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Useful resource: lecture notes from Delft University (the Netherlands):

Semester-long courses in advanced solid state and in mesoscopic physics
(mostly semiconductor nanostructures)

https://ocw.tudelft.nl/courses/mesoscopic-physics/

https://ocw.tudelft.nl/courses/advanced-solid-state-physics/



2D electron gas (2DEG)

2DEG is a generic

band gap engineering object for new physics
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Nobel Prizes related to 2DEG

The electron transport in confined geometries is of high principal interest. Using a strong
magnetic field applied perpendicular to a 2DEG, K. von Klitzing discovered the quantum
Hall effect (Nobel Prize 1985) in samples supplied by M. Pepper and G. Dorda. Using
even higher fields, D.C. Tsui and H.L. Stoermer (Nobel Prize 1998) discovered the
fractional quantum Hall effect in ultrapure MBE material made by A.C.

Gossard.

The Royal Swedish Academy of Sciences has awarded the Nobel Prize 2000 in

Physics

“for basic work on information and communication technology”

The prize is being awarded with one half jointly to

Zhores |. Alferov, A.F. loffe Physico-Technical Institute, St. Petersburg, Russia, and
Herbert Kroemer, University of California at Santa Barbara, California, USA,

”for developing semiconductor heterostructures used in high-speed- and optoelectronics”
and one half to

Jack S. Kilby, Texas Instruments, Dallas, Texas, USA

“for his part in the invention of the integrated circuit”

http://nobelprize.org/
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Quantum wires

QUANTUM WIRES: free electron motion is restricted to ONE dimension (1D)

= These QUASI-ONE-DIMENSIONAL structures may be realized using a variety of
techniques

= They also occur quite NATURALLY and examples of such structures include
CAREBON NANOTUBES and long MOLECULAR CHAINS

100 nm Co

75-nm WIDE ETCHED QUANTUM WIRE CARBON NANOTUBE BRIDGING
TWO COBALT CONTACTS

M. L. Roukes et al. K. Tsukagoshi et al.
Phys. Rev. Lett. 53, 3011 (1987) Nature 401, 572 (1999)



Quantum dots

QUANTUM DOTS are structures (called zero-dimensional, 0-D) in which electron motion is
strongly confined in ALL THREE dimensions (QUANTIZATION) so that these structures may be
viewed as ARTIFICIAL ATOMS

* These structures may be realized by a variety of different techniques and in a
range of different materials

* Dominant transport mechanism: SINGLE-ELECTRON TUhnlmNELING
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Nanoscale objects

(organic) molecules inorganic nanowires
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Carbon-based materials



2D quantum dots
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* Tunable mid-IR
detectors

* Photovoltaic
structures (e.g. Si

with direct gap)

Superlattices

dispersion in bulk semiconductor dispersion in superlattice
Ekz) E(k,)

-/d wd k,
L IO'QJT/a, e.g.

period of superlattice d >> period of semiconductor crystal a

reduced Brillouin-zone along growth direction z + lifting of degeneracy at zone boundary
=> "minibands"

A
tight-binding approximation: E(k.) = 7 (1 — cos(k.d))



Transport in electric fields



Scattering

Electron propagation in real materials is NOT an uninterrupted process but is instead
DISRUPTED by electron SCATTERING from a number of different sources

The origin of such scattering can be ANY source of DISORDER that destroys the
perfect symmetry of the crystal structure

= Examples of such disorder include DEFECTS and IMPURITIES in the crystal
structure but scattering from other ELECTRONS as well as from the quantized
LATTICE VIERATIONS (phonons) is also possible

e @& & @ @ - o & @& @®
e & & @ » ® ] . ]
e & @ = @ ] ® ® o
e @& & @ @ ® e & @& @
ELECTRONS IN A PERFECTLY PERIODIC IN REAL CRYSTALS HOWEVER THE PRESENCE
POTENTIAL PROPAGATE WITHOUT BEING OF INEVITABLE DISORDER DISRUPTS ELECTRON
SCATTERED ... THIS WELL KNOWN RESULT PROPAGATION THROUGH THE CRYSTAL

IS REFERRED TO AS BLOCH'S THEOREM STRUCTURE



Mean free path

An important time scale for electron transport is the RELAXATION TIME (z) which is the
average time over which the initial momentum of the electron is REVERSED through a series
of scattering events in the crystal

* Using the relaxation time we may introduce the concept of the MEAN FREE PATH
which may be defined the average DISTANCE electrons travel before backscattering

[=v,T

*Some IMPORTANT QUANTITIES related to the relaxation time and mean free path

include
s er el . 1,
Mobility jt =—=—— 2D Diffusion Constant D =—v,t
m  hk, 2
, . ne’r o )
Conductivity c =——=neu 1D Diffusion Constant D =v,T

m

* There is an elastic mean free path (£.; scattering fixed impurities and boundaries) and
an inelastic mean free path (€,; scattering off phonons and other electrons).



Transport regimes

Since submicron structures can now be fabricated on length scales SMALLER than the
average impurity spacing in semiconductors it is possible to study electron transportin a
number of different REGIMES

* In DIFFUSIVE conductors the mean free path is much SMALLER than the sample
dimensions and DISORDER scattering dominates

*Ina QUASI-BALLISTIC conductor the mean free path and device size are
COMPARABLE

* A BALLISTIC conductor contains NO impurities and so the dominant source of
electron scattering is at the device BOUNDARIES (Is the resistance zero?)

DIFFUSIVE TRANSPORT QUASI-BALLISTIC TEANSPORT BALLISTIC TRANSPORT



Coherent vs incoherent transport

To account for the disruption of interference effects in real materials we introduce the

electron PHASE-BREAKING TIME (z,) which can be thought of as the average time that
elapses between dephasing events

* The PHASE-BREAKING LENGTH (I,) can be defined as the average distance that
electrons DIFFUSE in the material before their phase is disrupted through scattering

I, =./Dr, (2.4)

* To observe clear interference effects it is necessary that this length is COMPARAELE
to the device sizes which often requires that experiments be performed at LOW
TEMPERATUES

ml_ — S —

- THE MEASURED VARIATION OF THE PHASE-BREAKING TIME WITH

® L
. TEMPERATURE IN SMALL GOLD WIRES

T,{nS)

« OFTEN WE DOT DISTINGUISH BETWEEN INELASTIC MEAN FREE PATH
AND THE PHASE BREAKING LENGTH. THEY ARE DIFFERENT THOUGH.
WHICH ONE IS LARGER?

107!}

1074 — .
107% 107 10* 10t P. Mohanty et al.
T(K) Phys. Rev. Lett. 78, 3366 (1997)




Diffusive vs ballistic and classical vs
quantum transport

classical: A, €, £, << L classical: A << L <€, &
diffusive ballistic

quantum: Ag, €, << L, & quantum: A, L < €_<§g,

conventional device: e H
- .e_ = Mesoscopic Ah I I
! AN el !

device:
< > < >
L L
L>>l, diffusive Lglg ballistic
L>>] b incoherent L< I¢, phase coherent
L>>AF  no size quantization L< Ap size quantization
62/C<kg® no single e2/Cx Kg®© single electron

electron charging charging effects




GaAs(100)  Si (100) UnITS
Effective Mass m 0.067 0.19 m,=9.1x10"28¢g
Spin Degeneracy ds 2 2
Valley Degeneracy d, 1 2
Dielectric Constant & 13.1 11.9 £0=289
x10"12Fm™!
Density of States pE)=g.g,(m/2nh*) 028 1.59 10" cm ™ ?meV ™!
Electronic Sheet
Density® n, 4 1-10 10'' ¢cm ™2
Fermi Wave Vector kg =(4nn,/g.g,)'"> 1.58 0.56-1.77 10°cm~!
Fermi Velocity vp = hkg/m 2.3 0.34-1.1 107 cm/s
Fermi Energy Ep=(hkg)?/2m 14 0.63-6.3 meV
Electron Mobility* Ue 10*-10° 104 cm?/V-s
Scattering Time T=my,/e 0.38-38 1.1 ps
Diffusion Constant D =viz/2 140-14000 6.4-64 cm?/s
Resistivity p=(nep) " 1.6-0.016  6.3-0.63 kQ
" Fermi Wavelength Ap= 2]k 40 112-35 nm
Mean Free Path l=vgT 10*-10* 37-118 nm
Phase Coherence
Length® l,={(Dz)"? 200—- - 40-400 nm(7/K) /2
~Thermal Length I, =(AD]kgT)"? 330-3300 70-220 nm(1/K) 77
Cyclotron Radius l.ye1=hkg/eB 100 37-116 nm(B/T)"!
Magnetic Length I,,=(h/eB)' 26 26 nm(B/T)~ 1/




Conductancg_ of 1D quantum wire

1D ballistic channel Contacts: ‘Ideal reservoirs’

Chemical potential . ~ E¢
(Fermi level)

Channel: 1D, ballistic
(transport without scattering)

G=1/V=— Conductance is fixed, regardless of length L,
h no well defined conductivity




Quasi-1D channel in 2D electron system

o 2e? 2e? i

Depletion by electro-
static gates

iy

]

High mobility
2D electron
gas

("ballistic’)

COMNDUCTANCE :2.,-"J'.n}-|

‘Quantum Point Contact’

1 2e?/h
L
>
e g 3 L
2D == 4 2D
m 1 LLr 1 (8
- / - Limited conductance 2e?/h
Narrow constriction; quasi-1D even without scattering,
(width d ~ Fermi wavelength ;) regardless of length L:

"contact resistance”



Conductance from transmission

barrier
electron :
wavefunction T -~
—_— — E
— e )
W8

Rolf Landauer (1927-1999);
- G controversial issue in 80°ies

Landauer formula:

9 2
G = %T (transmission probability 1)




Break junctions

elongation monocatomic contact rupture
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Overview break junctions: N. Agrait, A.L. Yeyati, J. M. van Ruitenbeek, Physics Reporis
377, 81 (2003)



Nanowire formation in macroscopic metallic contacts:
quantum mechanical conductance tapping a table top

J.L. Costa-Kriamer *, N. Garcia ?, P. Garcia-Mochales , P.A. Serena ®

“Laboratoric de Fisica de Sistemas Peguefios, Consejo Superior de Investigaciones Cientificas and Universidad Auténoma de Madrid,
Cantoblanca, 28049 Madrid, Spain

*Departamento de Fisica de la Materia Condensada, C-111, Universidad Autonoma de Madrid, 28049 Madrid, Spain

Received 27 July 1995; accepted for publication 23 September 1995

Surface Science 342 (1995) L1144 L1149

Abstract

In this letter we show that quantum mechanical conductance is observed in nanowires formed by placing two wires of macroscopic
dimensions in contact, making them vibrate so they get in and out of contact, and measuring the conductance response of such a
system with an oscilloscope. We do this by tapping the table top on which the loose contact formed by the macroscopic wires is
placed. The formation of these nanowires and the associated quantized conductance is a universal phenomenon that occurs when
any two metals get in and out of contact independently of the metal sizes. This should have strong technological implications in
studying contact formation, friction, tribology, forming and breaking bonds, mechanics, etc., at the nanoscopic level. Results and
simple specifications needed for the formation of nanowires are presented for Au, Cu, Pt and metallic glass wires.

! { Gold 103 samples I {c):
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Conductance (2e”/h units)




single-electron tunneling (SET)

* classical dots (SET islands): level spacing is NOT

important; only the charging energy (=classical
effect, many electrons on the island)

+ quantum dots: level spacing (Qquantum confinement)
AND charging energy important (few electrons on the

dot)



Coulomb blockade

Electrons can tunnel only
at V,, for which

Total energy E(N,V,)

Bias N

electrons
E(N+1,V,) = E(N,V,) + kT

Cost for adding one electron:

charging energy: E.~ Q%C ~ e?/C I gate

VQ
Quantum dots
(artificial atoms)
Two energy parameters:
_. -
U — ‘charging energy’ e/C
(e-e interaction strength) U

AE — single-particle E :: l
— - A |

level spacing




charging energy: E.=e2/2C

- What is the capacitance of an isolated piece of metal (for example a sphere)?

\ T / Electric field:
- E(F)= € ; (r > R)

g
— dregr™

~

lh

C=QV=4ngR

Voltage: . |
a5 5(3):—1‘5(5)1#7: <

radius R R 4TEE”R

- What is the energy needed to charge the sphere with one electron (1/2QV with Q = e)?

R C E/kg
10um | 1.1x 10"5F | 0.84 K (*He)
Tum | 1.1x1076F | 8.4 K (LHe)
01um | 1.1x107F | 84K (LN,)

radius R 0.01um | 1.1 x 108F | 840 K (spa)
C = 4ng,R

one
electron




capacitances

isolated sphere (dot): C_, . = ¢, 2nd

nanotube Au
isolated disk: C,_, = g.¢, 4d
parallel plate: C__ il piate = €€ Ald R

nanotube with diameter, r, above a ground plane at distance h: C; =
€,€, 2 m L/ In(2h/r)

quick estimate: capacitance per unit length: C’ =g, =¢ 10 aF/um



Coulomb blockade
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Few-Electron Quantum Dots In

Nanowires

Mikael T. Bjork,”$ Claes Thelander,5 Adam E. Hansen,' Linus E. Jensen,’
Magnus W. Larsson,! L. Reine Wallenberg,! and Lars Samuelson®'
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VOLUME 67, NUMBER 12 PHYSICAL REVIEW LETTERS 16 SEPTEMBER 1991

Quantized Current in a Quantum-Dot Turnstile Using Oscillating Tunnel Barriers

L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, and C. J. P. M. Harmans
Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600G A Delft, The Netherlands

C. T. Foxon

Philips Research Laboratories, Redhill, Surrey RHI5SHA, United Kingdom
(Received 20 May 1991)
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measured charge quantization in a normal
and superconducting single-electron box

At = <(giL) ~ gl0)ye

Two-electron quantization
of the charge on a
superconductor

P. Lafarge, P. Joyez, D. Esteve, C. Urbina
& M. H. Devoret

Tunnel  Superconducting

junction island

Is'
Men-superconducting / Ground
electron resenvoir i electrode

/ ;
4 ¥ ¥ IS
I g=—ne
A AR A
] G

()

FiG. 1 Schematic diagram of the experment. The superconducting
wland s 8 30=<110= 22680 nm Al strip containing ~10" atoms. Its
dimensions are such that the electrostatic energy of one extra electron
is much larger than the enagy keT of thermal fluctuations at tempera-
ture T~ 30 mK. The sland can exchange electrons with a Cu (3 wi®s
Al thin-film electrode (which acts as an elactron reservair) through a
tunnel junction’’. The total charge g of the ksland varies under the
influence of the externally controlled woltage source U connmected
between the electron resarvolr and a ground electroda. The variation
with U of the time average q of the island charge is measured by &
Coulomb blockade electrometer (not shown) which is weakly capaci-
bively coupled to tha island. The nanofabrication and low-noise
measurement technigques involved in this type of expenment have baan
described In refs 5 and 18,

NATURE - VWOL 365 - 30 SEPTEMBER 1993



gate traces and stability diagram

inside the Coulomb diamonds: the number of electrons on the
island is fixed and no current flows

outside the Coulomb islands: the number of electrons fluctuates
and current flows (gray area)

gate voltage Vg (mV)



Coulomb diamonds

The lines define a region in which there is no
current. This region is called the Coulomb
diamond. At zero bias, current flows at the
degeneracy points indicated in blue below.




Coulomb diamonds: the equations

From u, = u(N)we find " = #(. -V, ) with 7 =C,. (C,. +C,)

From u, = w(N)=0 wefind |’ = (1. — V. ) withy =, /('

V. =|N—-1/2)e/C, i.e. the voltage corresponding to the chemical
potential on the dot in the absence of an external potential.

The energy required to put an extra electron on the island (having

already N-electrons is called the addition energy:
c(N+1)

E ., =u(N+1)=(N)= ‘?: SF.

In a measurement the addition energy can be read off from the
height of the Coulomb diamonds or from the distance between

adjacent crossing point (V.(N +1D) =V (N)=e/C. =2FE /).
The latter term contains a factor o, which is the gate coupling

parameter: the potential on the island varies linearly with the gate Vv
voltage, Al", = aA ), where sd

(O
——=—=C+— ‘
Co a By .



APPLIED PHYSICS LETTERS VOLUME 83, NUMBER 10 5 SEPMTEMBER 2002

Single-electron transistors in heterostructure nanowires

C. Thelander,™ T. Maﬂenssnn M. T. Bjork, B. J. Ohlsson, M. W. Larsson.”
L. R. Wallenberg,” and L. Samuelson
Solid State Physics/Nanomeler Consortivm, Lund University, PO0 Box 118, SE-2210 0 Lund, Sweden
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SET applications

- sensitive charge measurements (105 e/\VHz)

- current standard (turnstile)
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Single-electron logic, memory

Single-electron logic and memory devices

issues:
random offset charges

room-temperature operation

ALEXANDER N, KOROTKOVt:
INT. J. ELECTRONICS, 1999, vOL, 8§86, NO, 5, 511-547

Experiment: SETs 3 and 4 work
as electrometers to measure

charges at the islands 1 and 2

Vg /2

Figure 5. The complementary inverter made of two SET-tmnsistors.



level spectroscopy: excited states

1|

LN +1)
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S
A

.

when an excited level enters the
transport window, an additional
transport channel opens up leading to
a step-wise increase of the current. In
the differential resistance (which is
often plotted in the stability diagram),
these steps appear as lines running
parallet to the diamond edges (red
lines)

the energy of the excited state can
directly be read off from the diagram as
indicated in the figure

excitations can probe electronic
spectrum, spin or vibrational states



vibration assisted tunnelling in a C,,
transistor
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single electron tunneling events excite
and probe the mechanical motion of
the C60 bucky ball

vibrational mode adds another
transport channel: step in current-
voltage characteristic

6.5

5.6

5.0

H. Park et al. Nature 407, 57 (2000)



	Low-dimensional semiconductors. Transport properties.
	Slide Number 2
	2D electron gas (2DEG)
	Nobel Prizes related to 2DEG
	Quantum wells
	Quantum wires
	Quantum dots
	Nanoscale objects
	Slide Number 11
	Superlattices
	Transport in electric fields
	Scattering
	Mean free path
	Transport regimes
	Coherent vs incoherent transport
	Diffusive vs ballistic and classical vs quantum transport
	Slide Number 20
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Break junctions
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Coulomb blockade
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

