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Austria
2Institute Laue Langevin, B. P. 156, F-38042 Grenoble Cedex 9, France
.............................................................................................................................................................................

Non-local correlations between spatially separated systems have
been extensively discussed in the context of the Einstein,
Podolsky and Rosen (EPR) paradox1 and Bell’s inequalities2.
Many proposals and experiments designed to test hidden variable
theories and the violation of Bell’s inequalities have been
reported3–7; usually, these involve correlated photons, although
recently an experiment was performed with 9Be1 ions8.
Nevertheless, it is of considerable interest to show that such
correlations (arising from quantum mechanical entanglement)
are not simply a peculiarity of photons. Here we measure
correlations between two degrees of freedom (comprising spatial
and spin components) of single neutrons; this removes the need
for a source of entangled neutron pairs, which would present a
considerable technical challenge. A Bell-like inequality is intro-
duced to clarify the correlations that can arise between observ-
ables of otherwise independent degrees of freedom. We
demonstrate the violation of this Bell-like inequality: our
measured value is 2.051 6 0.019, clearly above the value of 2
predicted by classical hidden variable theories9–12.

The concept of quantum non-contextuality9–12 represents a
straightforward extension of the classical view: the result of a
particular measurement is determined independently of previous
(or simultaneous) measurements on any set of mutually commut-
ing observables13. Local theories represent a particular circumstance
of non-contextuality, in that the result is assumed not to depend on
measurements made simultaneously on spatially separated
(mutually non-interacting) systems. In order to test non-contex-
tuality, joint measurements of commuting observables that are not
necessarily separated in space are required.

Two degrees of freedom can be used for such experiments, for
example, the spatial and the spinor properties, of single particles,
prepared in an a non-factorized state and manipulated to measure
two commuting observables. A Bell-like inequality has been
obtained to distinguish non-contextual hidden variable (NCHV)
theories from the prediction of quantum mechanics14.

Here, we report a single-neutron interferometer experiment to
show stronger correlations than the classical non-contextual model
with the use of a Bell-like inequality. (General descriptions of
neutron interferometer experiments are summarized in the litera-
ture15.) We note that all the experiments showing the violation of
the Bell’s inequalities have been performed with correlated
entangled pairs16–20, including the recent one with 9Beþ ions8. We
used not entangled pairs but single neutrons and the entanglement
is achieved between different degrees of freedom in a single particle.
This is based on the fact that states of spin-1/2 particles, like
neutrons, are described by a tensor product Hilbert space, that is,
H ¼H1^H2 where H 1 and H 2 are respectively disconnected
Hilbert spaces corresponding to the spatial and the spinor wave
function. Observables of the spatial part are commutable with those
of the spinor part, this justifying the derivation of a Bell-like
inequality by the NCHV theories14. The experiment consists of
joint measurements of commuting observables of single neutrons in
an appropriately prepared nonfactorizable state.

In our polarized neutron interferometer experiment, the total
wavefunction consists of the entanglement of the spatial part and

the spinor part21, that is, different degrees of freedom. The normal-
ized total wavefunction jWl can be represented as a Bell state, jWl¼
1ffiffi
2
p ðj # l^jIlþ j " l^jIIlÞ: Here, j " l and j # l denote the up-spin and

down-spin states, and jIl and jIIl denote the two beam paths in the

interferometer.
The expectation value for the joint measurement for the spinor

1ffiffi
2
p ðj " lþ eiaj # lÞ and the path 1ffiffi

2
p ðjIlþ eixjIIlÞ is calculated to be:

E
0
ða;xÞ ¼kWjP̂sðaÞ·P̂pðxÞjWl

¼kWj½ðþ1Þ·P̂
s

a;þ1þ ð21Þ·P̂
s

a;21�

½ðþ1Þ·P̂
p

xþ1þ ð21Þ·P̂
p

x;21�jWl

ð1Þ

where P̂
s

a^1 and P̂
p

x^1 are the projection operators to the states
1ffiffi
2
p ðj " l^ eiaj # lÞ and 1ffiffi

2
p ðjIl^ eixjIIlÞ; respectively. (These projec-

tion operators and the expectation value correspond to P^ðaÞ;
P^ðbÞ and Eða;bÞ in the conventional EPR argument22.) It should
be emphasized here that the observables P̂s and P̂p operate in
different Hilbert spaces, and thus commute each other.

A Bell-like inequality for a single-neutron experiment is
expressed14 with the expectation values E

0
ða;xÞ as 22 # S

0
# 2;

with S 0 ; E 0
ða1;x1Þ þ E 0

ða1;x2Þ2 E 0
ða2;x1Þ þ E 0

ða2;x2Þ:
In our experiments, the expectation value E

0
ða;xÞ has been

determined by a combination of count rates in a single detector
with appropriate setting of x and a. This is given by:

E
0
ða;xÞ

¼
N 0
ða;xÞþN 0

ðaþp;xþpÞ2 N 0
ða;xþpÞ2 N 0

ðaþp;xÞ

N 0 ða;xÞ þN 0 ðaþp;xþpÞ þN 0 ða;xþpÞ þN 0 ðaþp;xÞ

ð2Þ

where N 0
ðaj;xkÞ denotes the count rate with the spin-rotation of

a j and the phase shift of x k, which is given by N
0
ðaj;xkÞ ¼

kWjP̂
s

ajþ1·P̂
p

xkþ1jWl: This accounts for measurements to determine
the expectation value of the joint measurement with successive
counts in one detector.

Quantum theory predicts sinusoidal behaviour for the count rate
N 0qmða;xÞ ¼ 1

2 {1þ cosðaþ xÞ}: The same behaviour is also
expected for the expectation value E

0
ða;xÞ ¼ cosðaþ xÞ: These

functions will show the violation of the Bell-like inequality for
various sets of the polarization analysis (a) and the phase shift (x).
The maximum violation is expected, for instance, for the set, a1 ¼
0;a2 ¼ p=2; x1 ¼ p=4; and x2 ¼2p=4; as S

0
¼ 2

ffiffiffi
2
p
¼ 2:82 . 2: So

far we have described the experiment in terms of perfect implemen-
tation. In the actual experiment, however, perfect sinusoidal depen-
dence of N 0 cannot be established owing to unavoidable component
misalignments, imperfect quality of polarization/interference, and
so on, which is characterized by contrasts of the oscillations. The
value, S 0 , reduces in proportion to these contrasts. Thus, average
contrasts of more than 70.7% (¼

ffiffiffi
2
p
=2) is essential in order to show

the violation of the Bell-like inequality.
Our experiments consist of three stages: preparation, manipu-

lation and detection. The preparation was achieved by the use of a
spin-turner after the polarized beam was split into two, producing a
Bell state, jWexpl¼ 1ffiffi

2
p ðj! l^jIlþ jˆ l^jIIlÞ: In the manipulation,

two parameters of x and a were adjusted. And finally, neutrons with
certain properties were detected. In recent work, four detectors were
used to measure the total outcomes of Stern–Gerlach polarization
analysers installed in both interfering beams14. But it is shown that
polarization analysis of the O-beam is sufficient to obtain corre-
lation coefficients.

The experiment was carried out at the silicon-perfect-crystal
interferometer beam line S18 at the high flux reactor at the Institute
Laue Langevin23. A schematic view of the experimental set-up is
shown in Fig. 1. The neutron beam was monochromatized to have a
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mean wave length of l0 ¼ 1.92(2) Å by the use of a silicon perfect
crystal monochromator. This incident beam was polarized vertically
by magnetic-prism refractions, then entering a triple-Laue inter-
ferometer. This interferometer was adjusted to 220 reflections. A
parallel-sided plate was used as a phase shifter (varying x). A pair of
water-cooled Helmholtz coils produced a fairly uniform magnetic
guide field, B0þ ẑ; around the interferometer. A magnetically
saturated Heusler crystal together with a rectangular spin rotator
(adjusting a) and a spin flipper, if necessary, enabled the selection of
neutrons with certain polarization directions.

A crucial optical element in our preparation is a spin turner,
which turns the incident spinor j " l to j! l in one beam and to jˆ l
in the other. For this procedure, we used a soft-magnetic Mu-metal
sheet24, which gives high permeability induced by weak magnetic
fields. We used a sheet of 0.5 mm thick in an oval ring form and two
DC-coils to magnetize this soft-magnetic sheet.

In the manipulation, the important parameters are the relative
phase, x, between the two beams and the spinor rotation angle, a.
To show the capability of our manipulation, we measured inter-
ference oscillations for two two-level systems in the interferometer:
one for a spatial (path), and the other for spinor (spin). Typical
oscillations are shown in Fig. 2. Sinusoidal oscillations occur when
varying the parameters x, in Fig. 2a, and a, in Fig. 2b. Sufficiently
high contrasts were achieved to confirm the fact that we established
an apparatus for manipulating two subsystems: the path and the
spin of neutrons in the interferometer.

A maximum violation of the Bell-like inequality is expected in
setting the spinor rotation angle a at 0, p/2, p and 3p/2. Typical
intensity modulations, obtained by varying the phase shift x, are
shown in Fig. 3. Contrasts evidently decreased from those shown in
Fig. 2, mainly because of dephasing/depolarization at the Mu-metal
spin-turner. A gradual reduction of contrast by increasing a is
attributed to slight depolarization by the spinor-rotator and the

p-spin-flipper. We, however, managed to obtain enough high
contrasts, more than 70.7%, to accomplish the experiment. The
Mu-metal spin-turner induces additional relative phase shift
between two beams in the interferometer, so all interference
oscillations are shifted by about p in this figure. We took this shift
into account in determining appropriate x-positions to show the
maximum violation.

After fitting to sinusoidal dependence by the least-squares
method, the expectation values E obs were calculated using equation
(2). The typical statistical error of E obs was ^0.01, obtained from
curves of a single measurement. We repeated the same measure-
ments at least 16 times to reduce statistical errors. The final value of
E obs and its error were evaluated by the weighted average of all
measurements. So, the final errors are the sum of systematic and
statistical errors. (The main reason for systematic error was phase
instability, random drift of phase, during the measurement.) We
obtained E obs(0,0.79p) to be 0.542 ^ 0.007 from the intensities of
N 0(0,0.79p), N 0(p,0.79p), N 0 (0,1.79p), and N 0(p,1.79p). In the
same manner, we determined E obs(0,1.29p) ¼ 0.4882 ^ 0.012,
E obs(0.5p,0.79p) ¼ 20.538 ^ 0.006, and Eobsð0:5p;1:29pÞ ¼
0:438^ 0:012. In evaluating the Bell-like inequality, S 0 was calcu-
lated to be 2.051 ^ 0.019 . 2, for a 1,2 ¼ 0, 0.50p, and
x1,2 ¼ 0.79p, 1.29p. This clearly shows a violation of the Bell-like
inequality: stronger correlations than the classical non-contextual
model.

The results above were obtained using a neutron detector of more
than 99% efficiency. In this case, however, a fair-sampling hypoth-
esis is still required, because of losses in the interferometer—the
second plate of the interferometer is not a mirror but a beam-
splitter—in addition to the fact that the count rates were obtained
successively one after another. (It should be mentioned that
equation (2) itself does not use this assumption.) A similar
experiment concerning the non-contextual hidden variable theories

Figure 1 Schematic view of the experimental set-up to observe quantum correlations

clarified by the Bell-like inequality in single-neutron interferometry. The experiments

consists of three processes. (1) Preparation of the entangled state

jWexpl¼ 1ffiffi
2
p ðj! l^jIlþ jˆ l^jIIlÞ: an incident neutron beam is polarized with the

use of a magnetic-prism polarizer. This up-polarized beam falls on the silicon-perfect-

crystal neutron interferometer and splits into two beam paths, jIl and jIIl: A Mu-metal

spin-turner directs j " l to j! l for one beam and to jˆ l for the other. (2) Manipulation

of the two parameters: a phase shift x and a spinor rotation angle a are adjusted.

Together with a Heusler spin-analyser, neutrons with particular spinor and path

properties are selected, resulting in P̂
s

a;þ1·P̂
p

x;þ1jWl: (3) Detection: numbers of

neutrons are counted, yielding N
0
ða;xÞ ¼ kWjP̂

s

a;þ1·P̂
p

x;þ1jWl:
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with entangled photons25 was reported. In this experiment, a
‘trigger’ instead of a polarized incident beam was used to show
correlations in coincidence counting. This leaves the total system in
an entangled state, potentially one of four states with equal
probabilities. Thus, the ‘projection’ postulate in the mixed state is
needed to deduce the quantum contextuality from this experiment.

The correlations observed in our experiments could be discussed
in terms of a semiclassical wave theory, that is, as beam polariz-
ations, as frequently used in optics. This calculation exhibits a non-
factorizable total polarization by PsðaÞ for the spin manipulations

and PpðxÞ for the path manipulations. We note here that the
entanglement is not limited to different particles but is generally
applicable to different degrees of freedom in single particles.
General arguments on the entanglement-induced correlation can
be found in the literature26,27. A
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Free magnetic moments usually manifest themselves in Curie
laws, where weak external magnetic fields produce magnetiza-
tions that vary as the reciprocal of the temperature (1/T). For a
variety of materials that do not display static magnetism, includ-
ing doped semiconductors1 and certain rare-earth intermetal-
lics2, the 1/T law is replaced by a power law T 2a with a < 1. Here
we show that a much simpler material system—namely, the
insulating magnetic salt LiHoxY12xF4—can also display such a
power law. Moreover, by comparing the results of numerical
simulations of this system with susceptibility and specific-heat
data3, we show that both energy-level splitting and quantum
entanglement are crucial to describing its behaviour. The second
of these quantum mechanical effects—entanglement, where the
wavefunction of a system with several degrees of freedom cannot
be written as a product of wavefunctions for each degree of
freedom—becomes visible for remarkably small tunnelling
terms, and is activated well before tunnelling has visible effects
on the spectrum. This finding is significant because it shows that
entanglement, rather than energy-level redistribution, can
underlie the magnetic behaviour of a simple insulating quantum
spin system.

The insulator that we focus on in the search for the cause of the
anomalous power-law divergence of the magnetic susceptibility is
LiHoxY12xF4, a salt where magnetic Ho3þ ions are randomly

substituted for nonmagnetic Y3þ with probability x. For x ¼ 1,
the material is the dipolar-coupled ferromagnet, LiHoF4, with a
Curie temperature of 1.53 K. Randomly distributing dipoles in a
solid matrix provides quenched disorder, while the angular aniso-
tropy of the dipole–dipole interaction leads to competition between
ferromagnetic and antiferromagnetic bonds and the possibility of
many (nearly) degenerate ground states4. Indeed, the low-tempera-
ture magnetic phase diagram of the dipolar-coupled rare-earth
tetrafluorides progresses smoothly from long-range order to glassi-
ness with increasing spin dilution3. What interests us here, however,
is the considerably diluted x ¼ 0.045 compound, where we have
observed5,6—contrary to classical expectations4—novel ‘antiglass’
behaviour as well as long-lived spin oscillations whose qualitative
understanding seems to require mesoscopic quantum coherence.
We show in Fig. 1 the experimental d.c. susceptibility, x, plotted
against temperature, T, for a single-crystal specimen of the material.
What emerges is not the standard Curie law, 1/T, expected for non-
interacting magnetic moments, but instead a diverging response
following a power law T2a, with a ¼ 0.75 ^ 0.01. This power law is
close to that associated with the diverging local susceptibilities
inferred for doped silicon1 as well as metallic rare-earth materials2

on the brink of magnetic order. What is most striking, however, is
that the magnetic susceptibility for LiHo0.045Y0.955F4 is a smoothly
diverging quantity, even though the magnetic specific heat (C,
Fig. 2a) is characterized by unusually sharp peaks in the same
temperature range. In ordinary materials containing magnetic ions,
there is a strong correlation between magnetic susceptibility and
specific heat in the sense that anomalies, especially as strong as the

Figure 1 Magnetic susceptibility x versus temperature T of the diluted, dipolar-coupled

Ising magnet, LiHo0.045Y0.955F4. Red triangles, experimental data; filled circles,

simulations. Green circles, classical decimation when the calculations are performed with

g’ ¼ 0. Blue circles, susceptibility computed using the classical procedure, equation (3),

of determining Curie constants by adding (subtracting) moments when the ground state is

predominantly ferromagnetic (antiferromagnetic), but with quantum decimation, using

energy levels derived from the full dipolar hamiltonian of equation (1). Although the

susceptibility approaches that of the experiment more closely than before, it still deviates

by at least a factor of four at low temperatures. Black circles, use of quantum decimation

as well as the correct quantum mechanical form of susceptibility given by equation (5),

using the entanglement of the low-lying energy doublet with the excited states. The line is

a best fit to x(T ) / T 2a, with a ¼ 0.75 ^ 0.01. Although a is always less than 1, it is

not a universal number. It varies from 0.62 to 0.81 as the concentration x decreases from

0.1 to 0.01, a trend also observed in Heisenberg systems7. The simulation results have

not been scaled, and agree quantitatively with the experimental results.
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