b—Ql+Qlxexp(—(l—x)./e);
%$plot for (a)
figure
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plot (x,yexact, 'r")

title ('The Exact Solution')

xlabel ('x"')

ylabel ('y")

$plots to test solutions before making uniform
figure

hold on

plot (x,yexact, 'r'");

plot (x,youter, 'b'");

plot (x,yinner, 'g");

title ('test for correct approximation')

ylabel ('y")

xlabel ('x"')

legend ('exact', 'outer', 'inner')
$plot with solution and uniform
yuniform = youter + yinner —a+l;
figure

hold on

plot (x,yexact, 'r'")
plot (x,yuniform, 'b")

title ('exact vs. uniform')

xlabel ('x")

ylabel ('y")

legend ('exact','uniform')

%plot absolute error and out put max error
aberr = abs(yexact — yuniform);

max (abs (yexact — yuniform));

figure

hold on

plot (x,aberr)

title ('absolute error: exact vs. uniform')
xlabel ('x')

ylabel ('y")

legend ('absolute error')
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