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Abstract

This paper describes the development and optimization of chiral, non-polar media with large second-order nonlinear
optical responses. We employ molecular engineering, quantum-mechanical sum-over-states theory, and measurements of
molecular hyperpolarizability by means of Kleinman-disallowed hyper-Rayleigh scattering in order to understand molecular
properties. Then we analyze the appropriate arrangement of the chromophores that produce an optimum axial nonlinear opti-
cal medium. Chromophores with large Kleinman disallowed traceless symmetric second rank tensor hyper-polarizabilities β
can be aligned so as to result in large susceptibilities, χ(2) , in structures that lack polar order. We found that L-shaped chro-
mophores with C2v or similar symmetry are good candidates for these materials as they can exhibit large second-rank compo-
nents of the hyperpolarizability tensor.  A wide variety of techniques can be used to fabricate bulk materials belonging to the
chiral non-polar symmetry groups, D∞ and D2. The microscopic chromophore alignment schemes that optimize the NLO re-
sponse in such materials are deduced from general symmetry consideration for both molecules and bulk.

1.  INTRODUCTION

Second-order nonlinear optics requires a noncentrosymmetric material. Consequently, much effort has gone into the
development of polar materials that exploit the dipolar (vector) component of the molecular hyperpolarizability based on a
push-pull conjugated model.1  However, it has been recognized for a long time that even isotropic fluids containing chiral
molecules can exhibit second order nonlinear optical effects.2 Second harmonic generation is not observed in such isotropic
chiral media, but it may be observed in chiral materials that are at least uniaxially aligned. Since dipoles have low entropy
and generally also lower energy when aligned antiparallel, polar macroscopic materials are generally difficult to align and
maintain alignment.  In contrast the nonpolar axial alignment results in many materials from simple steric interactions, or by
stretching of polymers.  Many such media lacking full rotation symmetry or mirror planes will have allowed components of
the first hyperpolarizability. In chiral media, in which the molecular structure does not allow for any mirror symmetries, to-
gether with uniaxial (D∞ ) or biaxial (D2) alignment are consistent with second order nonlinear polarizabilities, including ones
such as second harmonic generation and the electro-optical effect.  Such materials can be easily fabricated by aligning of
chromophores in media that are expected to have relatively little light scattering. Because of this and intrinsic interest in chi-
rality in general, there has been a recent increase of activity involving the macroscopic nonlinear optical properties of chiral
materials.3 However, in contrast little has appeared discussing the molecular aspects necessary for obtaining a large nonlinear
response in chiral media.4,5

We have recently described a scheme to optimize molecular properties of multidimensional NLO chromophores for
use in chiral nonlinear materials using molecular engineering, and including sum-over-states quantum-mechanical calcula-
tions and measurements of the rotational invariants of molecular hyperpolarizability b by means of Kleinman-disallowed
hyper-Rayleigh scattering.6 Alternative nonpolar methods of alignment exploit the tensorial nature of the molecular hyper-
polarizability b. Generally, the second harmonic hyperpolarizability tensor can be decomposed into four components, two of
which transform under three-dimensional rotations as traceless symmetric second- and third-rank tensors. These components
of higher rank are responsible for macroscopic second-order nonlinear properties of materials with non-polar order.  Optimi-
zation of the third-rank (or octupolar) hyperpolarizability has been addressed previously (e.g. Ref. 7), while utilization of the
second-rank component, which exists only in species with Kleinman symmetry (full index permutation) breaking is ad-
dressed in this paper.

In order to have Kleinman-disallowed hyperpolarizabilities a chromophore must have electrons that move in at least
two dimensions. The weight of different irreducible components can be measured by means of Kleinman-disallowed hyper-
Rayleigh scattering (KD-HRS).8, 9 We have examined a promising class of molecules, namely Λ-shaped π-conjugated chro-
mophores that consist of two electron donors (or acceptors) at the ends connected to one acceptor (or donor) at the Λ’s vertex.
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In addition, Crystal Violet, which may have a symmetry similar to D3 is also interesting.  Both have shown strong non-vector
components of the hyperpolarizability tensor.

Once the chromophore is optimized for the second-rank tensor component, the next step is to properly embed it into
a chiral axial medium. The symmetries D∞ and D2 are important cases for nonpolar axial alignment, as we believe that these
are easy to fabricate and occur naturally in liquid crystals, for example. Given a chromophore that has a Kleinman-disallowed
irreducible hyperpolarizability component, the criteria for axial alignment that efficiently utilize the molecular nonlinearity
can be enumerated.  We note that chirality of the bulk does not necessarily require chirality of the chromophores so that we
will discuss how achiral (but Kleinman-asymmetric) molecules can be arranged in a chiral fashion that will result in an effi-
cient NLO medium.

In further sections of this paper we discuss in detail all the steps of the chiral NLO medium optimization and present
recent results of Kleinman-disallowed HRS for a number of L-shaped molecules as chromophores for chiral nonpolar NLO
media.

2. CHROMOPHORE CHARACTERIZATION: KLEINMAN DISALLOWED CASE

2.1 Irreducible approach

To begin to understand how to optimize the molecular properties that can be exploited in these chiral media, we ex-
press the molecular hyperpolarizability in terms of the irreducible representation of the rotation group. The hyperpolarizabil-
ity is a rank-3 tensor that transforms as the product of three rank-1 vectors.  This can be reduced through the formalism of the
addition of angular momenta.10  In the most general case of parametric light scattering, the hyperpolarizability, βpls, trans-
forms as follows:

( ) ( )
~ 1 1 1
~ 0 1 1 1 2 2 3

plsb Ä Ä
Å Å Å Å Å Å (1)

Eq. (1) shows that β consists of 1 antisymmetric pseudo-scalar (L=0), 1 fully symmetric rank-3 tensor (L=3), 3
vectors (L=1) and 2 pseudo-tensors (L=2).  One of the rank-1 objects is fully symmetric, the remaining two of rank-1 and
rank-2 components transform as the mixed representation of the permutation group of three objects. Second harmonic hyper-
polarizability is a third-rank tensor symmetric under permutation of the last two indices.

 
( )
( )
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(2)

Group theory provides a mechanism for decomposing this into a sum of four irreducible parts whose components do
not mix under three-dimensional rotation due to the fact that they carry different permutation symmetry. In Cartesian coordi-
nates, the decomposition can be written as follows:

( ) ( ) ( ) ( )3 2 1 1s m s m
ijk ijk ijk ijk ijkb b b b b= + + + (3)

Two components (1s and 1m) transform as vectors, 2m – as a second-rank traceless symmetric pseudo-tensor, and 3s
– as a third-rank traceless symmetric tensor. The indices s and m denote the parts that are fully symmetric (s) and those that
have mixed (m) symmetry under permutations. While there are a number of approaches to extracting rotationally irreducible
components, in Cartesian representation this can be done by contracting the tensor b with the fully symmetric Kroneker d
tensor and the fully antisymmetric Levi-Civita tensor e. The components of lower rank are appropriately embedded in rank-3
tensor form.

In the fully symmetric case of Kleinman (full permutation) symmetry,11 the hyperpolarizability consists of just two
components:

~ 1 3sy mb Å
Each irreducible component of hyperpolarizability tensor in the decomposition (3) has a scalar invariant associated

with it, which can serve as a natural measure of the component’s contribution to the total b. Since there are two components
of the same rank in the decomposition (Eq. (3)) (1s and 1m), there is also a complex-valued invariant defined as a dot product
between the two vectors so that there are six (real) scalar rotational invariants that can be extracted from the hyperpolari-
zability tensor. These invariants can be measured in a specially designed hyper-Rayleigh scattering experiment, making it a
powerful tool for characterizing chromophores for chiral NLO.
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2.2 Quantum-mechanical sum analysis

The method of optimizing molecular hyperpolarizabilities and the L=2 component of interest here can be understood
by considering the quantum mechanical expression for the parts that transform like various irreducible representations of the
rotation group, that is, like various traceless symmetric tensors. The expression for β in terms of microscopic parameters of
the molecule can be written down as a perturbative solution to the appropriate Schrödinger equation:12

( ) ( )
( )( )
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åh
(4)

Eq. (4) is a simplified form for the special case of second harmonic generation and the symmetry with respect to last
two indices permutation is intrinsic. The ground state is denoted by g and n and m run over all available quantum states. Di s-
sipation is taken into account by introducing complex-valued transition frequencies 0 2ng ng niw wº - G  with 0

n gw  being a

real transition frequency and nG , the dissipation, being inversely proportional to the relaxation time. We can specialize this
to the various representations of the rotation group, yielding,
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where n g nn g gm m mD = -r r r
is the change in the dipole moment and P is the permutation operator which interchanges the indices

i, j, and k.
The first term in each case contains the two-level contributions, which are well-known to give good de scriptions of

the nonlinear optical response in many quasi-one-dimensional charge transfer molecules. 13  In general, a multilevel model
must be applied, and so this general case will be considered first.  Of particular interest is the appearance of both dot and
cross products in the various terms.  For the 1s  components, the dot product appears throughout, and thus the largest compo-
nents are obtained if  the various moments for important states are parallel.  This feature is well-known in optimizing quasi-
one-dimensional push-pull molecules for polar nonlinear optics.  The 3s component involves differences including various
dot products and, moreover, there are advantages to having more than one polarization of light relative to the molecule active
in the non-linear optical behavior.  Moreover, there are sum rules involving the transition matrix elements in each direction
so that β must have components in more than one direction, and there are device structures in which this can be exploited.
Thus both multidimensional and linear molecules can have large and useful 3s hyperpolarizabilities.  We see, however, that
cross products appear in the two Kleinman disallowed contributions, the 1m and 2m components, which implies that mult i-
dimensional molecules are a requirement.  It is interesting to note that the 1m component contains the cross product in the
two-level terms, and the dot product in the others so that orthogonal moments favor the two-level terms, while parallel m o-
ments favor the others.  For the 2m component of primary interest here, we see that orthogonal moments are always favored.
Considering a single electronic state contributing in Kleinman-disallowed part of b, one can write the second-rank tensor part
as follows:

( ) ( )( ){ }2
2 2 2 2 22

3
4

i jij j i
ng n g ng ng n g n gm

ng n g

wb m m m m m mw w w w é ù é ù= ´D + ´Dë û ë û- -
r r r r

h (6)

Even though the standard two-level model is not adequate for the description of the molecular response of two- and
three-dimensional molecules, our analysis suggests that the hyperpolarizability components of interest to us in Λ-shaped (or
quasi-Λ-shaped) molecules consisting of two donors and an acceptor (or vice versa) can be described by Eq. (6) in many
cases, provided that the states with the correct symmetries are included in the sum. 6 For understanding the low-lying ele c-
tronic states, Λ-shaped molecules that have a single conjugated region consisting of an apex and two identical "feet" can o f-
ten be treated as having C2v or C2 symmetry. The electronic states of these molecules can be either symmetric ( A-type) or
antisymmetric ( B-type) functions with respect to the 180° rotation. This results in two distinct possibilities for the transition
dipole moment: it must be either parallel (for an A state) or perpendicular (for a B state) to the molecular rotation axis, which
corresponds to its dipole. Thus, according to Eq. (6), only the B-states will contribute to ( )2

ijkb  and, in fact, have optimal g e-

ometry since the B-state transition moment is orthogonal to the symmetry axis. 6, 14 To maximize the nonlinear optical r e-
sponse in chiral media composed of any Λ-shaped molecules, the lowest-lying state should have substantial B-character.
Semiempirical calculations for several Λ-shaped molecules indicate that some molecules of this type indeed do have quite
strongly absorbing low-lying states with the appropriate symmetry. 15 In addition, Eq. (6) indicates that the molecular r e-
sponse will be enhanced in the anomalous dispersion regime, e.g. for second harmonic generation when the fundamental laser
frequency is lower energy but the second harmonic is higher in energy than the energy of the relevant ( B type) quantum state.
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Figure 1. Kleinman-disallowed hyper-Rayleigh scattering: (a) experimental setup (P – input polarizer, BS – beamsplitter, L – lenses,
BC – Berek compensator, ASL – aspherical lens, λ/4 – quarter-wave plate, A – output polarizer, PMT – photomultiplier tubes, F –
filters); (b) experiment geometry with arbitrary ellipticity of incident and detected light
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In contradistinction the (two level) contributions of a single quantum state (whether A or B type) to the Kleinman allowed
vector or octupolar hyperpolarizabilities decreases in the anomalous dispersion regime.

2.3 Kleinman-disallowed hyper-Rayleigh scattering

The experimental setup of a Kleinman-disallowed hyper-Rayleigh scattering experiment (KD-HRS) is shown in
Figure 1. The light from an optical parametric oscillator tunable through the near infrared is sent through a polarizer and a
quarter-wave plate creating an arbitrary elliptical polarization, which is focused into a triangular quartz cell containing the
chromophore in acetone solution. The scattered second harmonic light is collected at a 45 ° angle and focused on a photomul-
tiplier tube after a single elliptical polarization from the entire signal is selected with a similar system of a quarter-wave plate
and polarizer. In the experiment, the intensity of a definite outgoing second harmonic (elliptical) is recorded as a function of
the polarization of the fundamental frequency light. The essential features of this experiment that distinguishes it from a “tr a-
ditional” HRS measurement of a Kleinman-symmetric hyperpolarizability tensor are (a) the scattering angle, which must not
be 0, 90 or 180°, and (b) the necessity to use elliptically polarized light in both the incident and scattered beams. The values
of the rotational invariants of β are extracted from the signal by means of least-square fitting. The advantage of the analytic
least-square method used here is that the set of parameters (rotational invariants) that minimizes c 2 is determined analytically
without the uncertainty associated with numerical gradient search methods.

Since most of our measurement wavelengths lie in the vicinity of molecular resonances, two-photon fluorescence
may be a competing process that can complicate the measurements of β. To assure the dominance of the second harmonic
signal over two-photon fluorescence, we measured the spectral content of the scattered light for all the chromophores at the
laser excitation wavelengths used in this study.

2.4 Chromophores for chiral nonlinear optics

The molecular structures of the materials studied here are shown in Figure 2. Crystal Violet (CV), Malachite Green
(MG) and Brilliant Green (BG) are well-known triarylmethane dyes. Crystal Violet is often considered to have a naïve three-
fold symmetry. However, our measurements showed a rather strong contribution of vector components that are not allowed
in non-polar point groups such as D3 or D3h, and this evidence suggests deviation from these symmetries in the ground state
in these solvents.  These results confirm other studies that suggest that CV is less symmetric than expected. 16,17 Unlike Crys-
tal Violet, Malachite Green and Brilliant Green have only two out of three phenyl rings substituted with amine donors so that
the resulting symmetry would be expected to be C2v or, given the steric repulsions C2. Experimental results indicating devi a-
tion of Brilliant Green from Kleinman symmetry have been previously reported. 18 The two molecules synthesized in part for
this study, (Compounds RT9090 and 1955-49) are Λ-shaped chromophores with the acceptor in the middle and donors on the
legs of Λ.  These molecules are conventional linear and dipolar NLO chromophores except that they share a common central
acceptor group that results in a Λ geometry of the overall molecule.  Table 1 summarizes the results of our measurements at
the excitation wavelengths of 1560, 1340, 1064 and 780 nm. The figures of merit of the two vector ( 1ss and 1mm), the second
rank (2mm) and the third rank ( 3ss) components are defined as square roots of their scalar rotational invariants (see Ref. [ 9]
for precise definitions). Absolute values of invariants were found through an external referencing scheme. Para-nitroaniline
(pNA) was used as a reference substance at all studied wavelengths. The value of the Kleinman-allowed vector component of

O2N NH2

NN

NO2O2N

NN

N N

NN

CNNC

C

N
R2

N R2R1

R2

R2

CV: R1=N(CH3)2

(588nm) R2= CH3

MG: R1= H

(615nm) R2= CH3

BG: R1= H

(625nm) R2= C2H5

pNA (366nm) RT9090 (480nm)

1955-49 (498nm)

Figure 2. Molecular structures of studied materials ( with  λmax for each material in acetone solution).
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pNA was derived from an EFISHG measurement at the longest wavelength ( 3012 10pNA
EF ISH esub -= ×  at 1580 nm taken from

Ref. 114 of 19) and scaled for the other wavelengths accordingly to two-level dispersion model. 20 One notices that all Λ-
shaped molecules studied here possess sizable second rank tensor components ( β2mm) and even in the relatively off-resonance,
ordinary dispersion regime at 1560 nm excitation, the values are comparable to the Kleinman sy mmetric ones.

3. CHIRAL NONPOLAR ALIGNMENT FOR SECOND ORDER NLO MATERIALS

The decomposition into irreducible parts facilitates the analysis of c (2) as the latter is defined through rotational a v-

erages of b. The tensor parts in Eq. (3) belong to different irreducible representation of the permutation group of three objects
and thus have different permutation symmetry. After being rotationally averaged they will compose corresponding comp o-
nents of the macroscopic tensor c  with the same permutation symmetry that can be cla ssified in a similar fashion.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2 1 1

3 2 1 1

s m m s
IJK IJK IJK IJK IJK IJK

s m m s
IJK IJK IJK IJK

c b b b b b
c c c c

µ = + + +
µ + + + (7)

Thus, each irreducible component of bulk nonlinear susceptibility c  results from one component of the hyperpolarizability

tensor b having the same symmetry and not the others. Consequently, it is possible to define optimization conditions for each

part of c  separately without knowing the precise form of the orientational distribution function. The knowledge of the sy m-
metry group of the chromophore and the medium can predict that some of the four parts in Eq. (7) must vanish identically.
For example, if the symmetry of the aligned medium is such that c  automatically satisfies Kleinman (full permutation) sy m-
metry, the Kleinman non-symmetric parts 2m and 1m in Eq. (7) will have to vanish due to alignment even if the correspon d-
ing molecular characteristics are not zero. Since the goal of this study is to achieve optimization of the NLO response through
nonpolar alignment, the main focus of the further discussion will be directed at the non-vector irreducible components of c .
We are going to consider two the most important cases of chiral axial systems – uniaxially aligned media with D∞ symmetry,

Material ||β1ss || ||β1mm|| ||β2mm|| ||β3ss|| Depolarization Ratio

(esu x10-30) 90° Experiment Calc. from 45°

pNA (ref) 7.12 ±0.16 0.0 ±2.1 3.0 ±2.6 4.95 ±0.23 0.2 ±0.01 0.24 ±0.05

CV 83.5 ±2.1 72.2 ±2.1 84.1 ±6.5 76.0 ±4.2 0.63 ±0.01 0.65 ±0.06

MG 69.8 ±1.8 14 ±30 38.6 ±9.5 54.0 ±5.0 0.28 ±0.02 0.28 ±0.10

BG 92.7 ±2.1 24 ±24 57.6 ±6.1 68.0 ±3.2 0.31 ±0.02 0.30 ±0.04

pNA (ref) 8.09 ±0.09 0.0 ±2.4 3.6 ±1.1 5.40 ±0.19 0.22 ±0.01 0.23 ±0.06

RT9090 266.8 ±5.5 15 ±41 128.8 ±4.9 201.4 ±4.6 0.27 ±0.01 0.26 ±0.01

1955-49 316.0 ±9.4 0 ±98 180 ±35 215 ±11 0.303 ±0.005 0.30 ±0.06

pNA (ref) 11.2 ±1.6 4.6 ±1.2 2.1 ±2.6 8.2 ±1.2 0.22 ±0.030 0.30 ±0.06

CV 305 ±58 341 ±72 276 ±52 398 ±81 0.65 ±0.02 0.67 ±0.08

pNA (ref) 56.4 ±5.9 2 ±18 23.4 ±3.8 38.3 ±4.1 0.24 ±0.05

CV 552 ±42 353 ±34 309 ±36 287 ±31 0.74 ±0.02 0.72 ±0.04

MG 122 ±10 162 ±18 120 ±13 131 ±14 1.27 ±0.03 1.45 ±0.11

BG 142 ±11 186 ±16 136 ±12 153 ±13 1.40 ±0.05 1.43 ±0.03
RT9090 278 ±21 112 ±27 135 ±19 198 ±16 0.39 ±0.01 0.40 ±0.04
1955-49 289 ±22 119 ±25 167 ±16 200 ±16 0.46 ±0.01 0.46 ±0.04

10
64

78
0 

nm
13

40
 n

m
15

60
 n

m

Table 1. Figures of merit for the irreducible parts of the first hyperpolarizability tensor obtained from 45 ° KD-HRS experiment. The depo-
larization ratio is determined from a separate 90 ° scattering experiment and calculations from the rotational invariants.  The shaded areas in
the table indicate measur ements in the anomalous dispersion regime.
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and biaxial system with D2 symmetry. These two types of alignment are chosen because they represent a wide range of
physical systems that can be easily fabricated. The first type of alignment can be realized in stretched polymers or in uniaxial
liquid crystal phases (e.g. nematic or smectic A). The second alignment scheme occurs in more ordered systems like biaxial
liquid crystal phases (e.g. smectic C) or liquid-crystalline polymers where two distinct directions are defined by polymer’s
backbone and liquid-crystalline side-chain moieties. Clearly, due to the chirality of both symmetry groups, certain measures
should be taken to assure the absence of the mirror plane symmetry in the bulk. Chirality of the bulk does not require chiral
chromophores, and can be achieved by aligning achiral chromophores in a chiral fashion, as will be demonstrated below.

In general, there can be a macroscop ic hyperpolarizability coming from the 2m terms only if (a) the chromophores
have a symmetry such that there is at least one traceless symmetric second rank pseudo-tensor which does not change under
all the allowed symmetry elements and (b) if the same is true of the macroscopic medium.  In more technical group-
theoretical terms, the representation of the traceless symmetric second rank pseudotensor must contain the trivial represent a-
tion at least once in the symmetry groups of the chromophore and of the medium.

3.1 Uniaxial alignment of Λ-chromophores – C 2v chromophore and D ∞  symmetry of the medium

In the uniaxial alignment scheme D∞, the nonlinear susceptibility is fully defined by one value. In Cartesian coord i-
nates (with z being the unique axis) this is ( ) xy z xzy y zx y xzDc c c c c¥ = = = - = - , while all the other components vanish.

The analysis of the irreducible content of the susceptibility tensor c  shows that there is only the second-rank component that
is non-zero in the decomposition of Eq. (7):

( )2
1 0 0
0 1 0
0 0 2

m
xy zc c

-
-

æ ö÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷ç ÷çè ø
(8)

The optimization of nonlinear response of a D∞ medium can only be achieved by maximizing the second-rank hyperpolar i-
zability of the chromophore and by choosing the type of alignment that is compatible with the symmetry of this component.

First, consider the more general case of an arbitrary chromophore being aligned into D∞ bulk. The only requirement
imposed on the molecule is the existence of non-zero ( )2mb . Using the permutation properties of ( )Dc ¥ , one can write it as

( ) ( ) ( )2 21 12 26 6
m m

zz xx y y zi zj xi xj y i yj ijD N R R R R R Rc c c c b
¥

= - - = - - (9)

Here, the hyperpolarizability given in molecular frame is transformed into laboratory coordinates with orthogonal rotation
matrix ˆ ˆijR i j¢= ×t

 ( î and ĵ¢stand for basis vectors of laboratory and molecular frame respectively).  In writing Eq. (9) we

could have chosen to calculate any non-zero combination of the tensor hyperpolarizability.  The particular form that we chose
above, which explicitly projects the specific traceless symmetric tensor that is non-zero in this macroscopic medium, is co n-
venient, as it makes the nature of the average more evident in subsequent steps.

More specific knowledge of the chromophore’s hyperpolarizability or the constraints imposed thereon by symmetry
allows one to draw conclusions about alignment from Eq. (9). As it was mentioned above, Λ-shaped chromophores may ex-
hibit large Kleinman-disallowed hyperpolarizabilities. Most Λ-shaped molecules can be approximated well as a planar
(2-dimensional) C2v object so that the only nonzero Cartesian components of b are , ,zzz zxx xzx xxzb b b b=  (assuming z – the
two-fold axis and zx – the plane of the molecule). The second-rank tensor part is pr esented by

( )
2
2

0 2 0
2 0 0 ,

0 0 0v
m

zxx xxzC
b

bb b b b
D

D
æ ö÷ç ÷ç ÷ç ÷ç ÷ Dç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷è øç ÷

= = - . (10)

Combining Eqs. (9) and (10) together results in the expression for ( ) ( )2vC Db c ¥®  alignment scheme. The rot a-

tion matrix R can be defined in terms of Euler angles thus making the order parameter a function of three orientation angles
of the chromophore in the bulk. The convention for Euler angles and the orientation of the molecular symmetry axis of a Λ-
shaped molecule is shown in Figure 3. So, the nonlinear su sceptibility defined in Eq. (9) is now given by
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( )( )
( )( ) ( )( ) ( )( )
( ) ( )

2
2

2

1 261 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ26
1 sin sin 24

m
zx zy xx xy y x y yvC D N R R R R R R

N z x z y x x x y y x y y
N

c b
b
b q y

¥ D

D

D

® = - -
¢ ¢ ¢ ¢ ¢ ¢= × × - × × - × ×

=
(11)

The conditions for maximizing the order parameter of such a system become clear from Eq. (11). The order pa-
rameter naturally does not depend on the azimuthal angle f since the system is invariant under this rotation. The macroscopic
response of the system is maximized by the combination of the other two angles 2q p=  and 4y p= ± . In terms of mole-

cules’ orientation, the situation corresponds to the polar axes of the molecules being perpendicular to the C∞-axis of the bulk
and molecules being twisted about their C2 axes by 45°. Note that the direction of the twist must be the same: the sign of y
has to be chosen either plus or minus.

3.2 Biaxial alignment of Λ-chromophores – C 2v chromophore and D 2 symmetry of the medium

Consider the second chiral alignment type of interest – D2 symmetry. The polar axis is absent in this case too so that
the vector components in Eq. (7) vanish identically as in the previous case. The second and third rank tensors, however, are
allowed in D2. The tensor is defined in terms of three values (nonzero Cartesian component xyz xzyc c= , y zx y xzc c= , and

zxy zy xc c= ). In terms of irreducible tensors, the fully symmetric octupolar part of the susceptibility tensor c  is defined by a
single value, while the second-rank part ca rries two others

( ) ( ) ( )3 3 1... 3
s s s

xy z y zx xy z y zx zxyc c c c c c= = = = + + (12)

( )2
0 0

0 0
0 0

y zx zxym zxy xy z
xy z y zx

c c
c c

c c
c -

-
-

æ ö÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷çç ÷è ø
The second rank tensor in Eq. (12) can be split into two parts we will call uniaxial and biaxial

( )2
1 0 0 1 0 0
0 1 0 0 1 0

0 0 00 0 2
m u bc c c

- -
-

æ ö æ ö÷ç ÷ç÷ç ÷ç÷ ÷ç ç= +÷ ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷÷ çç÷ ÷ç è ø÷çè ø
(13)

X

Y

Z

X`

Y`Z`

ψ

θ

φ

( ), ,ijR R φθ ψ=

A

D D

Z`:p  (C2)

σx

Y`

X`

σy

Figure 3. Euler angel rotation and molecular coordinates for a L-shaped molecule
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2;2 2
xy z y zx zxy xy z y zxu bc c c c cc c- - -= =

The uniaxial term of Eq. (13) is identical in structure to ( )2m
Dc ¥

 (Eq. (8)) with the exception of a differently defined

scalar order parameter (which, in fact, transforms into Eq. (8) upon transition of D2 to D∞). Therefore, the entire discussion of
the optimization of the macroscopic response in D∞ media is fully applicable to the uniaxial part of ( )2mc  so that the condi-
tions for maximizing the order parameter uc  are given by Eq. (11). The second term of Eq. (13) corresponds to biaxial

alignment. The third independent value in ( )2Dc  can be defined as follows

( )21
2

b m
y i yj xi xj ijN R R R Rc b= - (14)

In the special case of C2v chromophore (Eq. (10)) the biaxial part of the second-rank susceptibility is given by

( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

1
21 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2
1 2 24 c o s c os 2 sin sin 2 c os3 c os 216

b
y x y y xx xyN R R R R

N y x y y x yx x
N

c b
b

f fb y yq q

D

D

D

= - =
¢ ¢ ¢= -× × ×¢×

= + +
(15)

The orientational average in Eq. (15) can be maximized if the preferred polar angle of the chromophore q is close to
0 or π. Eq. (15) reduces to

( ) ( )[ ]1 sin 20 4
b N y fc bq D +==
( ) ( )[ ]1 sin 24

b N y fc bq p D -==
When the polar angle is zero, the azimuthal rotation and twist about molecule’s axis become equivalent so that only

the sum y f+  describes the orientation of the molecule. When q p= , the molecules are turned up side down between the

first and the last rotations. The first and last rotations are also coaxial here, although positive values of y  correspond to nega-

tive values of f and the twist angle is defined as the difference y f- . Therefore, the maximum of the biaxial component of
the susceptibility can be achieved when the molecules are aligned along an axis pointing either up or down with the plane of
the molecules twisted 45° in opposite directions for upward and downward pointing species so that their molecular planes
(xz- in Figure 3) are perpendicular. The optimized alignment schemes for Λ-shaped chromophores are summarized in Fi g-
ure 4.

ΨΨ

Figure 4. Example alignment of L-shaped molecules in a uniaxial macroscopic NLO system
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3.3 Propeller-like molecules (Dn chromophores in Dm  media, n, m >2)

Another example that we will discuss in relation to the axial alignment of Kleinman asymmetric chromophores is
systems built with molecules of D3 symmetry group that are aligned in D∞ fashion. Recently, various three-fold propeller-like
NLO chromophores have been extensively studied in relation to their use in octupolar NLO media (e.g. Ref. 21, 22, and oth-
ers). However, if the chromophore is not perfectly flat, its symmetry is compatible with the second-rank irreducible comp o-
nent, which may be rather large as is indicated by our results for Crystal Violet 9 (which, however, does not have its expected
D3 symmetry in the medium in which we have done measurements. Here we present an alignment scheme where the pe r-
formance of the material is based on Kleinman-disallowed ( )2mb  rather than octupolar part ( )3sb .

The symmetry group D3 is a uniaxial group with the second-rank hyperpolarizability tensor identical by structure to
Eq. (8)

( )
3
2

1 0 0
0 1 0
0 0 2

m
xy zDb b

-
-

æ ö÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷ç ÷çè ø
The rotational averages are even more straightforward to interpret in this case:

( )

( )

33
1 26 1 22
1 1 3 c o s 24

D
xy z zi zj xi xj y i y j ij

xy z zz zz xz xz y z y z

xy z

D D N R R R R R R
N R R R R R R
N

c c b
b
b q

¥® = = - -
= - -
= +

The optimal response of such a system is achieved with all molecules lying in the plane perpendicular to the sy m-
metry axis of the bulk ( 0,q p= ). The azimuthal alignment does not influence this part of the nonlinear susceptibility. The
uniaxial alignment makes use of only the chiral ( 2m) part of the hyperpolarizability of a Dn (n>2) molecule ( xy zb ), while the
utilization of the other, octupolar (3s), nonzero component ( xxx xy y y xy y y xb b b b= - = - = - ) would require stricter, three-fold
alignment that is generally harder to achieve in molecular media.

Biaxial alignment of propeller molecules is also possible.  However, we know of no polymeric materials that plaus i-
bly have this symmetry and in consequence do not di scuss it.

4. DISCUSSION

The previous section discussed how chiral macroscopic NLO systems could be created via chiral alignment of
chromophores that belong to a different symmetry group but contain Kleinman-disallowed (second-rank) contribution in the
molecular hyperpolarizability. A set of molecular orientation angles that optimizes the macroscopic response of the material
was deduced on the basis of general symmetry considerations for each case of interest. The rotational freedom of the chr o-
mophore has to be limited although it may freely rotate in certain direction (uniaxial case). As discussed above, the alig n-
ments described can be achieved relatively easily in polymer systems with NLO chromophores incorporated in the backbone
or attached as a side chain.

A number of chiral polymeric systems for nonlinear optics have been studied recently. Van Elshocht et al. studied
NLO response of Langmuir-Blodgett films made of binaphthyl-based chiral helical polymers. 23 However, these systems do
not seem to be optimized in the axial sense discussed here. The authors report the symmetry of the films to be C∞, which is
supported by the observation that zzzc  is the largest component of the hyperpolarizability. Indeed, in the materials presented,
the Λ-shaped monomers are attached to each other with their “feet” creating the polymer main chain, so that in the aligned
state, they would rather have the planes of the molecules aligned parallel to the polymer’s axis than at the 45 ° angle – the
condition that would favor large hypersusceptibility resulting from a traceless symmetric tensor hyperp olarizability.

Another work by Kauranen et al. presents a study of the NLO properties of helicenebisquinone-based Langmuir-
Blodgett films.24 The enantiomerically pure chiral material aggregates into a film of C2 symmetry. However, the measure-
ments of the nonlinear susceptibility χ showed that by far the largest Cartesian components are xyzc  and y xzc , i.e. the char-

acteristic components of chiral groups D∞ and D2 discussed here. So, one can imagine (at least in rough approximation) that
the molecules pack in helical columns creating a structure close in symmetry to D∞. In this case, the chirality of the bulk is
forced directly by the strong chirality of the helicenebisquinone. The molecule is essentially three-dimensional and, although
clearly it is not the C2v case discussed in most detail above, the symmetry of the chromophore is the simpler group C2 that has
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similar properties.  The chromophore can also be thought of as a Λ-shaped chromophore.  As they are stacked in columns, the
molecules automatically satisfy the condition for the polar angle (pointing perpendicular to the column axis). At the same
time, the “plane” of the molecule (i.e. the plane that cuts through the molecule’s mid point – the “vertex” – and two end
points – the “feet” of Λ) is naturally twisted by some (not 0 or 90°) angle away from the normal to the bulk principal axis due
to the pitch of the chiral column.  Moreover, the axes x and y discussed above in conjunction with C2v molecules will be r o-
tated by some hard to discern angle which is likely to vary with frequency from (say) the plane of the central aromatic ring.
Thus, given the formalism presented above, the large chiral nonlinearity reported in Ref. 24 can be accounted for by satis-
factorily (if not optimally) aligned Λ-shaped molecules of helicenebisqu inone.

The desired alignment of Λ-shaped chromophores can be also achieved by other means. For a D∞ system, a material
consisting of long, linear polymers that have Λ-shaped chromophores attached to the backbone with their vertices can be
stretched in one direction, so that the molecular dipoles are, generally, perpendicular to the main chain. The linking group
must contain a chiral center that favors the rotation of the plane of the chromophore by ~45 ° from the direction of the main-
chain of the polymer, with the most important condition being that a preponderance of the chromophores are twisted in the
same direction. An alternative scheme is somewhat similar to the system in Ref. 24: the chromophores are attached (again at
their vertices) to a helical polymer backbone heading toward the helix axis. The rotation about the molecular axes must still
be constrained, although it can be parallel to the local direction of the polymer chain and only tilt with respect to the symme-
try axis is created (and even controlled) by pitch of the helix. The two cases are sch ematically shown in Figure  2.

The case of D2 alignment is slightly more complicated. The structure is similar to the first example of D∞ alignment
from the previous paragraph. The chromophores are incorporated into a linear polymer as side-chain groups with a fixed
twist angle. In addition, liquid crystalline moieties are attached to the “feet” of the Λ-shaped chromophore. When conditions
are satisfactory for existence of the nematic phase, the direction of the stretch (along the polymer chain) and director of the
nematic phase (perpendicular to the main axis) define two distinct nonpolar axes in the system, forming D2 symmetry. When
the nematic moieties align parallel to each other the chromophores will, on average, have to point mostly “up” and “down”
favoring only 0,q p= .  Such alignment can also, in principle, be achieved by stretching of an appropriately cross-linked
polymer gel in a biaxial fashion.

Finally, the optimized alignment scheme for D3 chromophores can be physically realized in a discotic nematic or
columnar liquid crystals or LC-polymers. Here the chirality of such systems should originate from the chirality of the chr o-
mophores. Hence, an enantiomerically pure chromophore should be used in for the best performance, since the left- and right-
handed species, if present simultaneously, will cancel each other’s hyperpolarizability, so that the hyperpolarizability is pr o-
portional to the enantiomeric excess. Molecules with a low threshold for the transition between left- and right-handed states
(like Crystal Violet) can be stabilized if placed into a matrix (or a host liquid crystal) with a well-defined handedness, or if
appropriate, optically unresponsive moieties are attached thereto.

5. CONCLUSIONS

In this paper, we have shown how bulk nonlinear susceptibility can be created in chiral nonpolar medium. The th e-
ory that elucidates the criteria for optimization the nonlinear response of such chiral media has been presented. Based on the
conclusions drawn from the theory, several examples of known materials as well as possible physical configurations invol v-
ing Λ-shaped and propeller-like chromophores were discussed. This study gives guidelines for the creation of conceptually
new materials for second-order nonlinear optics by implementing tensorial properties of the molecular hyperpolarizability
and using an appropriate ch iral alignment scheme.
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