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Homework 1

Problem 1

In the blast wave problem discussed in class, assume instead

g(t, r, ρ, e, p) = 0

where P is the ambient pressure.

(a) How many dimensionless groups can be formed?

(b) Using these groups, does it still follow that r varies like the two-fifths power of t?

Solution: (a) Considering the dimensions of the variables in our g function we have the following:

t = [T ] r = [L] ρ = [ML−3] e = [ML2T−2] P = [M−2T−2L−1].

Defining the same variables from class we can let m denote the number of variables of g and n
denote the number of unique basic units. That is to say from above we can note that m = 5 and
n = 3. Forming our matrix of variable to basic units we have the following matrix

A =


t r ρ e P

T 1 0 0 −2 −2
L 0 1 −3 2 −1
M 0 0 1 1 1


Using MATLAB (code is not included due to it being a calculation but ready upon request) we
can calculate the rank ofA to be 3. Applying Buckingham’s π Theorem we have that there will be
m− rank(A) many dimensionless groupings. Since m = 5 and rank(A)=3 we know that there will
be 2 dimensionless groupings.

Note: since this is the first problem it will be worked out completely in the sense of superscripts
as well, then we will note the correlation to the matrix A in which the correlation will be used to
determine other system of equations derived throughout the homework.

Since we want to system to be dimensionless we apply superscripts to the variables to simplify
the problem into a system of equations, then solve. That is we have the following steps:

1 = [tα1rα2ρα3eα4Pα5 ]

=
[
Tα1Lα2(ML−3)α3(ML2T−2)α4(MT−2L−1)α5

]
=
[
Tα1−2α4−2α5Lα2−3α3+2α4−α5Mα3+α4+α5

]
Because the system needs to be dimensionless and the last line corresponds to our basic dimensions
we need the superscripts to be equal to zero for every term, that is to say we have the following
system of equations 

α1 − 2α4 − 2α5 = 0

α2 − 3α3 + 2α4 − α5 = 0

α3 + α4 + α5 = 0
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To see the correspondence between the system and the matrix A we define a vector α =
[α1, α2, α3, α4, α5]

T . Each αi corresponds to the i’th column variable, for example ρ = α3. With
this defined vector, the system is derived by the following equation

Aα = 0.

With this in mind, every problem after this will use this process, instead of doing the calculations
for the system through the basic dimension terms and their superscripts.

Back to the problem at hand, we are interested in time t and radius r, with this in mind we are
interested in α1 and α2 the corresponding superscripts. Through basic algebra we get the following
simplified system of equations 

α1 = 2α4 + 2α5

α2 = −5α4 − 2α5

α3 = −α4 − α5

Being interested in t and r we can consider the following two cases.
Case 1 Let α1 = 1 and α2 = 0. This gives the following system

1 = 2α4 + 2α5

0 = −5α4 − 2α5

α3 = −α4 − α5

Solving through MATLAB (again the code is not included for being a simple calculation, available
upon request) we get that

α3 = 0

α4 = −1

3

α5 =
1

3

Thus we get the following dimensionless grouping π1 = re−
1
3P

1
3 .

Case 2 Let α1 = 0 and α2 = 1. This gives the following system
0 = 2α4 + 2α5

1 = −5α4 − 2α5

α3 = −α4 − α5

Solving through MATLAB (code is not included, available upon request) we get that

α3 = −1

2

α4 = −1

3

α5 =
5

6

Thus we get the following dimensionless grouping π2 = tρ−
1
2 e−

1
3P

5
6 .
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(b) Now to see if the problem still follow that r varies like the two-fifth power of t, we use these
values for our superscripts pertaining to the variables. That is we let α1 = −2

5 and α2 = 1. From
this substitution we get the following system

−2
5 = 2α4 + 2α5

1 = −5α4 − 2α5

α3 = −α4 − α5

Solving this system in MATLAB we get that

α3 =
1

5

α4 = −1

5
α5 = 0

Thus we do have a dimensionless grouping that follows the set values, π = t−
2
5 rρ

1
5 e−

1
5 . Now to find

a function of r we can choose π1 to be the other dimensionless grouping for the following step. So
we have a function F (π, π1) = 0, in which we can make the assumption that π = h (π1) for some
function h. In other words we have the following implication by solving for r

π = t−
2
5 rρ

1
5 e−

1
5 =⇒ r = t

2
5 ρ

1
5 e−

1
5h (π) = t

2
5 ρ

1
5 e−

1
5h
(
re−

1
3P

1
3

)
Hence we still have that relationship, however with a function h that is still dependent on r.

Problem 2

A physical system is described by a law f(E,P,A) = 0 where E is energy, P is pressure, and A is
area. Show that

PA
3
2

E
= constant or E = κPA

3
2

where κ is a constant.

Solution: First we take note of the variables and their dimensions,

E = [ML2T−2] A = [L2] P = [MT−2L−1].

From here we can construct the following matrix:

A =


E A P

T −2 0 −2
L 2 2 −1
M 1 1 1


Taking note we have that the number of variables is m = 3 and calculating the rank of A being
2, using the Buckingham’s π Theorem we have 3 − 2 = 1 dimensionless groups. Defining α =
[α1, α2, α3]

T with respect to the variables E,A, and P (the columns of the matrix) we calculate
Aα = 0 to determine our system of equations. This quick calculation derives the following

−2α1 − 2α3 = 0

2α1 + 2α2 − α3 = 0

α1 + α3 = 0
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Solving the system algebraically we can find that there is a dependence between α1 and α3, that
is we have α1 = −α3. With this dependence we can we can let α1 = −1 which would imply that
α3 = 1, solving for α2 we have that α2 = α3

2 − α1 = 1
2 + 1 = 3

2 . Thus we have that E−1A
3
2P will

be dimensionless, or in other words

PA
3
2

E
= constant

Problem 3

We want to find the power P that must be applied to keep a ship of length L moving at constant
speed V . Assume P depends on the water density ρ, acceleration of gravity g, the viscosity of water
ν (units of length squared/time) as well as L and V . Show that

P

ρL2V 3
= f(Fr,Re)

where Fr = V√
Lg

and Re = V L
ν .

Solution: First we take note of the variables and their dimensions,

P = [ML2T−3] ν = [L2T−1] ρ = [ML−3] V = [LT−1] g = [LT−2] l = [L]

Constructing the matrix as done in previous problems we have

A =


P ν ρ V g l

T −3 −1 0 −1 −2 0
L 2 2 −3 1 1 1
M 1 0 1 0 0 0


To apply Buckingham’s π Theorem , we note that that the number of variables m = 6 and
computed rank of A is 3. Thus there are 3 dimensionless groupings. Here we can define α =
[α1, α2, α3, α4, α5, α6]

T to correspond to P , ν, ρ, V , g, and l. Then to get the system of equation
we calculate Aα = 0 and get

−3α1 − α2 − α4 − 2α5 = 0

2α1 + 2α2 − 3α3 + α4 + α5 + α6 = 0

α1 + α3 = 0

It is clear that we have an over-determined system of equations so we look at the question at hand
to give us some insight to the problem, that is to say we consider the following cases.
Case 1 We have that Fr = V√

Lg
= V l−

1
2 g−

1
2 , this would imply that α4 = 1, α5 = −1

2 , and α6 = −1
2 .

With this in mind we can use these values to turn our over-determined system to a solvable system
of equation through substitution. The resulting system is

−3α1 − α2 = 0

2α1 + 2α2 − 3α3 = 0

α1 + α3 = 0

Solving the system we get that α1 = 0, α2 = 0, and α3 = 0. That is to say that with α4 = 1,
α5 = −1

2 , and α6 = −1
2 we have a dimensionless grouping. Hence π1 = Fr.
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Case 2 We also have that Re = V l
ν = V lν−1, this would imply that α2 = −1, α4 = 1, and α6 = 1.

Substituting this into our over-determined system we get the new system to be
−3α1 − 2α5 = 0

2α1 − 3α3 + α5 = 0

α1 + α3 = 0

Solving the system we get that α1 = 0, α3 = 0, and α5 = 0. That is to say that with α2 = −1,
α4 = 1, and α6 = 1 we have a dimensionless grouping. Hence π2 = Re.
Case 3 Lastly we have from the question P

ρl2V 3 = Pρ−1l−2V −3, this would imply that α1 = 1,
α3 = −1, α4 = −3, and α6 = −2. With these values we can substitute it into the original system
to get a solvable one, which turns out to be

−α2 − 2α5 = 0

2α3 + α5 = 0

0 = 0

Solving the system confirms that α2 = 0 and α5 = 0, which implies that with α1 = 1, α3 = −1,
α4 = −3, and α6 = −2 we have a dimensionless system. Hence π3 = P

ρl2V 3 .

With these 3 cases we have that F (π1, π2, π3) = 0 in which we can make the assumption that
π1 = f(π2, π3) for some function of f . That is to say we have shown, with the substitutions of πi
for i = 1 : 3, the following

P

ρL2V 3
= f(Fr,Re)

Problem 4

The Lennerd-Jones potential is defined by

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
where σ and ε are constants. This is the potential for many molecular systems, separated by a
distance r. In general it is known that the viscosity µ (mass/(length and time)) of a gas depends
only on the temperature and molecular properties. Show that it is not possible, however, for

µ = f(m, ε, σ, τ)

for some function f , where m is the molecular mass, τ is the temperature. On the other hand, by
including Boltzmann’s constant κ (1.38× 10−6erg/K◦) show that

µσ2√
mε

= f
(κτ
ε

)
.

Solution: To show that it is not possible for the viscosity of a gas depends only on the temperature
and molecular properties for µ = f(m, ε, σ, τ) we first consider the dimensions of the variables for
f . That is we have the following

σ = [L] ε = [ML2T−2] m = [M ] τ = [K]
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Now we also know that µ = [ML−1T−1], so for µ = f(m, ε, σ, τ) we have that f = [ML−1T−1] as
well. Thus we can see if the relationship described is not possible by solving for the superscripts
as done so for Problem 1. that is we have the following

ML−1T−1 = [mα1 , εα2 , σα3 , τα4 ]

= Mα1
(
ML2T−2

)α2 Lα3Kα4

= Mα1+α3L2α2+α3T−2α2Kα
4

Thus we have the following system of equations by comparing the left and right hand side of the
equality: 

α1 + α2 = 1

2α2 + α3 = −1

−2α2 = −1

α4 = 0

Solving the system leads to the following values: α1 = 1
2 , α2 = 1

2 , α3 = 0, and α4 = 0. Hence we
see that the superscript dealing with the temperature τ is α4 = 0, thus the relationship described
in the problem does not exist for µ = f(m, ε, σ, τ).

Now we are asked to add the constant κ = [KL2T−1K−1], so that it is claimed that

µσ2√
mε

= f
(κτ
ε

)
.

For briefness of discussion we will label the left hand side of the equality to be the LH, and the right
hand side of the equality to be RH. Constructing the matrix as done so in the previous problems
we have

A =


m ε σ τ κ µ

T 0 −2 0 0 −2 −1
L 0 2 1 0 2 −1
M 1 1 0 0 1 1
K 0 0 0 1 −1 0


Constructing the α vector to correspond with the variables we have the following system of equations

−2α2 − 2α5 − α6 = 0

2α2 + α3 + 2α5 − α6 = 0

α1 + α2 + α5 + α6 = 0

α4 − α5 = 0

For the LH we can see that α1 = −1
2 , α2 = −1

2 , α3 = 2, and α6 = 1. Plugging these values into
the system we get the following system of equations

−2α5 = 0

2α5 = 0

α5 = 0

α4 − α5 = 0

Here it is obvious that α5 = 0 which directly implies that α4 = 0, thus we the α values that the LH
side holds the relationships responsible for a dimensionless grouping. For the RH we can see that
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α2 = −1, α4 = 1, and α5 = 1. Plugging these values into the system we get the following system
of equations 

α6 = 0

α3 − α6 = 0

α1 + α6 = 0

0 = 0

Since we can see that α6 = 0 which directly implies that α1 = 0 and α2 = 0, so the properties of a
dimensionless group holds. Now considering Buckingham’s π Theorem we also can note that the
number of variables is m = 6 where the rank of A is n = 4 implies that there are 2 dimensionless

groupings, in which we have in our LH and RH. So we have that F (π1, π2) = 0 with π1 = µσ2
√
mε

and

π1 = κτ
ε . Thus letting π1 = f(π2) and solving for µ we have the following

µ =

√
mε

σ2
f
(κτ
ε

)
which shows the desired description of µ.

Problem 5

Consider the heat equation problem on a 1D rod:

∂u

∂t
− κ∂

2u

∂x2
= 0

where u = u(x, t) is temperature, 0 ≤ x ≤ L is the position coordinate, 0 < t is time, κ is thermal
diffusivity, κ is in dimension L2T−1. The boundary conditions are u(x = 0, t) = T◦ for t > 0. T◦ is
a constant known temperature. The rod is initially at u(x, 0) = 0 for 0 < x < l.

(a) Find the scaling that turns the problem into

∂ũ(x̃, t̃)

∂t̃
− ∂2ũ(x̃, t̃)

∂x̃2
= 0 t̃ > 0 and 0 < x̃ < 1

ũ(x̃, 0) = 0 0 < x̃ < 1

ũ(0, t̃) = ũ(1, t̃) = 1 t̃ > 0

(b) What can you say about the typical rate of change of u by your choice of time scale?

Solution: (a) To find the scaling to transform the problem into the desired result we first consider
the following dimensions

κ = [L2t−1] x = [L] t = [T ] u = [K] T◦ = [K] l = [L]

To write the variables in a dimensionless form we can consider the following

ũ = T−1◦ u =⇒ u = ũT◦

t̃ = tκl−2 =⇒ t = t̃κ−1l2

x̃ = xl−1 =⇒ x = x̃l
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Since we will wish to substitute these dimensionless terms into the PDE, we will also consider the
partial differential operators under this transformation by using the chain rule as such:

∂

∂t
=

∂

∂t̃

∂t̃

∂t
= κl−2

∂

∂t̃
∂2

∂x2
=

∂

∂x

(
∂

∂x̃

∂x̃

∂x

)
=

∂

∂x

(
l−1

∂

∂x̃

)
= l−2

∂2

∂x̃2

Thus by considering each term of the original PDE separately we see the following result:

∂u

∂t
= κl−2

∂u

∂t̃
= κl−2T◦

∂ũ

∂t̃
∂2u

∂x2
= l−2

∂2u

∂x̃2
= l−2T◦

∂2ũ

∂x̃2

Making the substitution into the PDE we have the following implication:

κl−2T◦
∂ũ

∂t̃
− κl−2T◦

∂2ũ

∂x̃2
= 0 =⇒ ∂ũ

∂t̃
− ∂2ũ

∂x̃2
= 0

Now considering the domain, initial conditions and boundary conditions of the problem and the
dimensionless terms we have the following list of implications with substitutions:

0 < x < l =⇒ 0 < x̃l < l =⇒ 0 < x̃ < 1

0 < t =⇒ 0 < t̃κ−1l2 =⇒ 0 < t̃

u(x, 0) = 0 =⇒ ũ(x, 0)T◦ = 0 =⇒ ũ(x, 0) = 0

u(x, t) = T◦ =⇒ ũ(0, t)T◦ = T◦ =⇒ ũ(0, t) = 1

u(l, t) = T◦ =⇒ ũ(1, t)T◦ = T◦ =⇒ ũ(1, t) = 1

Combining all this information into a more ordinary looking format we have

∂ũ(x̃, t̃)

∂t̃
− ∂2ũ(x̃, t̃)

∂x̃2
= 0 t̃ > 0 and 0 < x̃ < 1

ũ(x̃, 0) = 0 0 < x̃ < 1

ũ(0, t̃) = ũ(1, t̃) = 1 t̃ > 0

(b) A typical change of rate in u pertaining to our choice of time scale is simply to look at ∂ũ
∂t̃

, that
is we are looking at the term that was calculated for part (a)

∂u

∂t
= κl−2T◦

∂ũ

∂t̃

Solving for ∂ũ
∂t̃

we have that
∂ũ

∂t̃
= l2κ−1T−1◦

∂u

∂t

Considering what we see above we can determine that one change in dimensionless quantities
represents a change in l2κ−1 per unit of temperature. Also in taking note of what the variables
stand for it also gives us a time scale that relates the length of the bar to the diffusivity.
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