Phys 673 Nano Fall 2025

Homework #2

due Wednesday, November 3, 2025

- 1. (5 pts) Consider p-type Si with a carrier density of $1.4x10^{16}$ cm⁻³ and hole effective mass of 0.37 m₀, where m₀ is the free electron mass. What is the plasma frequency of such a material? What do you expect from reflection and transmission of this semiconductor at optical frequencies?
- 2. (5 pts) Calculate the binding energy and radius of the n = 1 exciton in ZnS, which has $m_e^* = 0.28 \, m_0$, $m_h^* = 0.5 \, m_0$ and e = 7.9. What is the highest temperature at which this exciton can be observed?
- 3. (10 pts) We would like to optically study exciton-exciton collisions in GaN at 300 K, which has $m_e^* = 0.2 m_0$, $m_h^* = 1.2 m_0$ and e = 10.
- (a) What is the lowest excitation photon energy needed to excite the n = 1 exciton? (Eg of GaN at 300 K is 3.4 eV).
- (b) Assuming that each excitation photon will produce an exciton, estimate the lowest energy of the laser pulse at a wavelength calculated in (a) needed to observe exciton-exciton collisions in a 1 mm x 1 mm sample with a thickness of 100 nm.
- 4. (10 pts) Work through the Nature 2003 paper by Barnes et al.
 - (a) Derive Eqs.(1) and (2)
 - (b) Discuss Eq.(4) and relationship between data in Fig.4 and Eq.(1). Does Eq.(4) support the peak position in Fig. 4?
- 5. (10 pts) Investigate the dispersion relation for the surface plasmon polariton (SPP) (i.e. frequency ω as a function of wave number k_x). How does SPP behave at low k_x and at high k_x ? What is determined by the dielectric permittivities ε_1 and ε_2 ? Discuss the difference in SPP propagation if you consider:
 - (a) Au/air vs Ag/air interface
 - (b) Au/air vs Au/glass interface
- 6. (10 pts) Work through the PRL 2000 paper by Pendry. Discuss differences in transmission through a slab with "normal" refraction and with negative refraction.
- 7. Reading assignment: Science **302**, 419 (2003) (plasmons in complex nanostructures) and Science **305**, 847 (2004) (plasmon in arrays).

Additional reading regarding physics of metal nanoparticles and nanostructures:

- 1) L. Novotny and B. Hecht, "Principles of nano-optics" (Cambridge Univ. Press, Cambridge, 2006)
- 2) "Surface Plasmon nanophotonics", M. L. Brongersma and P.G. Kik (Eds.), (Springer, 2007)
- 3) H. Raether, "Surface plasmons on smooth and rough surfaces and on gratings" (Springer, 1998)
- 4) P. Prasad, "Nanophotonics" (Wiley-Interscience, 2004)
- 5) "Near-field optics and surface plasmon polaritons", S. Kawata (Ed.), (Springer, 2001)