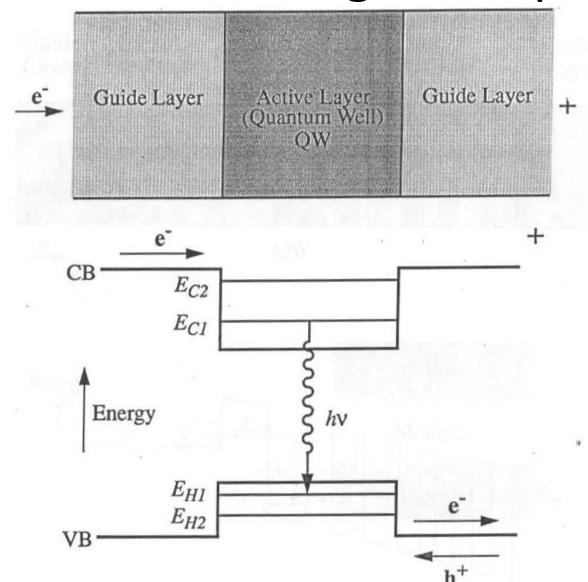
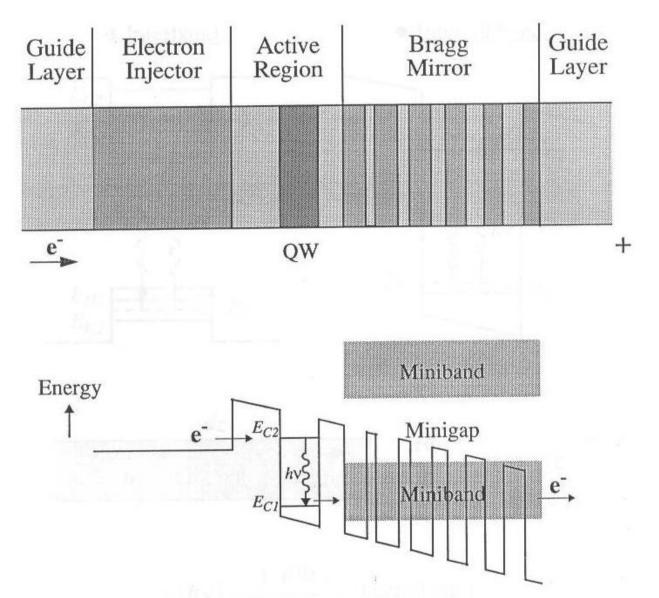
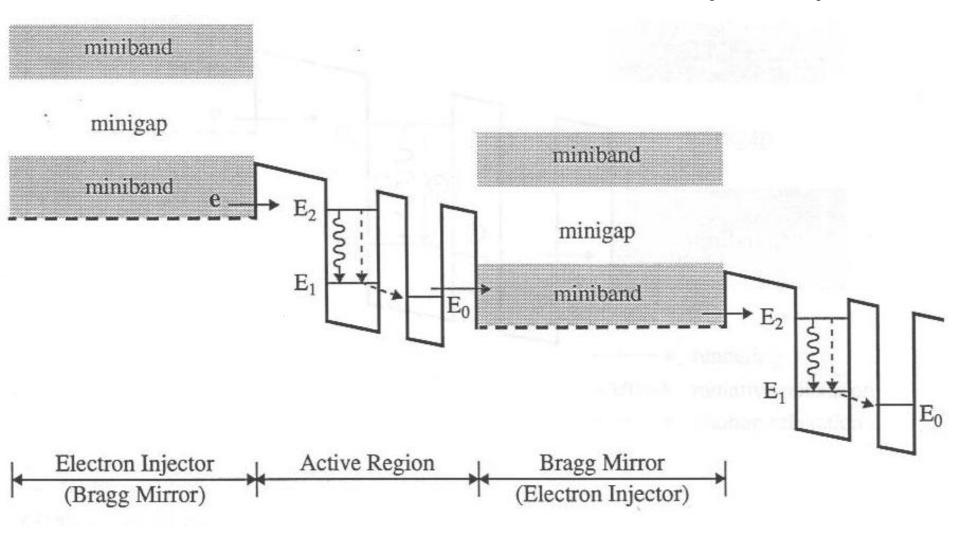

Low-dimensional semiconductors. Optical properties. (Opto)electronic applications.

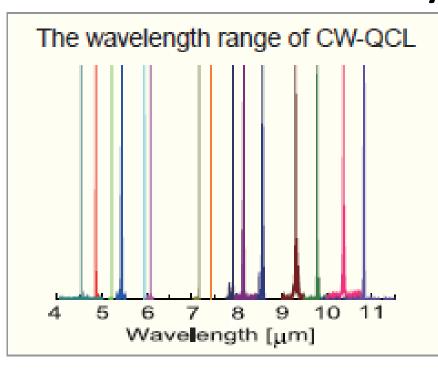
PH 673
Nanoscience and nanotechnology
October 13, 2025


QW lasers: history

- 1958 Arthur L. Schalow and Charles H. Townes invent the laser and publish a paper title "Infrared and Optical Masers"
- 1961 First continuous operation of an optically pumped solid state laser
- 1963 Quantum well laser first suggested by H.Kroemer from the U.S. and Kazrinov and Alferov from the Soviet Union.
- 1975 First quantum well laser operation made by J.P. Van der Ziel, R, Dingle, R.C Miller, W. Wiegmann, and W.A. Nordland, Jr.
- 1977 R.D. Dupuis, P.D. Dapkus, N. Holonyak submitted paper demonstrating first quantum well injection laser
- 1994 Quantum cascade lasers first developed


Semiconductor Laser


Interband Lasing Concept


Intersubband Lasing Concept

Quantum Cascade Laser (QCL)

Commercially available QCLs

DFB-CW Laser (Top(qcl) $* = 20 \, ^{\circ}$ C)

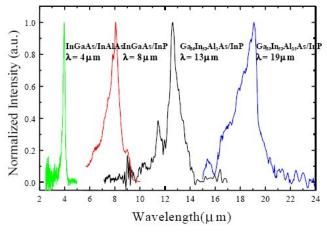
Type	Wavelength (nm)			Output Power (mW)			Heatsink,
Type	Min.	Тур.	Max.	Min.	Тур.	Max.	Package
L10195-4573H	4545	4565	4585	30	80	_	HHL-Package
L10195-7253H	7240	7260	7280	10	40	_	HHL-Package
L10195-7743A	7720	7740	7760	20	40	_	Open Heatsink
L10195-7743H	7720	7740	7760	20	40	-	HHL-Package
L10195-9673A	9650	9670	9690	10	15	_	Open Heatsink
L10195-9673C	9650	9670	9690	10	15	-	C-mount
L10195-9673H	9650	9670	9690	10	15	_	HHL-Package

DFB-Pulsed Laser (Top(qcl) * = 20 °C)

	Туре	Wavelength (nm)			Peak Output Power (mW)			Heatsink,
		Min.	Тур.	Max.	Min.	Тур.	Max.	Package
	L10195-5261A	5220	5260	5300	100	300	600	Open Heatsink
	L10195-7441A	7400	7440	7480	50	100	_	Open Heatsink

●FP-CW Laser (Top(qcl) * = 20 °C)

Type	Wavelength (nm)			Output Power (mW)			Heatsink,
Type	Min.	Тур.	Max.	Min.	Тур.	Max.	Package
5.2 μm FP-CW	_	5210	_	10	30	_	Open Heatsink C-mount HHL-Package , as requested
6.1 μm FP-CW	_	6130	_	10	30		
7.5 µm FP-CW	_	7450	_	10	50	_	
8.4 μm FP-CW	_	8350	_	10	50	-	
9.7 μm FP-CW	_	9650	_	10	50	_	


nt HHL Package (Only CW-QCLs)

MQW IR photodetectors

MWIR InGaAs/InAlAs/InP QWIP 320x256 FPA camera (at 100 K)

http://cqd.eecs.northwestern.edu/research/qwip.php

Photoluminescence of quantum dots

Size increases (box is larger) -> Photoluminescence red-shifts (energy smaller)

Self-Assembled Quantum Dots

- •Formed during epitaxial growth of lattice mismatched materials
 - e.g. InAs on GaAs (7% lattice mismatch)

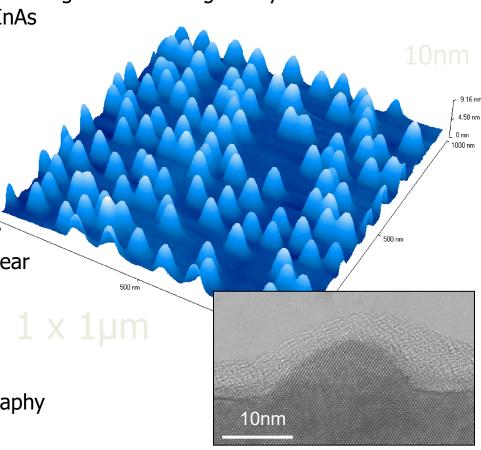
• Form due to kinetic and thermodynamic driving forces – energetically more favourable to form nanoscale clusters of InAs

• Some general properties

• Perfect crystalline structures

• High areal density (10-500µm⁻²)

Strong confinement energies (100meV)


Already many applications

• Lasers (Jth<6Acm⁻²) in visible and near infrared

Optical data storage

Optical detectors

Quantum Information and Cryptography

