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We present an experimental and numerical study of the wavelength dependence, near resonance, of the optical
tweezer trap stiffness on three different dye-doped 1 um polystyrene spheres with peak absorptions at A\
=625, 775, and 840 nm. Experimentally, an increase in the trap stiffness of ~35% on the red side of resonance
was observed for the dye-doped spheres relative to polystyrene spheres without dye. Numerical simulations for
spheres of different sizes, between 20 nm and 1 um, and for absorption strengths corresponding to peak ex-
tinction coefficient values between 0.0027 and 0.081 were also conducted. Numerical results showed a maxi-
mum increase in the trap stiffness of ~35%, which is consistent with experimental results. © 2009 Optical

Society of America
OCIS codes: 140.7010, 160.4760.

1. INTRODUCTION

Since 1970 optical traps have been used to confine and
manipulate particles for applications in chemistry, biol-
ogy, engineering, and physics [1]. In particular, single-
beam gradient traps, referred to as optical tweezers, have
been used to manipulate micrometer-sized dielectric par-
ticles, which can be trapped with low- to moderate-power
lasers. Optical tweezers with particles on this size scale
have been used in experiments that include observing me-
chanical properties of DNA [2], measuring forces pro-
duced by molecular motors [3], micromachining, and as-
sembling both ordered arrays and 3D structures of
particles [4]. However, experiments done with nanometer-
sized particles, or “nanoparticles,” are limited [5,6]. Given
the recent emphasis on nanotechnology and the desire to
design experiments on the nanoscale, there is motivation
to trap and manipulate particles on this scale. Further-
more, the ability to not only confine nanoparticles but to
further suppress their natural Brownian motion to the
nanometer and subnanometer scales is desirable. One
possible application is a nanometer-sized fluorescent
probe for biological experiments. Such an application
would require spatial control of the nanometer-sized
probe with a high precision without using large laser pow-
ers to avoid damaging the object under observation. How-
ever, adapting optical tweezers for applications on the
nanoscale is difficult because the trapping force on nano-
particles scales with the volume of the particle [6]. Thus,
under the same conditions, the force acting on a 1 nm par-
ticle is 10% times smaller than the force on a 100 nm par-
ticle.

A possible method to increase the trapping force ex-
erted on nanoparticles would be to exploit optical reso-
nances. For example, atoms, on the subnanometer scale,
have been successfully trapped using optical tweezers [7].
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The reason that atoms can be trapped is that the wave-
length of the trapping laser can be tuned close to a strong
resonance transition where the optical response of the
atom is enhanced. However, resonances in transparent di-
electric spheres are in the ultraviolet, far from the typical
near-infrared wavelengths used in optical tweezers. Po-
tential candidates for resonance-enhanced optical trap-
ping include metallic nanoparticles, metal-dielectric
nanoshells, quantum dot nanocrystals, chromophore-
doped nanoshells, dye-doped dielectric particles, and car-
bon nanotubes. In all of these cases, we can tune the laser
wavelength to match the optical response and thus en-
hance the optical forces. An even more exciting prospect is
that in many cases we can tune the particle’s optical re-
sponse through synthesis to a range of wavelengths that
includes a desired trapping wavelength [8-12].

To explore the possibilities of resonance-enhanced opti-
cal trapping, we have conducted experiments with poly-
styrene spheres doped with various dyes and performed
numerical calculations of the trapping forces. The aim of
these experiments and calculations is to study the addi-
tional force contributions from the resonance of the dye
that is added to spheres, in particular, the wavelength de-
pendence. These spheres are a model system to quantita-
tively explore this resonance effect on the trapping force
as they have been used extensively in optical tweezers,
and the forces on transparent polystyrene spheres are
well understood. Our experimental and numerical results
suggest, however, that a dye resonance does not provide a
significant increase in the trapping force at wavelengths
near resonance.

2. THEORY

The force acting on a particle in an optical tweezer trap is
a result of the transfer of momentum between the highly
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focused laser light and the particle. The forces acting on a
spherical particle of arbitrary size can be determined ana-
lytically using electromagnetic (EM) scattering theory.
For spherical particles much smaller or much larger than
the wavelength of the trapping light, approximations can
be applied to make the calculation of the trapping force
less intensive. In addition, when using these approxima-
tions to calculate the trapping force (Fy.qp) it is possible to
separate the force into three components: the scattering
force (Fyeqs), the absorption force (Fgap,), and the gradient
force (Fgrqq), Where Fyup=Fgrqq+Fscar+Faps [13]. The
gradient force attracts the particle toward the high inten-
sity focus of the trap, to trap the particle, and acts as a
restoring force when the particle is displaced from equi-
librium. The scattering and the absorption forces act in
the direction of propagation of the laser, pushing the par-
ticle away from the high intensity focus. If the scattering
and the absorption forces exceed the gradient force, it is
not possible to trap the particle in three dimensions [14].
When performing calculations using rigorous EM theory,
the trapping force cannot be easily separated into the
scattering, absorption, and gradient forces, but qualita-
tively the gradient of the field traps the particle, while
scattering and absorption destabilize the trap.

A. Optical Tweezer Force on an Arbitrarily Sized Sphere
To calculate the forces acting on an arbitrarily sized
sphere, the EM scattering theory must be employed to de-
termine the EM fields scattered from the sphere in the
trap. The Lorentz—Mie theory can be used to obtain an
analytical solution of the scattered fields from a sphere,
given an incident plane wave EM radiation [15,16]. How-
ever, optical tweezers are created using highly focused
light. Several techniques have been developed to extend
the Lorentz—Mie theory to fields scattered from a sphere
with arbitrary incident EM fields, including the general-
ized Lorentz—Mie theory (GLMT) and the 7-matrix
method [17].

In the case of optical tweezers, the incident EM field is
typically a highly focused Gaussian-profiled, or TEM,,
laser beam. A significant amount of research has been
conducted on calculating the EM fields and forces in opti-
cal tweezers acting on a spherical particle using the
GLMT and the T-matrix methods [18,19]. In both these
methods, the incoming highly focused Gaussian field is
expressed as an expansion of vector spherical wave func-
tions (VSWFs), which are functions of spherical Bessel
functions [20]. The expansion coefficients of the VSWF's
that define the fields of the incoming Gaussian beam are
determined using a point matching algorithm in the far
field [21]. The EM field scattered from the particle (i.e.,
outgoing field) can then be determined from the incoming
field using the T-matrix method [17]. For example, Niem-
inen et al. [22] presented the incoming and outgoing fields
(E;, and E;, respectively) in terms of the VSWF and ex-
pansion coefficients as follows:

Ey=> > a;MP(k,r) +b,NP(k,r), (1)
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where k,,=27/)\,, is the wavenumber in the surrounding
medium; r is the position vector; MEJZ-) and NEJZ-) are the
VSWFs; and a;j, b;j, p;j, and g;; are the expansion coeffi-
cients. With expressions for the incoming and outgoing
EM fields—given by Eqgs. (1) and (2), respectively—the
forces acting on the sphere in the Gaussian beam can be
calculated by evaluating the momentum transfer from the
EM fields to the particle, because the change in momen-
tum of the particle must equal the change in momentum
of the fields. This change in momentum, and thus the
trapping force, can be calculated by taking a surface inte-
gral of the Maxwell stress tensor over a spherical surface
in the far field. In particular, the force acting in the direc-
tion parallel to the propagation of laser light (taken here
as the z direction) in SI units is [23]
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where n,, is the index of refraction of the surrounding me-
dium and c is the speed of light. The forces in the trans-
verse direction (i.e., x and y directions) are obtained using
the same expressions for the EM fields [Egs. (1) and (2)]
by rotating the coordinate system and defining new coef-
ficients a;;, b;j, p;j, and g;; in the rotated frame of reference
[19,24]. In the two limiting cases, d >\ and d <\, where d
is the sphere diameter and \ is the wavelength of the
trapping light, the expressions for the trapping force are
simplified as described below.

1. Geometric Optics Regime (d>\)

In the geometric optics regime (d>1\), the focused light
that creates the optical tweezer trap can be described as
an infinite number of rays that are incident on, and inter-
act with, the particle at different angles, where the range
of angles is determined by how strongly the light is fo-
cused. When each ray strikes the surface of the sphere, a
portion of the light is scattered, a portion is absorbed, and
a portion is transmitted. The relative amplitudes of the
light that is scattered, transmitted, or absorbed depend
on the index of refraction of the particle. The light that is
reflected and absorbed by the sphere results in radiation
pressure, or the scattering and absorption forces that act
in the direction of propagation of the light. The transmit-
ted light is refracted, resulting in a change in momentum
as it enters and exits the sphere, which—according to
Newton’s third law—imparts an equal and opposite
change in momentum to the particle. This change in mo-
mentum resulting from the refraction of the transmitted
light is proportional to the force that confines the sphere
and is referred to as the gradient force. In the geometric
optics regime, a concise form of the total force (combining
scattering and gradient forces) acting on a dielectric
sphere when in an optical trap has been given by Ashkin
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[25]. The expressions for the force in [25] show that rays
incident at large angles contribute more to the gradient
(and thus the trapping) force than those incident at small
angles, with a maximum contribution from rays incident
at an angle near 70° [26]. This dictates the choice of high
numerical aperture (NA) objectives for optical tweezer
traps.

2. Rayleigh Regime (d<<\)

In the Rayleigh regime (d <)), the reaction of the particle
to the incident EM field at any instant in time is approxi-
mately constant throughout the particle. The particle can
then be approximated as a point dipole. In this regime,
the trapping force acting on the dipole can succinctly be
broken up into three components: the scattering, the ab-
sorption, and the gradient forces. In the case of a sphere,
the scattering and absorption forces (Fy.q; and F,, re-
spectively) acting on the particle in the trap are [6]

N 4r°n,, )
Fscat= k T Cscatlzk 083}\4 |a‘ I’ (4)
A 27
Fops= k| — CabsI =k [Im(a)]l, (5)
c ceLN

where C,.,; and C,, are the scattering and absorption
cross sections, g, is the dielectric constant in vacuum, « is

the complex polarizability of the sphere, & is the unit vec-
tor in the direction of propagation of the laser beam, and
I is the intensity of trapping light. The polarizability of
the sphere is related to the index of refraction by the
Clausius—Mossotti equation (in SI units) [27],

(d)3 m?-1
a=4me, 5 5.1 (6)

where ¢, is the dielectric constant, in ST units, of the sur-
rounding material and m is the relative complex index of
refraction, which is the ratio of the index of refraction of
the sphere (n,) to the index of refraction of the surround-
ing medium (n,,). The third force acting on the sphere is
the gradient force Fg,qq [28],

Re(a@)

(7

grad = €,
The trapping force on the sphere is the vector sum of
Fgrad> Fscar, and Fgpe. In the Rayleigh regime, the scat-
tering force, which depends on the volume of the particle
squared, is small compared with the gradient force, which
depends on the volume [Egs. (4), (6), and (7)]. Further-
more, it can be seen from Egs. (5)—(7) that an increase in
the trapping force can be obtained if the polarizability can
be adjusted such that there is an increase in the real part
of the polarizability, and hence Fg,qq, without a substan-
tial increase in the imaginary part, and F,p,.

B. Resonant Enhancement of Optical Tweezer Trapping
Force

Regardless of the sphere size, the force acting on a
trapped particle depends on the complex index of refrac-
tion of the material. The real part of the index of refrac-
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Fig. 1. (Color online) (a) Real and imaginary parts (n and «, re-
spectively) of the complex index of refraction near resonance, ob-
tained from the classic electron oscillator model of the dielectric
constant. (b) The real and imaginary parts of the polarizability, «
in units of meters cubed near resonance, calculated using the
complex index of refraction in (a), and the Clausius—Mossotti
equation [Eq. (6)]. Both (a) and (b) show that there is an increase
in either the real part of the index of refraction (i.e., in the re-
fractive index n) or the real part of the polarizability on the red
side of the resonance, which can be related to the forces acting on
a particle in an optical trap.

tion, the refractive index n, is attributed to reflection and
refraction; and the imaginary part, the extinction coeffi-
cient «, is attributed to absorption [29]. The behavior of
the complex index in the vicinity of a resonance is illus-
trated in Fig. 1(a), which was calculated using the classic
electron oscillator model [30]. The corresponding polariz-
ability of a sphere with a diameter of 50 nm is calculated
using Eq. (6) and is shown in Fig. 1(b). On the red side of
resonance (e.g., >790 nm in Fig. 1) the increase in the
real part of the polarizability exceeds the increase in the
imaginary part so that the increase in the gradient force
due to resonance is larger than the increase in the absorp-
tion force, resulting in an enhancement in the trapping
force.

Enhancement in the gradient force on the red side of an
optical resonance has been exploited in the past to trap
atoms and molecules on the subnanometer scale [7,31].
More recently, plasmon resonant particles ranging in size
from 18 to 254 nm have been trapped experimentally with
optical tweezers at wavelengths on the red side of reso-
nance [14,32,33]. The applicability of the enhancement of
the trapping force on nanometer-sized nonmetallic ab-
sorbing spheres has previously been explored theoreti-
cally, and the possibility of up to an order of magnitude
increase was predicted [34].

3. EXPERIMENTAL

To quantitatively explore the wavelength dependence of
optical forces in the vicinity of a resonance we have con-
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ducted experiments using 1 um polystyrene spheres
doped with dye. We used micrometer-sized spheres be-
cause they are widely used in many optical tweezer appli-
cations, and techniques for trapping and measuring the
optical trapping force on them are well documented
[13,35,36]. In our experiments we measured the trapping
force at multiple wavelengths near the dye resonance. As
a control, similar measurements were taken on spheres
without dye.

The dyed particles used in our experiments had peak
absorption at wavelengths close to the tunability range of
the trapping laser. The three types of particles we used
were all 1 um in diameter and had peak absorption at
wavelengths of 625 (Crimson Spheres, Molecular Probes,
Inc.), 775 (Duke Scientific, Inc.), and 840 nm (Duke Sci-
entific, Inc.), later referred to as “625,” “775,” and “840
nm” spheres, respectively. We independently measured
the extinction spectra of dyes used in the 775 and 840 nm
spheres after extracting the dye from the spheres by dis-
solving them in acetone and filtering the solution using a
200 nm pore. The extinction spectra in Fig. 2 show that
the dyes used in the 775 and 840 nm spheres have peak
absorption in acetone at 760 and 825 nm, respectively.
The inset in Fig. 2 shows the extinction spectrum of the
840 nm spheres in a de-ionized water (Di—H,0) suspen-
sion. The spectrum of the dye-doped spheres is redshifted
by ~15 nm and broadened, as compared with that of the
dilute solution of the same dye in acetone (Fig. 2), due to
aggregation effects. Similar effects were observed in the
775 nm spheres as well. We also verified that the dye was
loaded in the spheres, and not in the solution, by filtering
the dye-doped spheres from their Di—H,O suspensions
using a filter with a 200 nm pore size. Extinction spectra
measurements of the solutions were then taken before
and after filtering. The spectral data suggested that no
discernible amount of dye existed in the solution. Polysty-
rene spheres with a diameter of 1 um without dye (trans-
parent) from Duke Scientific, Inc. were also used as a con-
trol. All spheres were obtained from the manufacturer as
a suspension in Di—-Hy0 at concentrations between 2%
and 10% by weight. These suspensions were ultrasoni-
cated and further diluted with Di—H,O so that measure-
ments could be taken without multiple spheres falling
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Fig. 2. (Color online) Extinction spectra of the dyes used in the
775 and 840 nm spheres in a dilute acetone solution, with peak
absorption at 760 and 825 nm, respectively. The inset shows the
spectrum of a Di—H,O suspension of the 840 nm spheres, which
has a broadened peak that is redshifted by ~15 nm, as compared
with the same dye in the acetone solution.
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into the trap at the same time. Sample solutions were
held between a microscope slide and a coverslip in a se-
curely sealed fluid chamber.

Optical tweezer trapping was performed in a custom in-
verted microscope assembly with an oil immersion micro-
scope objective (Edmund Optics, 100X, NA of 1.25) as
shown in Fig. 3. Particles were trapped with either a con-
tinuous wave (cw) Ti:sapphire laser, tunable between 750
and 840 nm, or a diode laser (A=980 nm). The objective
was placed on a 1D stage (z direction) to control the posi-
tion of the trap in the sample. The sample was placed on
a 2D stage (x and y directions) to control the trap position
in the plane of the sample. For trap strength measure-
ments, a helium-neon laser (633 nm) and Hamamatsu
S4349 quadrant photodiode (QPD) were used to measure
scattered light from the sphere undergoing Brownian mo-
tion in the trap [37]. The QPD signal was collected using
a data acquisition card (DAQ) (NI-6221), and data acqui-
sition was done using a custom LabView program. A halo-
gen lamp and a CCD camera were used to illuminate the
sample and image particles.

For our measurements we define the z direction as the
direction of propagation of the laser beam and the x and y
directions as transverse to the propagation. To measure
the trap strength in the x direction the time series of the
particle undergoing Brownian motion within the trap was
acquired [Fig. 4(a)] and analyzed. In our analysis, we as-
sumed that the trapping laser beam had a Gaussian spa-
tial profile resulting in a Hooke’s law restoring force,
Fiop X=—kxx, acting on the particle when it is displaced
small distances x from equilibrium in the trap, where &,
is the trap stiffness (or the trap strength) and x is the unit
vector in the x direction. To support the validity of experi-
mental results, we applied more than one data analysis
technique to determine the trap stiffness. These included
using the variance of the particle’s motion in the trap
[Fig. 4(a)] and the equipartition theorem, a Gaussian fit
to a histogram of the distribution of the particle’s fluctua-
tions within the trap, and the corner frequency of the

halogen

Jjame —
< quadrant \: =
/ photo detector
0 '| detection laser
D3||| L1 IR filter 633 nm
condensor M1/

H— sample on x-y stage
P S 3= |xy-zstage

objective on z stage

D2 L4 trapping laser

I}

j 01”7 U
L2
CCD

camera

Fig. 3. (Color online) Experimental setup used to measure opti-
cal tweezer trap strength. Optical tweezer trapping was achieved
by focusing either cw Ti:sapphire laser light (tunable between
750 and 840 nm) or diode laser light (980 nm) with a high NA
objective. A detection laser (He-Ne) and a quadrant photodetec-
tor were used to measure the suppressed Brownian motion of a
particle in the trap, from which the trap strength can be ob-
tained. Notations: L, lenses; D, dichroic mirrors; and M, mirrors.
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Fig. 4. Example of the experimental data used for trap stiffness
measurements. (a) Time series data of suppressed Brownian mo-
tion of a 1 um dye-doped polystyrene sphere in the optical trap at
the wavelength of 810 nm at 28 mW. The trap stiffness is ob-
tained using the standard deviation of the data and equipartition
theorem. (b) The power spectrum of the Brownian motion data in
(a). The trap stiffness is obtained from the corner frequency, f,, of
the spectrum, which in this case is f,=136.0 Hz.

power spectrum of the particle’s suppressed Brownian
motion in the trap [Fig. 4(b)] as described in detail in
[13,33,38]. For example, in Fig. 4(a) the variance of the
particle’s displacement, ¢2=(22.2 nm)?2, yielded the trap
stiffness, k,=8.3 pN/um, using the equipartition theo-
rem,

1 2 1
—k,0°=—kgT, 8
9 X 9 B ( )

where kp is the Boltzmann constant and 7' is the tempera-
ture. The power spectrum of the position fluctuations
[Fig. 4(b)] is given by [13]

kT
TR+

where f is the frequency, B is the drag coefficient of the
particle in water, and f, is the corner frequency, which is
proportional to the trap stiffness, f,=%,/(278). The data
in Fig. 4(b) yielded a corner frequency of 136 Hz and a
spring stiffness of £,=8.0 pN/um. A criterion for a reli-
able determination of the trap stiffness was that the three
data analysis methods yielded similar values of &, (within
10%-15%). Experimental controls, including measure-
ments of the sphere-to-sphere and sample-to-sample
variations of the trap stiffness, using our experimental
procedures were conducted, and an experimental uncer-
tainty of approximately 15% was determined. The linear

x(H? = 9
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dependence of the trap stiffness on the trapping laser
power was also verified for both dye-doped and transpar-
ent spheres.

The trapping was done at a distance of approximately
16 um from the coverslip inside the sample to avoid hy-
drodynamic effects near the coverslip surface. Particles
were typically trapped at laser powers between 8 and 48
mW as measured after the dichroic mirror D2 and before
the microscope objective (Fig. 3). To reduce the experi-
mental uncertainty, measurements at each wavelength
were performed on two to three spheres, with multiple
data sets taken for each trapped sphere. The trap stiff-
ness measurements at each wavelength were then aver-
aged. Under the same experimental conditions, measure-
ments on 1 um transparent polystyrene spheres were
also taken at each wavelength. The data from the dye-
doped spheres were then normalized using the data from
the transparent spheres. This was done to eliminate pos-
sible changes in the trapping force that may have re-
sulted from slight variations in the incident laser beam
characteristics upon adjusting the wavelength, any wave-
length dependence of the optics, etc.

4. RESULTS AND DISCUSSION

A. Experimental

Figure 5 shows the transverse trap stiffness values
(k,-dyed), measured for the 625, 775, and 840 nm spheres
normalized by those obtained for the transparent spheres
(k,-transparent). An enhancement in the trap stiffness, as
presented, is a value of k,-dyed/k,-transparent greater
than 1. Measurements for the 625 nm spheres were taken
at wavelengths between 740 and 840 nm, which are on
the red side of resonance. These results show that the 625
nm spheres could be trapped stably (i.e., trapped indefi-
nitely long in three dimensions) at all wavelengths, and
no significant change in the trap stiffness was observed as
a function of wavelength. For the 775 nm spheres, mea-
/,
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Fig. 5. Experimental results for the measurements of the trap
stiffness near resonance. The wavelength dependence of the trap
stiffness values (k dyed) is shown for 625, 775, and 840 nm dye-
doped polystyrene spheres, all normalized by those measured on
transparent spheres (k£ transparent) under the same conditions.
An enhancement in the trap stiffness is a value greater than 1.
For the 625 and 775 nm spheres, variations of the trap stiffness
were within ~10% near resonance, which was within our experi-
mental uncertainty. For the 840 nm spheres, a large effect due to
the dye was observed, as no stable trapping could be achieved at
750-840 nm, but at 980 nm stable trapping was observed with a
trap stiffness enhancement of ~35%.
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surements were taken at wavelengths between 755 (on
the blue side of resonance) and 840 nm (on the red side of
resonance). For these particles, stable trapping was also
possible at all wavelengths, with no significant difference
between trap stiffness values at wavelengths on either
side of resonance. For the 840 nm spheres we measured
the trap strength on the red side of resonance at 980 nm,
finding a small ~35% increase in the trap stiffness. How-
ever, the 840 nm spheres could not be stably trapped at
wavelengths between 750 and 840 nm, which are on the
blue side of resonance. At these wavelengths they could be
trapped momentarily (~10 s) before diffusing from the
trap. When stable trapping was not observed the trap
stiffness was considered to be £,=0 in Fig. 5. It can be
seen from the data that there was little enhancement in
the trap stiffness observed experimentally for the 625,
775, and 840 nm spheres, with an ~35% increase in the
trap stiffness for the 840 nm spheres observed at a wave-
length of 980 nm, and a ~10% increase for both the 625
and 775 nm spheres (which is within our experimental
uncertainty).

B. Numerical Simulations

To aid in the explanation of these experimental results
and to obtain further insight, we modeled the optical
properties of our dye-doped spheres and calculated the
force acting on them in an optical tweezer trap. In par-
ticular, we calculated the trap stiffness of both dye-doped
and transparent polystyrene spheres in an optical trap at
multiple wavelengths near resonance using software de-
veloped by Nieminen et al. [23]. The program implements
the T-matrix formalism numerically, as described in Sub-
section 2.A, to calculate the trapping force, from which
the trap stiffness can be determined by using Fy.p
=Fap X+ Fpap Y+ F g, 2=—kXxX—kyy—k,z2. Numeri-
cal results for the trap stiffness and for the dimensionless
trap efficiency @ in the x and z directions are presented in
this section. The trap efficiency is related to the trapping
force by Fy,, ;=n,PQ;/c, where P is the laser power.

To model the complex index of refraction of the dye-
doped polystyrene spheres, we obtained values of the mo-
lar extinction coefficient (from the manufacturer) for the
dye in the spheres as a function of wavelength. The imagi-
nary part of the index of refraction, x, was then deter-
mined by using the molar extinction coefficient data, the
molecular weight of the dye, the percentage dye loading of
the sphere, the density of polystyrene, and the assump-
tion that the dye was uniformly distributed in the sphere.
The wavelength dependence of the extinction coefficient «
was then fit using the classic electron oscillator model of
the complex dielectric constant [29],

o? - ?
Re[g(w)/e,] =& + El: ﬁm, (10)
Yiw (11)

Im([&(w)/e,] = 2 fi—
i (0] -

W) + (yj0)*

and the relationship between the complex dielectric con-
stant and the complex index of refraction,
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n(w) =n(w) +ik(w) = Je(w)/s,, (12)

where g, is the relative dielectric constant of the trans-
parent polystyrene sphere (g,=2.53), w; are resonant fre-
quencies, vy; are the damping coefficients, and f; are scal-
ing variables that are proportional to the molecular
density and oscillator strength of the resonances. For the
fit of « [Fig. 6(a)] we assumed two resonance frequencies
(i=1,2). The 775 nm spheres have a peak value of xpe,i
=0.054. The refractive index n was then obtained using
the fit parameters, f;, v;, and Eqgs. (10)-(12) as shown in
Fig. 6(b). A similar analysis performed for the 840 nm
spheres yielded a peak value of kpea=0.106.

To calculate the trap stiffness for the model of the 775
nm dye-doped polystyrene spheres we first calculated the
trap efficiency @ as a function of position in the trap. Ex-
ample calculations of @ for the 775 nm dye-doped sphere
as a function of position, at two trap wavelengths, are
shown in Fig. 7. Simulations were performed using values
from our experiments of n,,=1.33 and NA=1.25. Overfill-
ing of the back aperture of the objective was not ac-
counted for in the calculations (i.e., the Gaussian beam
was not truncated). The geometry within the trap is
shown in the inset of Fig. 7(a), with the origin of the co-
ordinate system located at the focus of the trap. The trap
efficiency @, (i.e., in the direction of laser propagation) as
a function of position z is shown in Fig. 7(a) for wave-
lengths where both stable trapping occurs (A=596 nm)
and stable trapping is not possible (A=641 nm). For
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Fig. 6. (Color online) Wavelength dependence of the (a) imagi-
nary and (b) real parts of the complex index of refraction, calcu-
lated by applying the classic electron oscillator model to the case
of the 775 nm spheres used in our experiments. (a) Values for the
imaginary part of the index of refraction, «, obtained from the
manufacturer of the dye in the 775 nm spheres (diamonds), fit
using the classic electron oscillator model of the dielectric con-
stant (curve). (b) The corresponding refractive index values n cal-
culated using the parameters extracted from the fit of the « val-
ues in (a) and Egs. (10) and (12).
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Fig. 7. (Color online) Numerically calculated trap efficiency @ in
the (a) z direction (®,) and the (b) x direction (®,) as a function of
position (z and x respectively) for the 775 nm spheres with
Kpeak=0.054 and a diameter of 1 um. The laser beam propagation
is along the z axis, as indicated in the inset of (a). The trap stiff-
ness k, is determined from the slope of the @,(z) at z=z,,, as il-
lustrated in (a) for the case of A=596 nm. At A\=641 nm, stable
trapping is not possible (i.e., 2., is not achieved), and therefore in
(b) the @, data are shown only for A=596 nm. The trap stiffness
k. is calculated from the slope of @,(x) at x=0 (i.e., in the center
of the beam).

stable trapping to occur the magnitude of the gradient
force must be larger than the scattering and absorption
forces. When this is the case, the particle will find a stable
equilibrium point at a positive z position in the trap (z.,)
where the trapping force in the z direction and @, are
equal to zero. However, if the magnitude of the sum of the
scattering and absorption forces is larger than the gradi-
ent force, then stable trapping in three dimensions is not
possible, and there will be no equilibrium point for the
particle in the trap. The trap efficiency in the transverse
direction, @,, as a function of position x is shown in Fig.
7(b) for the same wavelengths. The calculations of @, are
performed for the particle at its equilibrium position z,,.
In the case where stable trapping is not possible, @, is
zero; hence no data are shown for A=641 nm.

The trap stiffness £ was calculated from the slope of the
trap efficiency near the equilibrium positions in x and z,
(i.e., x=0 and z=z,,), as shown in Figs. 7(a) and 7(b). The
calculated trap stiffness, &, and k,, for the 775 nm
spheres normalized to %, and k,, respectively, for trans-
parent spheres, at multiple wavelengths near resonance
is shown in Fig. 8. It can be seen from the data that it is
not possible to trap stably (k,=%,=0) near the resonance
peak at wavelengths between 641 and 806 nm. This be-
havior near the peak absorption agrees with the experi-
mental results for the 840 nm spheres (Fig. 4), but not for
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Fig. 8. (Color online) Numerically calculated wavelength depen-
dence of the trap stiffness &, and %, for the 775 nm spheres with
Kpeak=0.054 and a diameter of 1 um (k-dyed), normalized by the
corresponding values calculated for the 1 um transparent poly-
styrene spheres (k-transparent). Stable trapping was not pos-
sible near resonance, which corresponds to zero values for &, and
k.

the 775 or 625 nm spheres. It can also be seen from Fig. 8
that at a wavelength of 836 nm (which is approximately
60 nm from the peak absorption) the simulations predict
~35% enhancement in %, for the dye-doped spheres rela-
tive to the transparent spheres. However, at this wave-
length the trap stiffness %, is reduced so that the strength
of the trap in three dimensions is not enhanced. At a trap
wavelength of 856 nm (~80 nm from the wavelength of
peak absorption), there is a less than 10% enhancement
in the normalized trap stiffness in the x and z directions.
Qualitatively, we expected the increase in the normalized
trap stiffness at these wavelengths to be due in part to
the increase in the refractive index off resonance [Fig.
6(b)]. In our model, the increase in refractive index is
from 1.59 for the transparent spheres to 1.6145 at 836 nm
and 1.6109 at 856 nm for the dye-doped 775 nm spheres.
Interestingly, the simulations predict an enhancement in
k., of ~17% on the blue side of resonance at a wavelength
of 641 nm as can be seen in Fig. 8. This is qualitatively
unexpected given the reduction in the refractive index
(1.5786) and the small amount of absorption (k=0.0038)
at this wavelength. Both of these would be expected to re-
duce the trap stiffness of the dye-doped spheres relative
to the transparent spheres as is the case for %,. It is pos-
sible, however, that Mie resonances in the EM fields
[16,30], which are dependent on the ratio of the sphere di-
ameter to the wavelength of light, might account for this
behavior. The results from the simulations of the 775 nm
1 um polystyrene spheres predict that the resonance of
the dye does not provide a significant enhancement in the
trap stiffness at wavelengths on the red side of resonance.

To gain insight as to why significant changes in the
trap stiffness were not observed due to the resonance of
the dye in the polystyrene, we performed simulations of
the trap stiffness for nonabsorbing (“transparent”)
spheres with different refractive indices. The results of
the simulations for £, and %, as functions of the relative
refractive index m at a trap wavelength of 780 nm are
shown in Fig. 9. Simulations were conducted for 1 um
(d~N\) and 20 nm (d <\) spheres. It can be seen from the
data that in both cases the trap stiffness increases almost
linearly for small values of m, but for the 1 um spheres
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Fig. 9. (Color online) Numerically calculated dependence of the
trap stiffness k, and %,, on the relative refractive index m for
nonabsorbing (transparent) spheres with diameters of (a) 1 um
and (b) 20 nm, trapped at A=780 nm. At m>1.39, stable trap-
ping is not possible at this wavelength for 1 um spheres (k,=0)
in (a), but is possible for 20 nm spheres in (b). Structure seen in
(a) is due to Mie resonances.

the existence of Mie scattering and resonances result in
nonmonotonic behavior for larger m [39]. In addition, for
larger values of m (m>1.39) the scattering from the
sphere increases, thus increasing the scattering force and
preventing stable trapping [Fig. 9(a)] [25]. This behavior
does not occur for smaller particles (Rayleigh particles),
because scattering is much smaller [Fig. 9(b)]. It can also
be seen from Fig. 9(a) that an increase in the relative re-
fractive index from m=1.59/1.33=1.20 (polystyrene in
water) to m=1.62/1.33=1.22 [the maximum value of n
from our model in Fig. 6(b)] results in an approximate in-
crease in k, of only ~20%. Thus the relative increase in
the refractive index n resulting from the dye in the sphere
is not substantial enough to provide a large increase in
the trap stiffness.

To explore the effect of a dye resonance in nanometer-
sized polystyrene spheres, we used our model for the 775
nm dye-doped spheres to explore the change in the trap-
ping stiffness near resonance for smaller spheres. Figure
10(a) shows the trap stiffness &, as a function of sphere
diameter, at multiple trapping wavelengths. The numeri-
cal data show that stable trapping can be achieved at all
wavelengths near resonance for particles smaller than 60
nm in diameter. Figure 10(b) shows normalized values of
the trap stiffness %k, at wavelengths near resonance for
particles 20 nm, 100 nm, 200 nm, 600 nm, and 1 um in
diameter. It can be seen from these results that it is pos-
sible to trap smaller particles near resonance and that
there is a smaller reduction in the trap stiffness %, on
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Fig. 10. (Color online) (a) Numerically calculated sphere diam-
eter dependence of the trap stiffness &, for the 775 nm spheres
(Kpeak=0.054). Results are shown for several wavelengths near
the resonance. At small sphere sizes, the trap stiffness increases
with the diameter (d) as k,~d?, as expected for Rayleigh par-
ticles. At A=775 nm (692 nm), stable trapping cannot be achieved
for spheres larger than 60 nm (300 nm). (b) Numerically calcu-
lated wavelength dependence of the trap stiffness for the 775 nm
spheres with Kpe=0.054 (k,-dyed), normalized by the corre-
sponding values calculated for transparent polystyrene spheres
(k-transparent). Results are shown for various sphere diam-
eters. At the diameter of 20 nm, stable trapping is possible at all
wavelengths near the resonance, which is not the case for larger
spheres. The largest enhancement of ~35% is achieved in 1 um
spheres at A\=836 nm.

resonance. Similar results were obtained for the trap
stiffness %, (not shown). This is likely due to a decrease in
the scattering and absorption cross sections as the par-
ticle becomes smaller. The results also show that the larg-
est enhancement in the trap stiffness %, occurred for the
1 um diameter spheres (~35% at 836 nm). Reducing the
sphere size did not produce an additional enhancement in
the trap stiffness.

To further explore the effect of absorption from the dye
on the trap stiffness, we changed the strength of absorp-
tion in our model of the 1 um diameter 775 nm dye-doped
spheres by scaling the extinction coefficient values . The
values of k in Fig. 5(a) were scaled to 150%, 25%, 10%,
and 5% of the original values, resulting in peak values
Kpeak Of 0.081, 0.0135, 0.0054, and 0.0027, respectively.
For each of the «pe,c values above, the scaled extinction
coefficient as a function of wavelength was fit using the
classic electron oscillator model, and new refractive index
values were obtained. Figure 11 shows the results for the
normalized trap stiffness %, for the scaled extinction val-
ues. It can be seen that when the values of k are reduced
to 10% of their original values («peqr=0.0054) it is possible
to trap at wavelengths on resonance, except for at the



Kendrick et al.

1]
qC) 16 | —X_“peak=0081 —O—erak=0.054, _
5 M'_ —o— ka-oo135 —— Kak-ooo54,_'
g 5 K ua, = 0.0027 1
[3] I 4
5 10F /é\\é A ]
o8l ]
® osf ]
> L 4
T 04 .
x L 4
< 02 ]

00F —— MR —B—K—X, o

600 650 700 750 800 850 900

wavelength [nm]
Fig. 11. (Color online) Numerically calculated wavelength de-
pendence of the trap stiffness for the 775 nm spheres with a di-
ameter of 1 um (k,-dyed), normalized by the corresponding val-
ues calculated for 1 um transparent polystyrene spheres
(k,-transparent). Results are shown for different peak values of
the extinction coefficient («yeai). Stable trapping is not possible
for the larger values of the extinction coefficient. The largest en-
hancement of ~35% on the red side of the resonance occurs for
Kpeak=0.054.

peak absorption (A=775 nm). In addition, the reduction in
absorption results in a reduction in the increase in the
relative trap stiffness seen on the blue side of resonance
at A=596 nm, as compared with the increase at full ab-
sorption (xpea=0.054). When further reducing the ab-
sorption to 5% it becomes possible to trap at all wave-
lengths near resonance, which agrees with experimental
results for the 625 and 775 nm spheres. It can also be
seen from Fig. 11 that when the absorption is further re-
duced the enhancement of the trap stiffness on the red
side of resonance is also reduced and that the maximum
enhancement of ~35% occurs at kpeqr=0.054.

5. CONCLUSION

We explored, experimentally and numerically, the en-
hancement of the optical tweezer trapping force resulting
from an optical resonance, using polystyrene spheres
doped with dye as a model system. In both our experi-
ments and numerical simulations we determined the trap
stiffness at multiple trap wavelengths near the reso-
nance. In our experimental and numerical results for dye-
doped 1 um spheres (d~\), we did not find a substantial
change or enhancement in the force at wavelengths near
resonance when compared with polystyrene spheres with-
out dye. Our numerical simulations also showed that a
significant increase in the trap stiffness is not predicted
for the dye-doped spheres if the size of the spheres is
changed (20 nm<d <1 um) or if the strength of the ab-
sorption (0.0027 < kpeq <0.081) of the dye is changed. In
particular, the largest enhancement of the trap stiffness
observed both experimentally and numerically was ap-
proximately 35%. The model could be further improved to
include possible effects of nonuniform dye distribution in
the sphere, which could be the cause of higher trap stiff-
ness observed experimentally than that predicted theo-
retically for the same absorption strength near the reso-
nance in 775 nm spheres. Nevertheless, we conclude that
the optical resonance of a dye-doped polystyrene sphere

Vol. 26, No. 11/November 2009/J. Opt. Soc. Am. B 2197

(ranging in size from 20 nm to 1 um) does not provide a
significant enhancement of the optical tweezer trapping
force.
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