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Homework 4

Problem 1

Verify that
∫ ε
0
e−x

2
dx = O(ε) as ε→ 0+.

Solution: To verify the result first note that

e−x
2 ≈ 1− x2 +

x4

2
− x6

6
+O(x8).

Furthermore with this approximation we have∫ ε

0

e−x
2

dx ≈
∫ ε

0

1− x2 +
x4

2
− x6

6
+O(x8) dx

= x− x3

3
+
x5

10
− x7

42
+O(x9)

∣∣∣∣ε
0

= ε− ε3

3
+
ε5

10
− ε7

42
+O(ε9).

With these two approximations we have the following result by the applying the definition
of O,

lim
ε→0+

∣∣∣∫ ε0 e−x2 dx∣∣∣
|ε|

≈ lim
ε→0+

∣∣∣∣∣ε− ε3

3
+ ε5

10
− ε7

42
+O(ε9)

ε

∣∣∣∣∣
= lim

ε→0+

∣∣∣∣1− ε2

3
+
ε4

10
− ε6

42
+O(ε8)

∣∣∣∣
= 1

Hence we have
∫ ε
0
e−x

2
dx = O(ε).

Another way of looking at the problem is keeping it in summation notation to suppress
the approximations. That is we have

e−x
2 ≈

∞∑
k=0

(−x2)k

k!
.
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Then making the same substitution into the integral we have∫ ε

0

e−x
2

dx ≈
∫ ε

0

∞∑
k=0

(−x2)k

k!
dx

=
∞∑
k=0

∫ ε

0

(−1)k(x2k)

k!
dx

=
∞∑
k=0

(−1)k

k!

x2k+1

2k + 1

∣∣∣∣ε
0

=
∞∑
k=0

(−1)k

k!

ε2k+1

2k + 1

With these two approximations we have the following result by the applying the definition
of O,

lim
ε→0+

∣∣∣∣∣
∫ ε
0
e−x

2

ε

∣∣∣∣∣ = lim
ε→0+

∣∣∣∣∣
∑∞

k=0
(−1)k
k!

ε2k+1

2k+1

ε

∣∣∣∣∣
= lim

ε→0+

∣∣∣∣∣
∞∑
k=0

(−1)kε2k

2k + 1

∣∣∣∣∣
= 1

Hence we have
∫ ε
0
e−x

2
dx = O(ε) as ε→ 0+.

Problem 2

Verify that e−ε = o(1) as ε→∞.

Solution: From the last problem we saw that either expanding it out or keeping it in
summation notation lead to the same result, the only difference is that summation notation
tends to be more condensed. Note that e−ε = 1

eε
we can consider

eε ≈
∞∑
k=0

εk

k!
.

Thus by the definition of o we want to verify the following

lim
ε→∞

e−k

1
= lim

ε→∞

1

ek

= lim
ε→∞

1∑∞
k=0

εk

k!

Here it is obvious that the denominator is a summation of positive terms that are increasing
larger, and as ε→∞ we have it getting even larger faster. Thus it is clear to see

lim
ε→∞

e−k

1
= 0

, hence e−ε = o(1) as ε→∞.
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Problem 3

Use Poincaré-Lindstedt Method to find a 2-term approximation to the solution of

ü+ u = ε(1− u2)u̇

Solution: With the Poincaré-Lindstedt Method we introduce a new time scale τ = ωt in
which we can note the differential operator will be

d

dt
=

d

dτ

dτ

dt
= ω

d

dτ
=⇒ d2

dt2
= ω2 d

2

dω2
.

Making this substitution into the original system we have

ω2u′′ + ε(u2 − 1)ωu′ + u = 0.

Here we can note that u is now a function of τ . Now we can make the following approximation
of u and ω with ε� 1:

u = u0 + εu1 + ε2u2 +O(ε3)

ω = ω0 + εω1 + ε2ω2 +O(ε3)

Note that the base harmonic oscillator frequency is 1 in the original ODE, which implies
that ω0 = 1 making this substitution and the substitution with the approximations into the
system we have the following

0 =
(
ω0 + εω1 + ε2ω2 +O(ε3)

)2 (
u′′0 + εu′′1 + ε2u′′2 +O(ε3)

)
+ ε

(
ω0 + εω1 + ε2ω2 +O(ε3)

) ((
u0 + εu1 + ε2u2 +O(ε3)

)2 − 1
) (
u′0 + εu′1 + ε2u′2 +O(ε3)

)
+
(
u0 + εu1 + ε2u2 +O(ε3)

)
= (u′′0 + u0) + ε

(
u′′1 + (u20 − 1)u′0 + u1 + 2ω1u

′′
0

)
+ ε2

(
u′′2 + u2 + (ω2

1 + 2ω2)u
′′
0 + 2ω1u

′′
1 + (u20 − 1)(u′1 + ω1u

′
0

)
+O(ε3)

Thus we can see for ε0 order terms we have u′′0 + u0 = 0. Since it is an order 2 with
constant coefficients we can use the corresponding characteristic function λ2 + 1 = 0 to find
the solution. From the characteristic function we have λ = ±i, thus

u0 = A0 cos(τ) +B0 sin(τ)

Since we are not given any initial conditions we cannot solve for A0 and B0. So we have to
use the hint given in class in which we have the following trigonometric identity:

u0 = A0 cos(τ) +B0 sin(τ) = D0 cos(τ + φ)

with D0 =
√
A2

0 +B2
0 and tan(φ) = B0

A0
. Now that we have a solution for u0 in which we can

solve for the next term u1 in which we need to consider u′0 and u′0. Note that

u0 = D0 cos(τ + φ) =⇒ u′0 = −D0 sin(τ + φ) =⇒ u′′0 = −D0 cos(τ + φ)
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Consider the ε1 order terms.

u′′1 + (u20 − 1)u′0 + u1 + 2ω1u
′′
0 = 0.

Plugging in what we have already solved for and breaking it down using trigonometry iden-
tities gives us

u′′1 + u1 = (D2
0 cos2(τ + φ)− 1)D0 sin(τ + φ) + 2ω1D0 cos(τ + φ)

= 2ω1D0 cos(τ + φ)−D0 sin(τ + φ) +D3
0 cos2(τ + φ) sin(τ + φ)

= 2ω1D0 cos(τ + φ)−D0 sin(τ + φ) +
D3

0

4
sin(τ + φ) +

D3
0

4
sin(3(τ + φ))

= 2ω1D0 cos(τ + φ) +D0

(
D2

0

4
− 1

)
sin(τ + φ) +

D3
0

4
sin(3(τ + φ))

To get rid of the secular terms we need to have ω1 = 0 and we can let D0 = 2 in which we
get

u′′1 + u1 = 2 sin(3(τ + φ)).

Here we know that the homogeneous solution will be uH1 = A1 cos(τ) + B1 sin(τ). For the
particular solution we can guess that the solution will look like uP1 = C1 cos(3τ)+D1 sin(3τ).
Taking the derivatives accordingly and plugging them into the ODE corresponding to u1 we
have

2 sin(3(τ + φ)) = u′′1 + u1

= −9C1 cos(3(τ + φ))− 9D1 sin(3(τ + φ)) + C1 cos(3(τ + φ)) +D1 sin(3(τ + φ))

= −8C1 cos(3(τ + φ))− 8D1 sin(3(τ + φ))

Comparing the left and right side of the equation above we get that C1 = 0 and D1 = −1
4
.

Thus we have

u1 = A1 cos(τ) +B1 sin(τ)− 1

4
sin(3(τ + φ)).

From this we can conclude that our approximate solution is{
u = −2 cos(τ + φ) + ε

(
A1 cos(τ) +B1 sin(τ)− 1

4
sin(3(τ + φ))

)
+O(ε2)

ω = 1 + 0 +O(ε2)

Problem 4

Use a regular perturbation series to find a 2-term approximation to the solution of

ü+ u = ε(1− u2)u̇.

Solution: For this problem we will follow somewhat of the same procedure as Problem 5,
the difference being we will only perturb our solution u and leave the same time scale t. So
for ε� 1 we can approximation u by

u ≈ u0 + εu1 + ε2u2 +O(ε3).
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Plugging this into ODE, taking the appropriate derivative we have

0 =
(
u′′0 + εu′′1 + ε2u′′2 +O(ε3)

)
+ ε

((
u0 + εu1 + ε2u2 +O(ε3)

)2 − 1
) (
u′0 + εu′1 + ε2u′2 +O(ε3)

)
+
(
u0 + εu1 + ε2u2 +O(ε3)

)
= (u′′0 + u0) + ε

(
u′′1 + u′0(u

2
0 − 1) + u1

)
+ ε2

(
u′′2 + u2 + u′1(u

2
0 − 1) + 2u0u

′
0u1
)

+O(ε3)

Now we can consider them case by case in which we first look at ε0 and note we have

u′′0 + u0 = 0 =⇒ A0 cos(t) +B0 sin(t) =⇒ u0 = D0 cos(t+ φ)

where we use the same trigonometric identity from the previous problem in which D0 =√
A2

0 +B2
0 and tan(φ) = B0

A0
.

Now to consider the ε1 case we have, by substituting the known value of u0

u′′1 + u1 = (D2
0 cos2(τ + φ)− 1)D0 sin(τ + φ)

= −D0 sin(τ + φ) +D3
0 cos2(τ + φ) sin(τ + φ)

= −D0 sin(τ + φ) +
D3

0

4
sin(τ + φ) +

D3
0

4
sin(3(τ + φ))

= D0

(
D2

0

4
− 1

)
sin(τ + φ) +

D3
0

4
sin(3(τ + φ))

Using Maple to solve this problem (due to tall the constants floating around) we have the
general solution to be

u1 =

(
D3

0

4
−D0

)(
− t

2
cos(t)

)
− D3

0

32
sin(3t) + A1 cos(t) +B1 sin(t).

So a 2-term approximation for u(t) is given by

u(t) = D0 cos(t)+ε

((
D3

0

4
−D0

)(
− t

2
cos(t)

)
− D3

0

32
sin(3t) + A1 cos(t) +B1 sin(t)

)
+O(ε2)

Problem 5

Consider the following system:{
dy
dt

= 1 + (1 + ε)y2 t > 0 ε� 1

y(0) = 1

(a) Solve exactly.

(b) Find 2-term approximation via regular series expansion.

(c) Find the first two terms of series expansion of exact solution found in (a) and compare
to the approximation found in (b).
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Solution:

(a) Considering the system given in the problem we can note that is a first order equation
that is separable. Thus by separation of variables within the ODE we have

dy

dt
= 1 + (1 + ε)y2 =⇒ 1

1 + (1 + ε)y
dy = dt

Integrating the right hand side is trivial so we concentrate on the left hand side of the
last equation above. That is we are considering∫

1

1 + (1 + ε)y
dy.

Now through a u-substitution, let u =
√

1 + εy in which we can note that du =√
1 + ε dy. Hence we have∫

1

1 + (1 + ε)y
dy =

1√
1 + ε

∫
1

u2 + 1
du

=
tan−1(u)√

1 + ε

=
tan−1(

√
1 + εy)√

1 + ε

Putting this back into the separation of variables equation and taking the integral of the
right hand side (in which we are combining the integrating constant on the right hand
side) we have

tan−1(
√

1 + εy)√
1 + ε

= t+ C.

Solving for y we have

y =
tan
(
(t+ C)

√
1 + ε

)
√

1 + ε
.

Using the initial condition y(0) = 1 we have

1 = y(0) =
tan(C

√
1 + ε)√

1 + ε
=⇒ C =

tan−1(
√

1 + ε)√
1 + ε

.

(b) Following the same procedure as done in previous problems we make the assumption for
ε� 1 we have

y ≈ y0 + εy1 +O(ε2) =⇒ y0(0) = 1 and yi(0) = 0 for i > 0.

Plugging this into the original ODE we have

0 = y′ − 1− y2 − εy

=
(
y′0 + εy′1 +O(ε2)

)
− 1−

(
y0 + εy1 +O(ε2)

)2 − ε (y0 + εy1 +O(ε2)
)

=
(
y′0 − y20 − 1

)
+ ε

(
y′1 − 2y0y1 − y20

)
+O(ε2)
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For the ε0 case we have y′0−y20−1 = 0 with y0(0) = 1. We can solve this problem through
separation of variables and then use the initial condition to solve for the integration
constant that is:

y′0 − y20 − 1 = 0 =⇒
∫

dy0
y20 + 1

=

∫
dt =⇒ y0 = tan(t+ C).

Using the initial condition we have C = π
4

and thus y0 = tan(t+ π
4
).

Now for ε1 case we have

0 = y′1 − 2y0y1 − y20 = y′1 − 2y1 tan
(
t+

π

4

)
− tan2

(
t+

π

4

)
.

Because of the complexity of the ODE we will turn to software to solve this problem,
that is using Maple we have that

y1 =

(
t

2
− 1

4
sin
(

2t+
π

2

))
tan
(
t+

π

4

)2
+ tan

(
t+

π

4

)2
C +

t

2
− 1

4
sin
(

2t+
π

2

)
+ C

Using maple to isolate C in order to use the initial condition we have

C =
−y(t) +

(
t
2
− 1

4
sin
(
2t+ π

2

))
tan
(
t+ π

4

)2
+ t

2
− 1

4
sin
(
2t+ π

2

)
− tan

(
t+ π

4

)2 − 1

Using hat y1(0) = 0 we have C = 1
4
. Thus we can finally write down our 2 term

approximation to be

y = tan(t+
π

4
) + ε

((
t

2
− 1

4
sin
(

2t+
π

2

))
tan
(
t+

π

4

)2
+

1

4
tan
(
t+

π

4

)2
+
t

2
− 1

4
sin
(

2t+
π

2

)
+

1

4

)
+O(ε2)

(c) Using Maple again to find the Taylor series of the exact solution from part (a) we have

yexact = tan
(
t+

π

4

)
+ ε

(
−1

2
t− tan

(
t+

π

4

)
+
t

2
+

1

4

+
1

2
tan2

(
t+

π

4

)
t+

1

4
tan2

(
t+

π

4

))
+O(ε2)

Comparing this to what we found in part (b) we can note that the firs term in the
sequence of the series agree. For the second term, by setting them equal to each other
and canceling out corresponding terms we have the different terms being

Exact 2nd term Approximation 2nd term

−1

2
tan
(
t+

π

4

)
− 1

4
cos(2t) tan2

(
t+

π

4

)
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To see if these two things are even close approximations of one another (since they are
the only different terms) we can plot them with each other and there absolute difference.
Using MATLAB we can generate the following plots (code is readily available upon
request).

To make some comments about these graphs, we can note that periodic behavior do to
it being tan. With this in mind we would expect our approximation to be worse at the
vertical asymptotes, which is shown in the correlation of the two figures. Where we have
these asymptotes we have the absolute difference being growing large and then going
back down towards the center of the periods.

Problem 6

The goal of this problem is to use perturbation methods to find the roots of

(∗) x3 − 4.001x+ 0.002 = 0.

One method is to write (∗) as

(∗∗) x3 − (4 + ε)x+ 2ε = 0.

where ε is the perturbation.

(a) Compute the approximations to the roots of (∗) to O(ε2).

(b) Evaluate the estimate using ε = 0.001.

(c) To compare your estimates to the ”exact” answer, factor (∗) as

(x− 2)(x2 + ax+ b) = 0

i.e. one of the roots is exactly 2. The other 2 will be the roots of x2 + ax+ b.

Solution:
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(a) We first assume that x ≈ x0 + εx1 +O(ε2), from this we have the direct implication that
x3 ≈ x30+3εx20x1+O(ε2). By substituting these approximations into (∗∗) and expanding
out we have the following:

0 = x3 − (4 + ε)x+ 2ε

≈ x30 + 3εx20x1 +O(ε2)− (4 + ε)(x0 + εx1 +O(ε2)) + 2ε

= x30 + 3εx20x1 − 4x0 − 4εx1 − εx0 + 2ε+O(ε2)

=
(
x30 − 4x0

)
+ ε

(
3x20x1 − 4x1 + 2

)
+O(ε2)

Now we can look at the orders of ε and find the values of x0 and x1 and makes the
equations true. Note that we are not considering any order of ε greater or equal to 2,
by the designation of the problem.

For the ε0 case we have:

x20 − 4x0 = 0 =⇒ x0(x
2
0 − 4) = 0 =⇒ x0 = {0, 2,−2}

Since x0 = {0, 2,−2} and the ε1 order terms (3x20x1 − 4x1 + 2) are dependent on x0, for
the ε1 we have 3 sub-cases. So consider the following cases.

For ε1 with x0 = 0 we have

−4x1 + 2 = 0 =⇒ x1 =
1

2

For ε1 with x0 = 2 we have

8x1 + 2 = 0 =⇒ x1 = −1

4

For ε1 with x0 = − we have

8x1 + 2 = 0 =⇒ x1 = −1

4

Now since we found 3 different values for x0 we have that there will be 3 different
approximations for x. Thus, by plugging in the values of x0 and the corresponding x1
into our assumption of x we have

x̃1 =
ε

2

x̃2 = 2− ε

4

x̃3 = −2− ε

4

(b) To evaluate our approximations for the roots with ε = 0.001 we simply substitute this
value into the equations from a). Hence we have

x̃1 = 5E− 04

x̃2 = 1.99975

x̃3 = −2.00025

9



(c) To solve for the unknown a, b, and c we can simply multiply out the expression given to
us and compare it to the original equation. That is we can consider

x3 − 4.001x+ 0.002 = (x− 2)(x2 + ax+ b)

= x3 + (a− 2)x2 + (b− 2a)x+ (−2b)

Thus we have the system of equations and solutions to be
a− 2 = 0

b− 2a = −4.001

−2b = .002

=⇒

{
a = 2

b = −0.001

So we have
x3 − 4.001x+ 0.002 = (x− 2)(x2 + 2x− 0.001)

Now solving for the roots the right hand side we have

x1 = −1 +

√
4.004

2
x2 = 2

x3 = −1−
√

4.004

2

Now to compare them in a numerical fashion we have

|x̃1 − x1| = 1.24937E− 07

|x̃2 − x2| = 2.49875E− 04

|x̃3 − x3| = 2.50000E− 04

Here we can note that our approximation is a good approximation for basic root finding,
especially considering the low computational cost, however for real application we would
like to have a smaller error in which we can just consider more higher order terms.
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