Low-dimensional semiconductors. Transport properties.

PH 673
Nanoscience and nanotechnology
October 1, 2025

Useful resource: lecture notes from Delft University (the Netherlands):

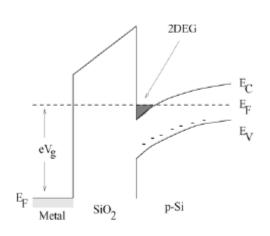
Semester-long courses in advanced solid state and in mesoscopic physics (mostly semiconductor nanostructures)

https://ocw.tudelft.nl/courses/mesoscopic-physics/

https://ocw.tudelft.nl/courses/advanced-solid-state-physics/

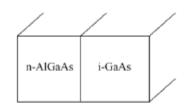
2D electron gas (2DEG)

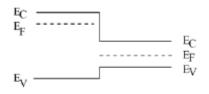
band gap engineering

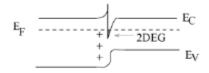


Metal-Oxide-Semiconductor (MOS) structures

2DEG is formed at the semiconductor-insulator interface





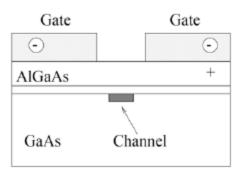


semiconductor heterostructure

2DEG is formed at the interface between two semiconductors 2DEG is a generic object for new physics

Nobel Prizes 1985, 1998, 2000

It serves as a building block for electronic devices



gates define device structures

Nobel Prizes related to 2DEG

The electron transport in confined geometries is of high principal interest. Using a strong magnetic field applied perpendicular to a 2DEG, K. von Klitzing discovered the quantum Hall effect (Nobel Prize 1985) in samples supplied by M. Pepper and G. Dorda. Using even higher fields, D.C. Tsui and H.L. Stoermer (Nobel Prize 1998) discovered the fractional quantum Hall effect in ultrapure MBE material made by A.C. Gossard.

The Royal Swedish Academy of Sciences has awarded the Nobel Prize 2000 in Physics

"for basic work on information and communication technology"
The prize is being awarded with one half jointly to

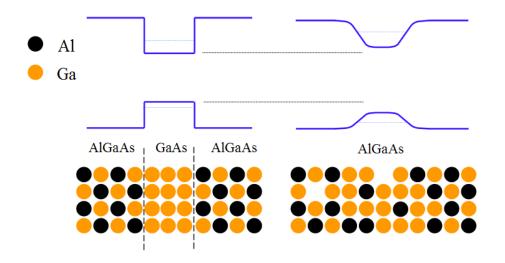
Zhores I. Alferov, A.F. Ioffe Physico-Technical Institute, St. Petersburg, Russia, and Herbert Kroemer, University of California at Santa Barbara, California, USA,

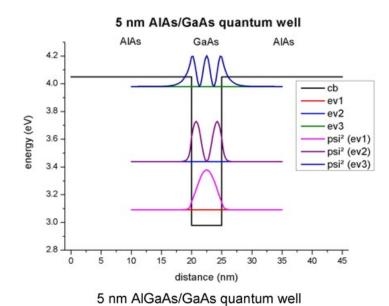
"for developing semiconductor heterostructures used in high-speed- and optoelectronics" and one half to

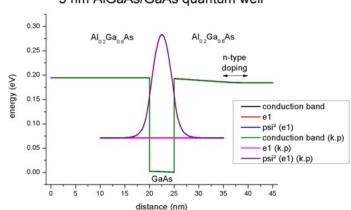
Jack S. Kilby, Texas Instruments, Dallas, Texas, USA

"for his part in the invention of the integrated circuit"

Quantum wells





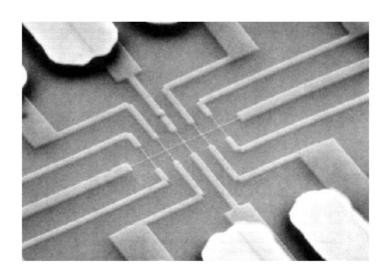


http://www.nextnano.de/nextnano3/tutorial/2Dtutorial4.htm

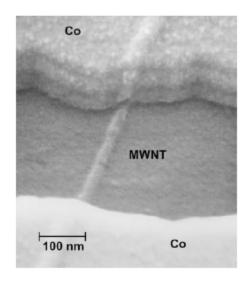
Quantum wires

QUANTUM WIRES: free electron motion is restricted to ONE dimension (1D)

- ⇒ These QUASI-ONE-DIMENSIONAL structures may be realized using a variety of techniques
- ⇒ They also occur quite NATURALLY and examples of such structures include CARBON NANOTUBES and long MOLECULAR CHAINS



75-nm WIDE ETCHED QUANTUM WIRE



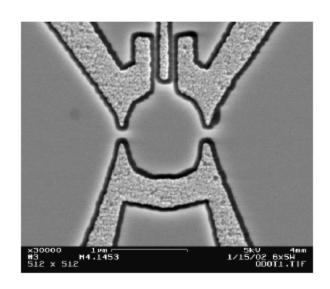
CARBON NANOTUBE BRIDGING TWO COBALT CONTACTS

Quantum dots

QUANTUM DOTS are structures (called zero-dimensional, 0-D) in which electron motion is strongly confined in ALL THREE dimensions (QUANTIZATION) so that these structures may be viewed as ARTIFICIAL ATOMS

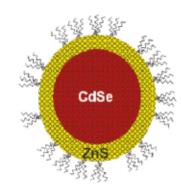
 * These structures may be realized by a variety of different techniques and in a range of different materials

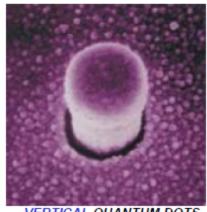
* Dominant transport mechanism: SINGLE-ELECTRON TUNNELING

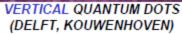


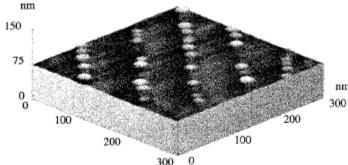
SEM IMAGE OF A GaAs/AIGaAs QUANTUM DOT REALIZED BY THE SPLIT-GATE METHOD

Example: II-VI, IV-VI, III-V semicond. - CdS/ZnS, CdSe/ZnS, CdSe/CdS, PbS, InAs/CdSe

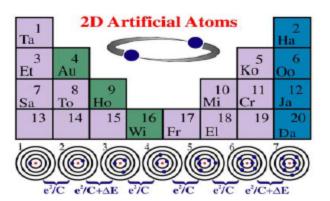








AFM IMAGE OF SELF-ASSEMBLED InGaAs
QUANTUM DOTS

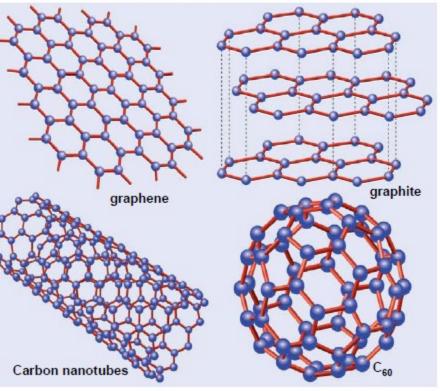


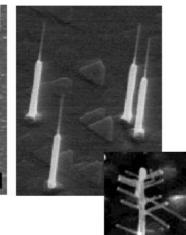
Nanoscale objects

(organic) molecules

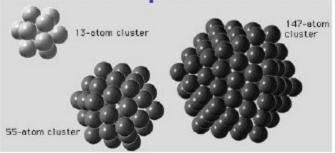
inorganic nanowires

Carbon-based materials

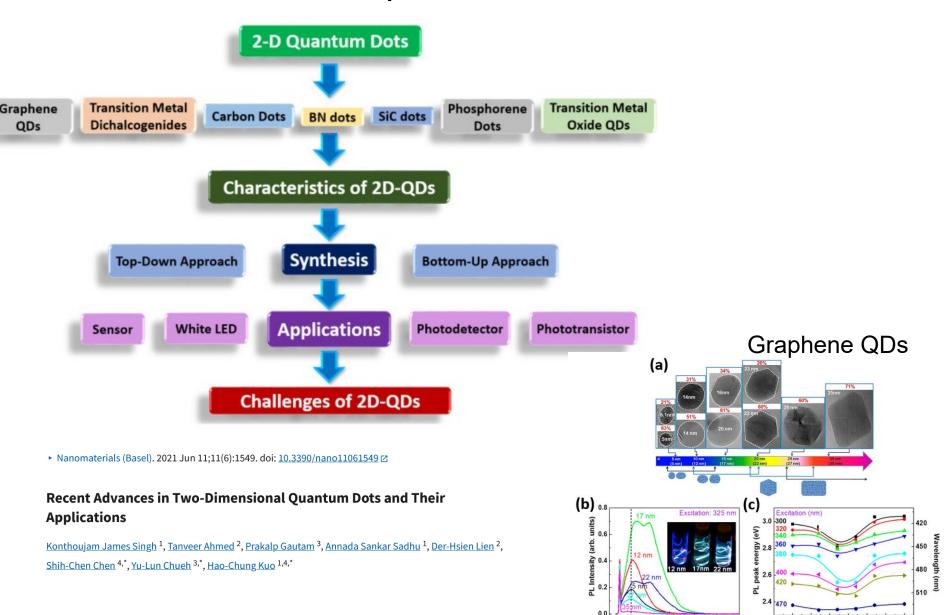




clusters / quantum dots



2D quantum dots



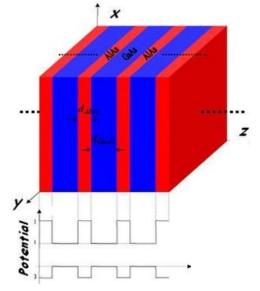
600

Wavelength (nm)

700 800

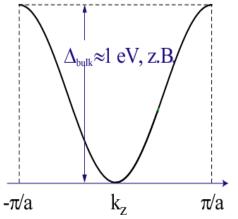
20 25 30

QD size (nm)

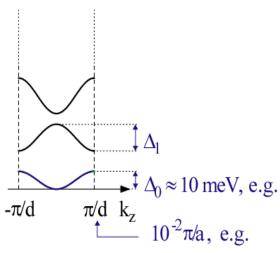


Superlattices

dispersion in bulk semiconductor $E(k_z)$



dispersion in superlattice $E(k_z)$



period of superlattice d >> period of semiconductor crystal a reduced Brillouin-zone along growth direction z + lifting of degeneracy at zone boundary => "minibands"

tight-binding approximation:
$$E(k_z) = \frac{\Delta}{2} (1 - \cos(k_z d))$$

 Photovoltaic structures (e.g. Si with direct gap)

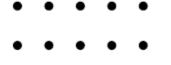
Transport in electric fields

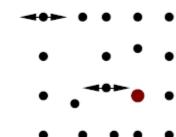
Scattering

Electron propagation in real materials is NOT an uninterrupted process but is instead DISRUPTED by electron SCATTERING from a number of different sources

The origin of such scattering can be ANY source of DISORDER that destroys the perfect symmetry of the crystal structure

⇒ Examples of such disorder include DEFECTS and IMPURITIES in the crystal structure but scattering from other ELECTRONS as well as from the quantized LATTICE VIBRATIONS (phonons) is also possible





Mean free path

An important time scale for electron transport is the RELAXATION TIME (1) which is the average time over which the initial momentum of the electron is REVERSED through a series of scattering events in the crystal

* Using the relaxation time we may introduce the concept of the MEAN FREE PATH which may be defined the average DISTANCE electrons travel before backscattering

$$l = v_F \tau$$

* Some IMPORTANT QUANTITIES related to the relaxation time and mean free path include

Mobility
$$\mu = \frac{e\tau}{m^*} = \frac{el}{\hbar k_E}$$

2D Diffusion Constant
$$D = \frac{1}{2}v_F^2 \tau$$

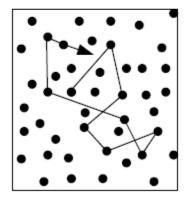
Conductivity
$$\sigma = \frac{ne^2\tau}{m^*} = ne\mu$$
 1D Diffusion Constant $D = v_F^2\tau$

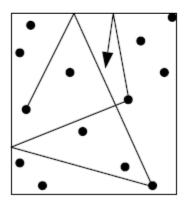
^{*} There is an elastic mean free path (ℓ_e ; scattering fixed impurities and boundaries) and an inelastic mean free path (ℓ_i ; scattering off phonons and other electrons).

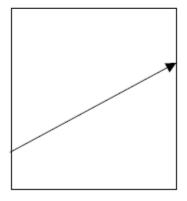
Transport regimes

Since submicron structures can now be fabricated on length scales SMALLER than the average impurity spacing in semiconductors it is possible to study electron transport in a number of different REGIMES

- * In DIFFUSIVE conductors the mean free path is much SMALLER than the sample dimensions and DISORDER scattering dominates
- * In a QUASI-BALLISTIC conductor the mean free path and device size are COMPARABLE
- * A BALLISTIC conductor contains NO impurities and so the dominant source of electron scattering is at the device BOUNDARIES (Is the resistance zero?)







BALLISTIC TRANSPORT

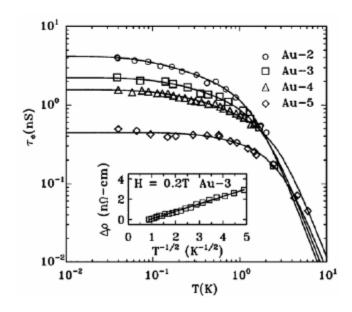
Coherent vs incoherent transport

To account for the disruption of interference effects in real materials we introduce the electron PHASE-BREAKING TIME (τ_{φ}) which can be thought of as the average time that elapses between dephasing events

* The PHASE-BREAKING LENGTH (I_{φ}) can be defined as the average distance that electrons DIFFUSE in the material before their phase is disrupted through scattering

$$l_{\varphi} = \sqrt{D\tau_{\varphi}} \tag{2.4}$$

* To observe clear interference effects it is necessary that this length is COMPARABLE to the device sizes which often requires that experiments be performed at LOW TEMPERATUES



- THE MEASURED VARIATION OF THE PHASE-BREAKING TIME WITH TEMPERATURE IN SMALL GOLD WIRES
- OFTEN WE DOT DISTINGUISH BETWEEN INELASTIC MEAN FREE PATH AND THE PHASE BREAKING LENGTH. THEY ARE DIFFERENT THOUGH. WHICH ONE IS LARGER?

Diffusive vs ballistic and classical vs quantum transport

diffusive

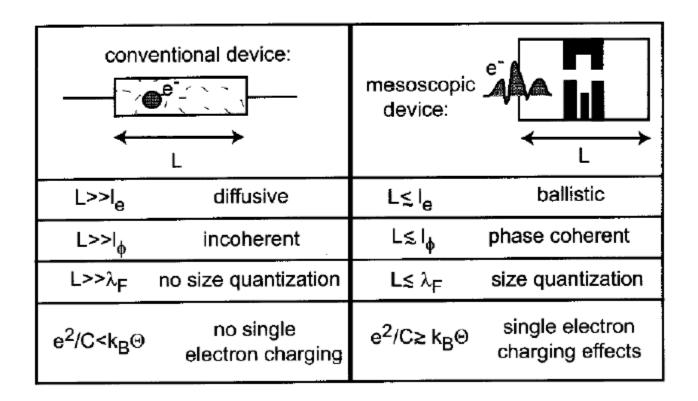
classical: λ_{F} , ℓ_{i} , $\ell_{e} \ll L$

quantum: λ_F , $\ell_e \ll L$, ℓ_i

ballistic

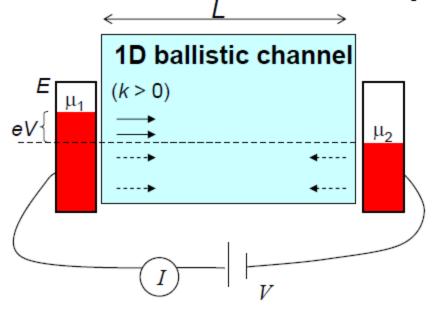
classical: $\lambda_F \ll L \ll \ell_e$, ℓ_i

quantum: λ_F , L < ℓ_e < ℓ_I



		GaAs(100)	Si (100)	Units
Effective Mass	m	0.067	0.19	$m_{\rm e} = 9.1 \times 10^{-28} \rm g$
Spin Degeneracy	g_{s}	2	2	
Valley Degeneracy	$g_{\rm v}$	1	2	
Dielectric Constant	ε	13.1	11.9	$\varepsilon_0 = 8.9 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Density of States Electronic Sheet	$\rho(E) = g_{\rm s}g_{\rm v}(m/2\pi\hbar^2)$	0.28	1.59	$10^{11}\mathrm{cm^{-2}meV^{-1}}$
Density ^a	$n_{\rm s}$	4	1-10	$10^{11}\mathrm{cm}^{-2}$
Fermi Wave Vector	$k_{\rm F} = (4\pi n_{\rm s}/g_{\rm s}g_{\rm v})^{1/2}$	1.58	0.56 - 1.77	10 ⁶ cm ⁻¹
Fermi Velocity	$v_{\rm F} = \hbar k_{\rm F}/m$	2.7	0.34 - 1.1	$10^7 \mathrm{cm/s}$
Fermi Energy	$E_{\rm F} = (\hbar k_{\rm F})^2/2m$	14	0.63 - 6.3	meV
Electron Mobility ^a	$\mu_{ m e}$	$10^4 - 10^6$	10 ⁴	cm ² /V·s
Scattering Time	$\tau = m\mu_e/e$	0.38 - 38	1.1	ps
Diffusion Constant	$D = v_{\rm F}^2 \tau / 2$	140-14000	6.4-64	cm ² /s
Resistivity	$\rho = (n_{\rm s}e\mu_{\rm e})^{-1}$	1.6-0.016	6.3 - 0.63	$k\Omega$
Fermi Wavelength	$\lambda_{\mathrm{F}} = 2\pi/k_{\mathrm{F}}$	40	112-35	nm
Mean Free Path	$l = v_{\rm F} \tau$	$10^2 - 10^4$	37-118	nm
Phase Coherence				
Length ^b	$l_{\phi} = (D\tau_{\phi})^{1/2}$	200	40-400	$nm(T/K)^{-1/2}$
Thermal Length	$l_{\rm T} = (\hbar D/k_{\rm B}T)^{1/2}$	330-3300	70-220	$nm(T/K)^{-1/2}$
Cyclotron Radius	$l_{ m cycl} = \hbar k_{ m F}/eB$	100	37-116	$nm(B/T)^{-1}$
Magnetic Length	$l_{\rm m} = (\hbar/eB)^{1/2}$	26	26	$nm(B/T)^{-1/2}$

Conductance of 1D quantum wire



Contacts: 'Ideal reservoirs'

Chemical potential $\mu \sim E_F$ (Fermi level)

Channel: 1D, ballistic (transport without scattering)

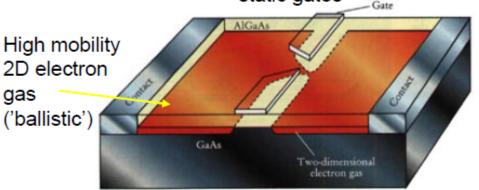
$$G = I/V = \frac{2e^2}{h}$$

Conductance is fixed, regardless of length L, no well defined conductivity σ

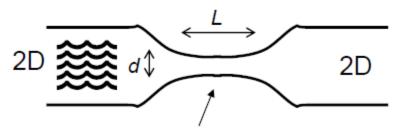
Quasi-1D channel in 2D electron system

$$G(E_F) = \frac{2e^2}{h} \sum_{n} T_n(E_F) \approx \frac{2e^2}{h} N(E_F) \ (T = 0 \text{K})$$

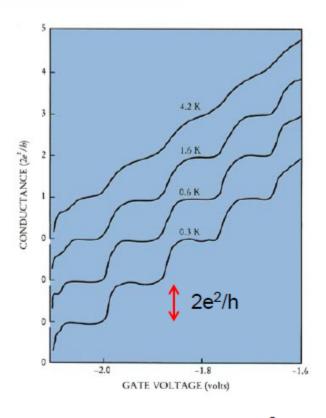
Depletion by electrostatic gates



'Quantum Point Contact'

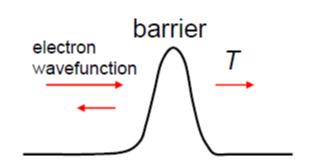


Narrow constriction; quasi-1D (width $d \sim \text{Fermi wavelength } \lambda_F$)



Limited conductance 2e²/h even without scattering, regardless of length *L*: "contact resistance"

Conductance from transmission



Landauer formula:

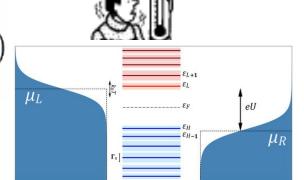
Rolf Landauer (1927-1999);
- G controversial issue in 80'ies

$$G = \frac{2e^2}{h}T$$
 (transmission probability T)

With N parallel 1D channels (subbands):

$$G(E_F) = \frac{2e^2}{h} \sum_{n} T_n(E_F) \ (T=0)$$

$$G(T) \approx \frac{2e^2}{h} \int_{-\infty}^{\infty} T(E) \left(-\frac{\partial f(E)}{\partial E} \right) dE \, V$$



Break junctions elongation rupture monoatomic contact ²Ф) Au 12000 consecutive curves 1x10⁶ 9000 T = 4.2 K6000 Conductance (2e 8x10⁵ 3000 Counts 6x10⁵ plateau length 4x10⁵ return distance 2x10⁵ Displacement of the electrodes (nm) Conductance (2e²/h)

Overview break junctions: N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Physics Reports 377, 81 (2003)

Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top

J.L. Costa-Krämer a, N. García a, P. García-Mochales a, P.A. Serena b

^aLaboratorio de Física de Sistemas Pequeños, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanca, 28049 Madrid, Spain

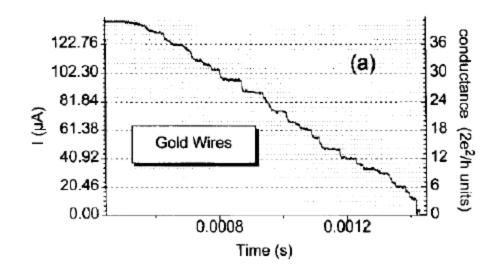
^bDepartamento de Física de la Materia Condensada, C-III, Universidad Autónoma de Madrid, 28049 Madrid, Spain

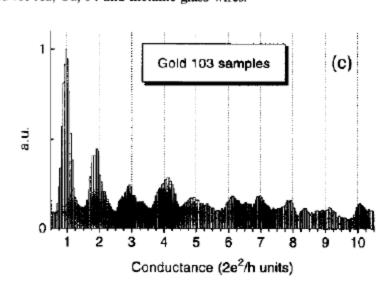
Received 27 July 1995; accepted for publication 23 September 1995

Surface Science 342 (1995) L1144-L1149

Abstract

In this letter we show that quantum mechanical conductance is observed in nanowires formed by placing two wires of macroscopic dimensions in contact, making them vibrate so they get in and out of contact, and measuring the conductance response of such a system with an oscilloscope. We do this by tapping the table top on which the loose contact formed by the macroscopic wires is placed. The formation of these nanowires and the associated quantized conductance is a universal phenomenon that occurs when any two metals get in and out of contact independently of the metal sizes. This should have strong technological implications in studying contact formation, friction, tribology, forming and breaking bonds, mechanics, etc., at the nanoscopic level. Results and simple specifications needed for the formation of nanowires are presented for Au, Cu, Pt and metallic glass wires.





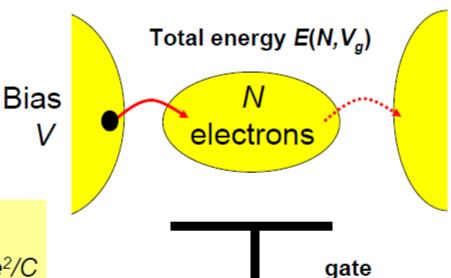
single-electron tunneling (SET)

- classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island)
- quantum dots: level spacing (quantum confinement)
 AND charging energy important (few electrons on the dot)

Coulomb blockade

Electrons can tunnel only at V_g for which

$$E(N+1,V_g) = E(N,V_g) \pm kT$$



Cost for adding one electron:

charging energy: $E_C \sim Q^2/C \sim e^2/C$

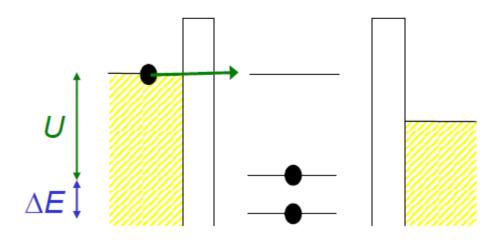
Quantum dots

(artificial atoms)

Two energy parameters:

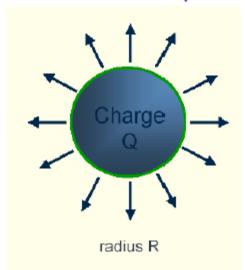
U – 'charging energy' e^2/C (e-e interaction strength)

 ΔE – single-particle level spacing



charging energy: $E_c = e^2/2C$

What is the capacitance of an isolated piece of metal (for example a sphere)?



Electric field:

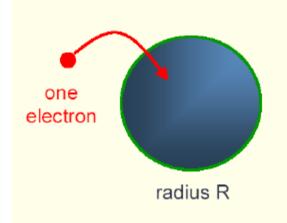
$$\vec{E}(\vec{r}) = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r} \quad (r > R)$$

$$C = QN = 4\pi\varepsilon_0 R$$

Voltage:

$$V(R) = -\int_{R}^{\infty} \vec{E}(\vec{r}) \cdot d\vec{r} = \frac{Q}{4\pi\epsilon_0 R}$$

What is the energy needed to charge the sphere with one electron (1/2QV with Q = e)?



R	С	E/k _B	
10 μm	1.1 x 10 ⁻¹⁵ F	0.84 K (³ He)	
1 μm	1.1 x 10 ⁻¹⁶ F	8.4 K (LHe)	
0.1 μm	1.1 x 10 ⁻¹⁷ F	84 K (LN ₂)	
0.01 μm	1.1 x 10 ⁻¹⁸ F	840 K (spa)	

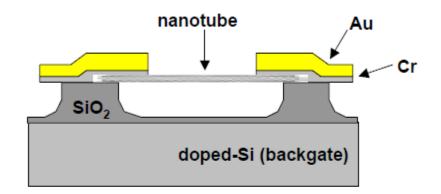
$$C = 4\pi \varepsilon_0 R$$

capacitances

isolated sphere (dot): $C_{sphere} = \epsilon_0 \epsilon_r 2\pi d$

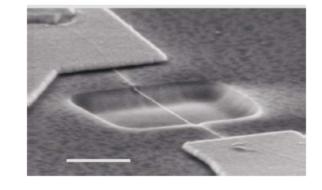
isolated disk: $C_{disk} = \varepsilon_0 \varepsilon_r 4d$

parallel plate: $C_{parallel plate} = \epsilon_0 \epsilon_r A/d$



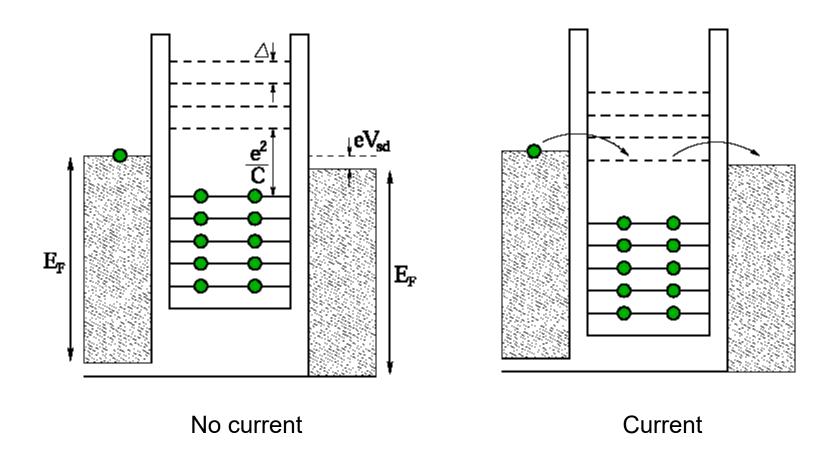
nanotube with diameter, r, above a ground plane at distance h: C_{NT} =

 $\varepsilon_0 \varepsilon_r 2 \pi L / ln(2h/r)$



quick estimate: capacitance per unit length: C' = $\varepsilon_0 \varepsilon_r = \varepsilon_r 10 \text{ aF/}\mu\text{m}$

Coulomb blockade

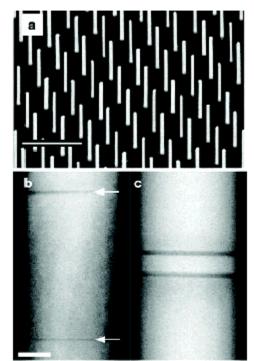


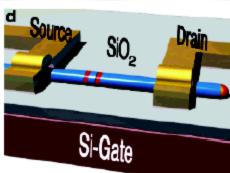
Few-Electron Quantum Dots in Nanowires

Mikael T. Björk, †,§ Claes Thelander, †,§ Adam E. Hansen, † Linus E. Jensen, † Magnus W. Larsson, ‡ L. Reine Wallenberg, ‡ and Lars Samuelson *,†

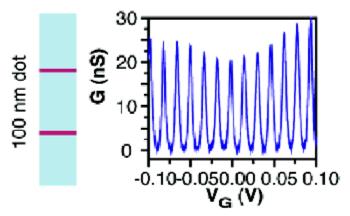
NANO LETTERS

2004 Vol. 4, No. 9 1621-1625

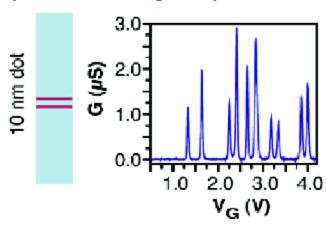




classical dot: regular spaced Coulomb peaks



quantum dot: irregular spaced Coulomb peaks

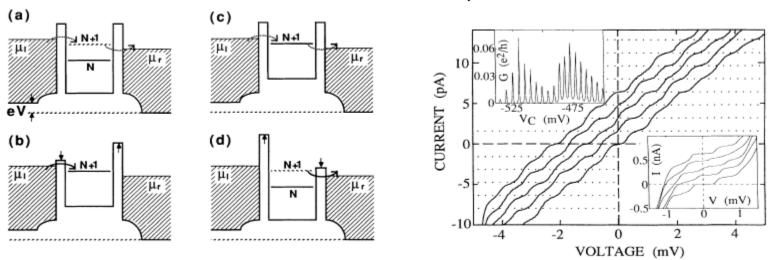


Quantized Current in a Quantum-Dot Turnstile Using Oscillating Tunnel Barriers

L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, and C. J. P. M. Harmans Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600GA Delft, The Netherlands

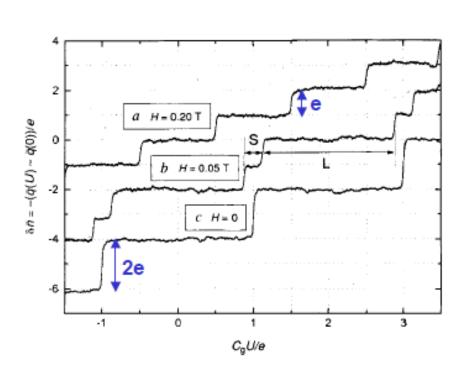
C. T. Foxon

Philips Research Laboratories, Redhill, Surrey RH15HA, United Kingdom
(Received 20 May 1991)



Homework!

measured charge quantization in a normal and superconducting single-electron box



Two-electron quantization of the charge on a superconductor

P. Lafarge, P. Joyez, D. Esteve, C. Urbina & M. H. Devoret

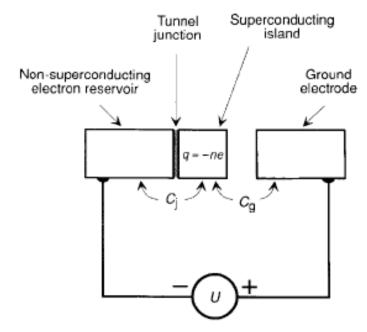
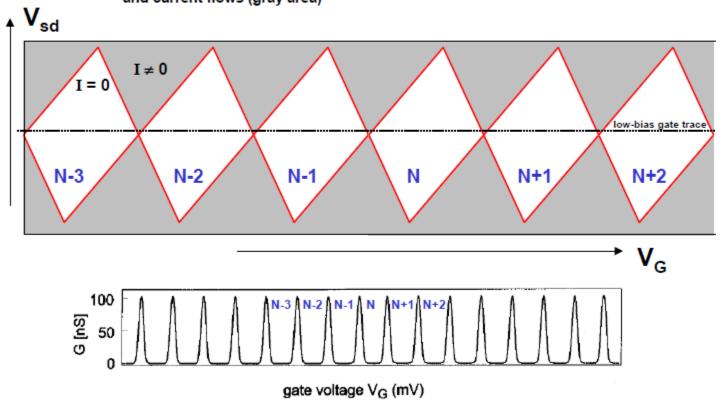


FIG. 1 Schematic diagram of the experiment. The superconducting island is a $30 \times 110 \times 2,260$ nm Al strip containing $\sim 10^9$ atoms. Its dimensions are such that the electrostatic energy of one extra electron is much larger than the energy $k_{\rm B}T$ of thermal fluctuations at temperature $T \sim 30$ mK. The island can exchange electrons with a Cu (3 wt% Al) thin-film electrode (which acts as an electron reservoir) through a tunnel junction¹⁷. The total charge q of the island varies under the influence of the externally controlled voltage source U connected between the electron reservoir and a ground electrode. The variation with U of the time average q of the island charge is measured by a Coulomb blockade electrometer (not shown) which is weakly capacitively coupled to the island. The nanofabrication and low-noise measurement techniques involved in this type of experiment have been described in refs 5 and 18.

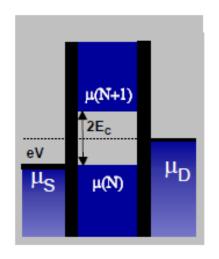
gate traces and stability diagram

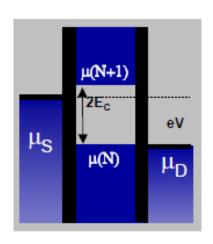
inside the Coulomb diamonds: the number of electrons on the island is fixed and no current flows

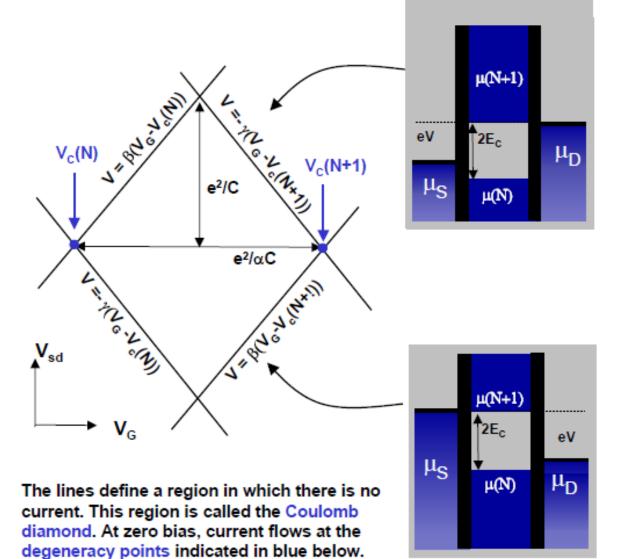
outside the Coulomb islands: the number of electrons fluctuates and current flows (gray area)



Coulomb diamonds







Coulomb diamonds: the equations

From $\mu_S = \mu(N)$ we find $V = \beta(V_G - V_C)$ with $\beta = C_G/(C_G + C_D)$

From
$$\mu_D = \mu(N) = 0$$
 we find $V = -\gamma (V_G - V_C)$ with $\gamma = C_G / C_S$

 $V_C = (N-1/2)e/C$, i.e. the voltage corresponding to the chemical potential on the dot in the absence of an external potential.

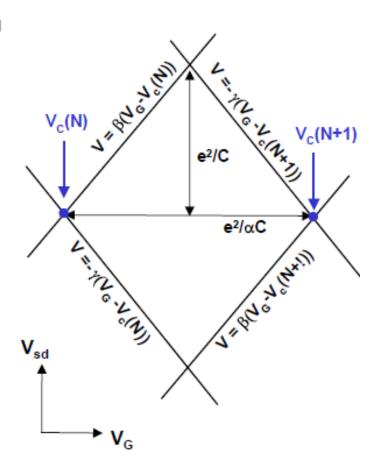
The energy required to put an extra electron on the island (having already N-electrons is called the addition energy:

$$E_{add} = \mu(N+1) - \mu(N) = \frac{e^2}{C} = 2E_C$$

In a measurement the addition energy can be read off from the height of the Coulomb diamonds or from the distance between adjacent crossing point ($V_C(N+1)-V_C(N)=e/C_G=2E_C/\alpha$).

The latter term contains a factor α , which is the gate coupling parameter: the potential on the island varies linearly with the gate voltage, $\Delta V_{I} = \alpha \Delta V_{G}$ where

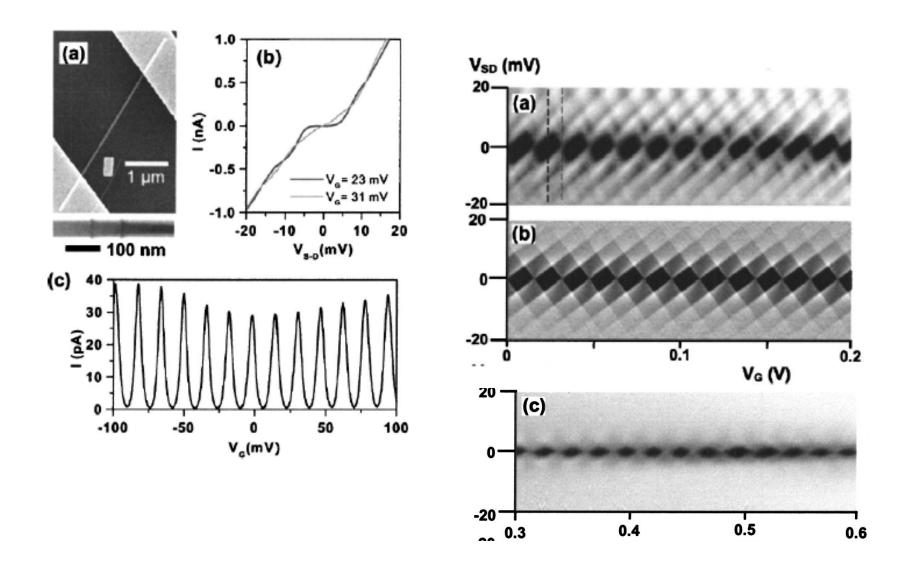
$$\frac{C}{C_G} = \frac{1}{\alpha} = \frac{1}{\beta} + \frac{1}{\gamma}$$



Single-electron transistors in heterostructure nanowires

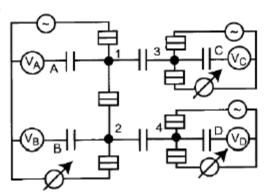
C. Thelander, $^{a)}$ T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, $^{b)}$ L. R. Wallenberg, $^{b)}$ and L. Samuelson

Solid State Physics/Nanometer Consortium, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden



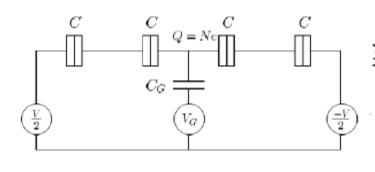
SET applications

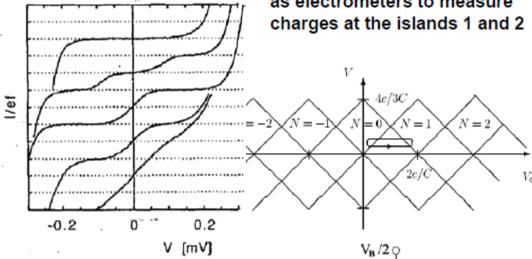
sensitive charge measurements (10⁻⁵ e/√Hz)



Experiment: SETs 3 and 4 work as electrometers to measure charges at the islands 1 and 2

current standard (turnstile)



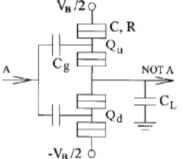


Single-electron logic, memory

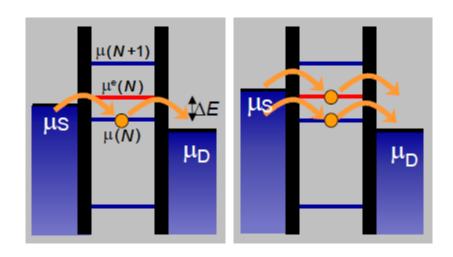
Single-electron logic and memory devices

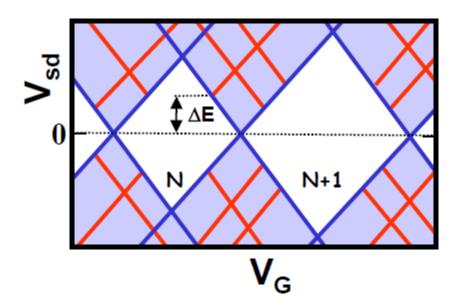
ALEXANDER N. KOROTKOV†‡

issues: random offset charges room-temperature operation



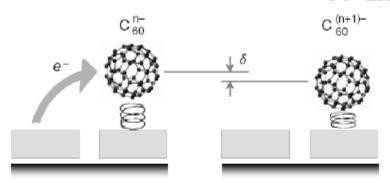
level spectroscopy: excited states





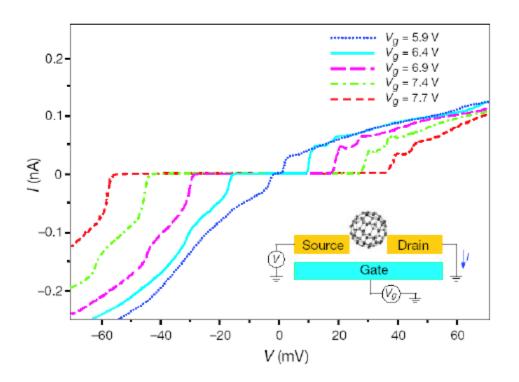
- when an excited level enters the transport window, an additional transport channel opens up leading to a step-wise increase of the current. In the differential resistance (which is often plotted in the stability diagram), these steps appear as lines running parallet to the diamond edges (red lines)
- the energy of the excited state can directly be read off from the diagram as indicated in the figure
- excitations can probe electronic spectrum, spin or vibrational states

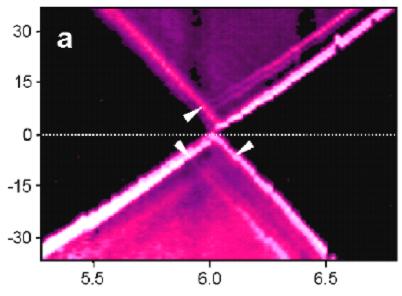
vibration assisted tunnelling in a C_{60}



single electron tunneling events excite and probe the mechanical motion of the C60 bucky ball

vibrational mode adds another transport channel: step in currentvoltage characteristic





H. Park et al. Nature 407, 57 (2000)