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It can’t have escaped you, after so many recent reminders, that
this year marks the one hundredth birthday of the light quan-
tum. I thought I would tell you a few things about its century
long biography. Of course we have had light quanta on earth
for eons, in fact ever since the good Lord said “let there be
quantum electrodynamics”—which is a modern translation, of
course, from the biblical Aramaic. So in this talk I’ll try to tell
you what quantum optics is about, but there will hardly be
enough time to tell you of the many new directions in which it
has led us. Several of those are directions that we would
scarcely have anticipated as all of this work started.

My own involvement in this subject began somewhere
around the middle of the last century, but I would like to de-
scribe some of the background of the scene I entered at that
point as a student. Let’s begin, for a moment, even before the
quantum theory was set in motion by Planck. It is important to
recall some of the remarkable things that were found in the
19th century, thanks principally to the work of Thomas Young
and Augustin Fresnel. They established within the first 20 years
of the 19th century that light is a wave phenomenon, and that
these waves, of whatever sort they might be, interpenetrate
one another like waves on the surface of a pond. The wave
displacements, in other words, add up algebraically. That’s
called superposition, and it was found thus that if you have
two waves that remain lastingly in step with one another, they
can add up constructively, and thereby reinforce one another
in some places, or they can even oscillate oppositely to one
another, and thereby cancel one another out locally. That
would be what we call destructive interference.

Interference phenomena were very well understood by
about 1820. On the other hand it wasn’t at all understood
what made up the underlying waves until the fundamental
laws of electricity and magnetism were gathered together and
augmented in a remarkable way by James Clerk Maxwell, who
developed thereby the electrodynamics we know today. Max-
well’s theory showed that light waves consist of oscillating
electric and magnetic fields. The theory has been so perfect in
describing the dynamics of electricity and magnetism over lab-
oratory scale distances, that it has remained precisely intact. It
has needed no fundamental additions in the years since the
1860s, apart from those concerning the quantum theory. It
serves still, in fact, as the basis for the discussion and analysis
of virtually all the optical instrumentation we have ever devel-
oped. That overwhelming and continuing success may eventu-
ally have led to a certain complacency. It seemed to imply that
the field of optics, by the middle of the 20th century, scarcely

needed to take any notice of the granular nature of light.
Studying the behavior of light quanta was then left to the
atomic and elementary particle physicists—whose interests
were largely directed toward other phenomena.

The story of the quantum theory, of course, really begins
with Max Planck. Planck in 1900 was confronted with many
measurements of the spectral distribution of the thermal radia-
tion that is given off by a hot object. It was known that under
ideally defined conditions, that is, for complete (or black) ab-
sorbers and correspondingly perfect emitters this is a unique
radiation distribution. The intensities of its color distribution,
under such ideal conditions, should depend only on tempera-
ture and not at all on the character of the materials that are
doing the radiating. That defines the so-called black-body
distribution. Planck, following others, tried finding a formula
that expresses the shape of that black-body color spectrum.
Something of its shape was known at low frequencies, and
there was a good guess present for its shape at high frequen-
cies.

The remarkable thing that Planck did first was simply to
devise an empirical formula that interpolates between those
two extremes. It was a relatively simple formula and it involved
one constant which he had to adjust in order to fit the data at
a single temperature. Then having done that, he found his for-
mula worked at other temperatures. He presented the formula
to the Germany Physical Society[1] on October 19, 1900 and it
turned out to be successful in describing still newer data.
Within a few weeks the formula seemed to be established as a
uniquely correct expression for the spectral distribution of
thermal radiation.

The next question obviously was: did this formula have a
logical derivation of any sort? There Planck, who was a sophis-
ticated theorist, ran into a bit of trouble. First of all he under-
stood from his thermodynamic background that he could base
his discussion on nearly any model of matter, however over-
simplified it might be, as long as it absorbed and emitted light
efficiently. So he based his model on the mechanical system
he understood best, a collection of one-dimensional harmonic
oscillators, each of them oscillating rather like a weight at the
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What is it that makes a dedicated sci-

entist out of a kid with an everyday

background? Is it the ungovernable

forces that seem to shape all our lives,

or is it the development of our own

curiosity and tastes that tips the bal-

ance of randomness? I’ve always been

puzzled by those questions and can’t

claim to have found serious answers.

Perhaps these recollections will reveal

one, even if it escapes me as I write.

To be a traveling salesman in the

1920s gave one possession of a com-

pany-owned car, acquaintance with a potentially vast area of the

country, and a slightly better income than one would earn within

the tight confines of New York City. My father, having enjoyed

some experience with that life before getting married in 1924,

couldn’t wait to get back on the road, a possibility he had to post-

pone for about three years until his wife and new-born son, at last

aged two, were ready to travel. The itinerant life was a restless one

and quite disconnected. After long hours spent driving through

endless farmlands we would stay overnight at the houses of farm-

ers who had hung the sign “Tourists-Vacancy” near the road—

never two successive nights in the same house. That was long

before the days of roadside motels. Even hotels were scarce in

some of the small towns we visited. Rural electrification was not

yet a reality, and I became quite accustomed to the smells of illu-

mination by kerosene and acetylene lamps, as well as all the odors

of barnyards and outdoor plumbing.

The periods in which my father was visiting customers, in whatever

small town we were passing through posed a problem for my

mother. Trained as an elementary school teacher, but pregnant

before she had begun teaching, she was determined to make

these passages as instructive for me as she could. The most inter-

esting place in each town, as well as I could make out, was the fire

department. We received guided tours of their living quarters and

fire engines all over the Midwest. Where fire departments were

lacking, visits to assorted courtrooms, police departments and

even local lockups would do for my introduction to civics.

In one Cleveland hotel room when I was four, we actually had a

radio. It occupied a wooden cabinet about the size of a steamer

trunk. I remember insisting there must be a man inside it. He had

given his name as Maurice Chevalier. Discovering that the cabinet

top was hinged, I opened it and can feel still my bafflement at dis-

covering within it only a few glowing radio tubes.

The 1929 market crash had an immediate impact for me. The com-

pany my father was working for failed and the car we had been

using was repossessed. The result was my first ride on a train, an

exciting experience that there was no occasion to repeat, once my

father had another job and a most imposing new car, a Marmon, a

kind of Cadillac of its day, and one of many brands destined for

early extinction.

The arrival of a baby sister in 1931 and my need to begin school

meant that we had somehow to settle down. My folks decided we

would return to New York, but the only way to do it, under the cir-

cumstances, was for our family to move into a crowded apartment

in upper Manhattan, with my father’s mother and aunt. It was

quite a shock, moving there from the wide-open expanses of the

middle west, to sit in the crowded classrooms of an ancient school

building. I had very little experience playing with other kids in the

small towns we had visited, and had no idea how to deal with the

crowds of kids who managed somehow to play on the concrete

sidewalks and in the adjoining gutters.

My mother was talented at crafts of various sorts. She sewed and

embroidered well and, though untrained, she sketched and paint-

ed quite skillfully. She encouraged me to draw as soon as I could

hold pencils or crayons steadily. That was the beginning of my

career as a creative artist, specializing in speeding trains, airplanes

and the occasional dirigible. It was a necessary release from the

need to get fresh air by playing on the sidewalks.

After one school year in Manhattan, we found an apartment in

Sunnyside, an attractive area of Queens, and moved there in 1932.

It was a kind of deliverance. The neighborhood was spacious and

not yet fully built up. It consisted largely of modest single family

houses that all had at least a small area devoted to yards or gar-

dens. All the blocks of individual houses and even our apartment

building had central areas of lawn with space for children to

play—not withstanding all the “Please keep off the grass” signs.

There were even vacant lots with tiny hills and semi-permanent

puddles that lent excitement to the four daily treks to and from

school.

Sunnyside’s residents consisted mostly of young families, quite a

few contending with the unemployment so widespread in those

depression years. The building for Public School 150 however was

clean, well lit, and quite new. Its teachers were mostly young and

optimistic, a vigorous contrast to the atmosphere that prevailed

more generally in the country. The school’s annual Christmas play,

Life on the road. Standing on the bumber of my father’s car,
Ohio, 1930.
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written by the fifth and sixth graders in 1932 was entitled, “Santa’s

Depression”. It depicted Santa Claus as being broke, and unable to

afford to make his usual rounds, until everyone pitched in to help

him out. In the same period there were demonstrations against

foreclosures on home mortgages going on in the neighborhood

streets. Those depression years cast a long shadow over the lives

of children no less than their parents.

My earlier years had left me with no experience in sports of any

kind so it wasn’t easy discovering how to engage in outdoor exer-

cise. Unlike Manhattan, however, Sunnyside had many residential

streets with little traffic. The best solution to my exercise problem

was roller skating—with steelwheeled skates that clamped to one’s

everyday shoes. Those steel wheels were quite noisy rolling or

scraping on concrete, notwithstanding their good ball bearings,

and I wore down to those very bearings many sets of skate

wheels, cruising the neighborhood streets.

Electricity mystified me throughout childhood and I vividly remem-

ber once at age seven trying to see what it was all about. Plugging

lamp cords into wall sockets must lead to the flow of something

through those wires, but whatever it was, one never got to see it

before it was swallowed up by the lamp. One morning I awoke

early, determined to catch sight of it. I screwed the wires of a short

length of lamp cord into a male plug and inserted it into a wall

socket, leaving free the frayed wires at the other end. There was a

bright blue flash at that end, accompanied by a muffled bang.

That was followed by silence, till my parents awoke and began

wondering why none of the light switches seemed to be working.

The fuse was easily replaced, but I never overcame my surprise

that what passed so silently through slender wires could behave

so aggressively.

My most interesting projects were the ones I could pursue indoors

like building models of contemporary airplanes of all shapes and

of ships and locomotives. I had no cash allowance to spend on

such projects and so was wholly dependent on gifts of construc-

tion kits from uncles and aunts. When those were scarce, as they

sometimes were, I ventured into other areas, attempting to use

crate wood to construct the projects suggested in various instruc-

tion books written for young boys. The most interesting of these

projects usually failed, and I began to conclude the authors could

never themselves have really built the exciting things they were

describing. Their version of a guitar, for example, fashioned from a

cigar box and some cheese box wood never had the rigidity to

permit stretching a guitar string tightly enough. My guitar looked

a bit like one but couldn’t sound a single note.

There were other failures, many of them, but each brought new

experience in the use of hand tools. An uncle, to encourage this

construction bent, presented me with a three-year subscription to

Popular Mechanics magazine. That magazine, besides celebrating

all of the mechanical wonders of the age, included brief plans for

all sorts of home projects: door chimes, folding tables, towel racks,

bookends and knife sharpeners. The subscription did a great deal

to keep my interest in mechanical things alive, but I can’t say I

ever succeeded in building any of those worthy projects. And I

doubt that anyone who didn’t have a machine shop at his disposal

ever did either.

All the sawing, drilling and sanding I was doing at home left little

time for drawing and painting, but there was ample opportunity

to pursue those interests in school. Tempera paints were available

there, a certain amount of free time, and a good deal of encour-

agement from the teachers, who felt a need to keep the backs of

their classrooms decorated with mural paintings executed by the

kids. They were painted over large areas of brown wrapping paper

that covered the rear blackboards. I enjoyed designing those huge

works and loved the freedom painting them gave me from sitting

at my classroom desk.

The school produced a magazine every term and when my design

for the cover of the Christmas 1935 issue was accepted, I felt like

the Michelangelo of the fifth grade. In fact I did have some in-

volvement with sculpture as well. Small carvings in soap, greatly

encouraged by the Procter and Gamble Corporation, were a

medium of the day, and I made many of them, mostly of musicians

playing instruments. But a more conventional medium was Plasti-

cine clay, which remains permanently soft. Those sculptures

tended not to last long, but we managed, with a teacher, to take a

few to a real sculptor’s studio, and I was fascinated there to learn

to make plaster molds and permanent castings.

If I was fully determined in the fifth and sixth grades to become an

artist of one sort or another, it was not without a certain note of

caution. My uncle, Sam Adler, was a gifted artist who had not yet

succeeded in selling any of his work, nor did those years seem to

promise that he ever would. His advice to me was that becoming

an artist was an excellent idea, provided my motivation was so

strong as to leave no alternative. I began then to feel that my art-

work was not spontaneous enough, that if I were a true artist I

shouldn’t have to think so hard before even starting drawings;

they should just pour out more instinctively. My involvement with

art receded to a hobby.

The years in which the depression lingered must have been diffi-

cult ones for the owners of apartment buildings. Faced with many

vacancies, they offered rent-free months and other incentives to

new tenants, so there was always a certain degree of restlessness

among the city’s apartment dwellers.

In 1936, when I was ten, my parents decided that the higher

ground of the Bronx—and the top floor of a six story apartment

house—would be a better place to live than the flat sea-level ex-

panse of Long Island. A precipitous increase of the local population

density went with that move, and it became once again impossible

for me or my sister to spend much time outdoors, in the streets.

My first salvation was reading. I visited the local public library regu-

larly and began reading the great adventure stories of Jules Verne,

Alexander Dumas and Walter Scott. The junior high school I went

to seemed mired in a curriculum too timid to do anything serious,

and altogether flat-footed at what it did undertake. Mathematics, I

remember, consisted of memorizing the decimal equivalents of the

familiar “business fractions” and doing compound interest calcula-

tions out longhand. I was so put off by those lessons I occasionally

got failing grades. Our premature introduction to French required

our memorizing a list of proverbs which didn’t literally translate

into their English counterparts.

That junior high school experience was typified by what was called

“music appreciation” in the auditorium assemblies. The principal, a
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Mr. Snyder, had himself written words to accompany several dozen

themes of the great works of music. Singing his rhyming words he

evidently felt, set to the themes of the great composers, should

imprint those masterpieces on our young memories. Indeed they

did, but it was at the expense of burdening those themes perma-

nently with his infernal doggerel.

But that school did offer my first exposure to science and it was

exciting. We were shown how to coil wire around nails and make

them into electromagnets with the current from dry cells. Those

6 volt dry cells, widely used to power doorbells, cost 25 cents in

the local 5 and 10. From that time on I was never without them.

My ambition to be an artist was further dampened by an art ap-

preciation course largely devoted to biographies of the less scan-

dalous painters, and punctuated by black and white lantern slides

of their masterpieces. That course also had a creative element de-

vised to avoid, at all costs, creating any sort of untidiness in the

classroom. I was encouraged to draw with pastel crayons, again on

a large sheet of wrapping paper hung at the back of the class-

room, while the other kids who felt less inclined toward art, were

set to copying mounted cartoon panels on drawing paper. Neither

the pastels for me, which were intended evidently to make the

room look like an art class, nor the cartoon exercises for the other

kids, seemed to have any instructive value.

My lingering interests in art presently became centered on puppet-

ry and marionettes. The instructions I saw for making them in

some magazine articles and a handbook seemed to offer an inter-

esting combination of sculpture and construction. After fashioning

several puppet heads of papier machN and painting them, I set

about constructing their marionette bodies and string controls.

When it came the turn of our class to present a play in the school

auditorium I volunteered to produce a small troupe of marionettes

and a stage appropriate for the class presentation. Our decision to

stage the fairy tale “Rumplestiltskin” turned out to set a more im-

posing task than I had imagined. Fortunately my mother came to

my aid, offering not only to costume the marionettes but to help

in constructing several. The task kept both of us busy for a solid

month. The eventual presentation by the class, speaking for and

operating the marionettes, must have been some sort of success

since we had to repeat it several times. But I was ultimately embar-

rassed by the fact that so much of the work had been visibly my

mother’s, and resolved that any further projects of mine would be

wholly independent.

When did my interest in science become more serious? It really

wasn’t too serious, I’d have to admit, until still another change of

location. My parents, realizing in 1937 that the move to the Bronx

had not been a success, decided to move to an apartment at the

north end of Manhattan. We lived in a more spacious neighbor-

hood there and across a peaceful street from Inwood Park—the

only uncultivated area left in Manhattan. The school I attended

there for the ninth grade, which was nominally the first year of

high school, was materially less boring than the prior year’s. Alge-

bra was an altogether new beginning and even a redemption for

mathematics. It was finally freed of all that dismal arithmetic. That

was a joy more than sufficient to overcome the uselessness of so

many of the procedures that the curriculum did include. Who,

even in those days, could imagine seriously needing to carry out

long division of lengthy polynomials, or see any need to teach that

procedure to children? No one with experience beyond teacher

training could have been responsible for that curriculum.

But general science was another of the subjects we studied, and

the energy and enthusiasm of its young teachers more than made

up for its attenuated subject matter. I had read an elementary

book on astronomy by that time and had been taken by my Aunt

Sarah on an exciting visit to the Hayden Planetarium. I found that I

could easily visualize the diurnal motions of the stars, the monthly

motion of the moon, and somewhat more sketchily the motions of

the readily visible planets, Jupiter, Saturn and Venus. The images

associated with astronomy quickly captured my imagination, and I

began to read about it everything I could find.

The encyclopedia had some simplistic diagrams of how a telescope

works, and they seemed to assure me that I could build one from

some ordinary magnifying glasses I had accumulated. I did that

and was amazed by the rainbow colored edges I saw on the

image of the moon and presently dismayed by its overall fuzzy

quality. It took a bit of reading to discover what the trouble was—

chromatic aberration, endemic to all such primitive refractors. The

cure—the only one accessible to me—would be to build a reflect-

ing telescope. But that would be a long-term project, fortunately

one that had already been pioneered by quite a few adult amateur

astronomers. There was a book, in two volumes, in fact, that drew

together the experiences of several amateurs and gave a good

My cover for the PS 150, Queens, NY School Magazine, December
1935.
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deal of guidance, if not detailed instruction, for grinding, polishing

and figuring the mirror, and for constructing the remaining optical

elements and the mounting. Going through the entire procedure

required nine months of work. Coarse and fine grinding of the

mirror took only a couple of weeks, but polishing and figuring it to

its final shape consumed months. Building a stable yet flexible

mounting for the telescope, one that would permit me to follow

objects in the sky, compensating for the earth’s rotation was an-

other matter entirely. I had only a few hand tools appropriate to

woodworking, and still no access to machine tools of any sort.

Constructing the wooden cell to house the mirror involved strenu-

ous use of a coping saw and a wood file for several days on end.

The steel polar axis for the equatorial mounting was originally the

steering shaft of a Ford car. The proprietor of the junkyard I found

it in was happy to give it to me free. But I had somehow to put a

418 bend into that shaft, to equal the latitude of New York. I drew

an outline of the bend I needed on a sheet of asbestos and took it

off together with the three foot shaft to a garage that I knew re-

fashioned truck housings. The owner was tickled by the project,

heated the shaft in his forge till it glowed brightly and pounded it

into the precise shape I needed. It must have taken him a good

three-quarters of an hour altogether, and I felt I owed him pay-

ment for his time. He thought the matter over, and I recall his

smile as he said that would come to 25 cents. In fact I got a good

deal of aid over those months from people who were pleased to

help an ambitious kid with virtually no money to spend on his

projects. My accumulated savings of $10 were no more than half

spent during those nine months.

Stability of the telescope mounting demanded that it be fairly

massive but not too heavy to be carried by hand. The only way I

could use it, after all, was to carry it upstairs to the roof of the

apartment building. A weight of 40 or 50 pounds seemed appro-

priate for the base of the mounting, and I would have to make it

of cast concrete. A schoolmate kindly brought me a sack of

cement and a bag of sand contributed by his father, a local con-

tractor. I fashioned a mold of the appropriate shape from recycled

box wood and filled it with the concrete mixture called for by the

instructions on the cement sack. The only place available to me for

the casting operation was the wooden floor of my bedroom, be-

tween my bed and work desk. I had taken some precautions

against the leakage of a little water by covering the floor first with

waxed paper and a layer of newspaper. My understanding of the

setting of concrete was that some miracle of chemistry would in-

corporate all of the water into the finally hardened product, with

none left to leak out onto the floor. That is how plaster of Paris

had hardened. But the result was a memorable lesson. I couldn’t

say what fraction of the hardening was eventually due to drainage,

but it must have been appreciable. I had to spend an entire day

mopping up pools of water around the hardening mass. I suppose

when concrete sidewalks harden their leakage just seeps into the

ground below. In my case it would have been the apartment

downstairs.

Observing with the telescope wasn’t too easy either. In winter the

apartment house roof was cold and often windy. Because of the

city lights the sky was rarely dark enough to permit seeing the

fainter objects, usually diffuse nebulae or distant galaxies. Still

there were the thrilling topography of the moon, frequent views of

the major planets and countless planetary nebulae, double stars,

and clusters of all sorts. Lacking the means to find the fainter ob-

jects mechanically, I had to go about tracking them down by locat-

ing their positions on star maps relative to the brighter stars or ob-

jects easier to find. By putting in at least a little time on most clear

nights I managed over the next year or two to find most of the

hundred or so extended objects catalogued by the Italian astrono-

mer Messier. I even managed to fashion a film holder and card-

board shutter for the telescope so that I took through it a se-

quence of moon pictures during the lunar eclipse of November 8,

1938.

The possibility of performing optical tests as exquisitely sensitive

as the Foucault test of the telescope mirror’s figure with even the

most primitive sorts of equipment convinced me that optics was

full of miracles. Some other miracles I had seen involved the mys-

teries of light polarization. The Polaroid Corporation was sponsor-

ing an exhibit I had visited at the Museum of Science and Industry

at Rockefeller Center that showed, among other things, the re-

markable colors that appeared in transparent materials like cello-

phane when seen between crossed sheets of Polaroid film. How

could I procure any of the magical Polaroid film? That seemed

hopeless for a 12-year old, but I had heard of the possibility of

light polarization by reflection. The best reflectors for the purpose

would be smooth and black—to avoid the complications of trans-

mission. My father, who at that time in 1937 was selling jewelry

displays made of just such black glass, found me several rectangu-

lar pieces of the right size. I was able then to mount all the optical

elements, including a 25 watt light bulb within a cigar box and use

the device to reveal the same sorts of polarization phenomena I

had seen at the museum. Seeing the unseen in that way turned

out to be as much of a thrill as any I had with the telescope.

In the late 30s an organization with the imposing name The Ameri-

can Institute of the City of New York began organizing activities for

young people interested in science. They held science congresses

during the Christmas vacations and science fairs during the spring

school break, both at the Museum of Natural History. The science

congresses were patterned after professional scientific meetings,

and split just as incoherently into many sessions, according to

fields and specialties. Each session had several ten minute talks

presented by the kids as contributed papers. One of those presen-

tations in 1937 was my own description of the plans for the forth-

coming 200-inch telescope at Mt. Palomar. It was a visionary image

that kept my spirits up while I was having troubles of my own

building my 6-inch diameter telescope. The sponsoring institute

saw to it that our talks were attended by at least a sprinkling of

mature scientists whom they could somehow persuade to volun-

teer. I was flattered that my own talk was attended, if only briefly,

by Dr. Clyde Fisher, the curator of the Hayden Planetarium. One of

his assistant lecturers, Dorothy Bennett, stayed for the whole ten

minutes and dropped a suggestion to me that added immensely

to my experience over the next four years.

Dorothy Bennett was something of a wonder. Seeking a career in

New York, she had arrived there as a fresh graduate of the Univer-

sity of Minnesota just in time for the economic debacle of 1929.

With boundless energy and no prior acquaintance with astronomy
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she found a position working on the plans for the city’s new plane-

tarium. One of her many inspirations was to begin in 1930 a city-

wide astronomy club for kids of high school age. It met on Satur-

day evenings biweekly, in an imposing auditorium on the top floor

of the Roosevelt Memorial building, adjacent to the Planetarium.

There the kids, who came in by subway from the far reaches of the

city, heard invited lectures by real astronomers. It was that club

that Miss Bennett suggested I try attending. I was indeed excited

by it and caught up in it from the first meeting I went to. It then

formed a large part of my life till I went off to college.

Watched over by Dorothy in a kind of godmotherly role, the Junior

Astronomy Club actually had a permanent office in a former

watchman’s apartment in the basement of the Roosevelt Memorial.

There it held committee meetings, originated large mailings to the

membership and ground out its monthly mimeographed publica-

tion, the Junior Astronomy News. I rushed to take part in all of

those programs, ceaselessly amazed that the club could manage

all of its activities on dues that only came to 25 cents per year. The

secret of that miracle was that Dorothy had assigned to the club

the royalties of a book she had inspired, The Handbook of the Heav-

ens, and the proceeds from the sales of a rotating star map, a pla-

nisphere she designed. Enough copies of those publications had

been sold to keep the club afloat for over ten years. Dorothy left

the planetarium for a position in the publishing industry in 1939,

entrusting supervision of our club to a group of its older alumni,

who carried on the tradition for quite a few years more.

I often wondered what happened to Dorothy in the years after

that. She didn’t just vanish into the publishing world, I found.

Within a couple of years she had become the originator and editor

of the Little Golden Books of Simon and Schuster. Those small pa-

perbacks, devoted at first to assorted topics in natural science or

history, became one of the wonders of the publishing industry.

They were colorfully illustrated and were sold in vast numbers at

newsstands and stores everywhere. Countless kids must have

owed their knowledge of fossils, seashells, or trees to those books

and to Dorothy. When eventually the publishers decided to extend

their franchise into more commercial and less educational material,

Dorothy left them and took up a succession of new careers in ar-

chaeology and ethnography. Her adventures extended to many

other novel areas of public education.

In September 1938 a new high school was opened by the city,

with the declared intention of providing a more extensive back-

ground in science. That school, the Bronx High School of Science

was to have an entrance examination and a freshly chosen staff of

young teachers. It was established however in an old building still

used as an annex for a traditional local school, and three years had

to pass before its growing student body had displaced the more

disaffected population originally present. It was interesting being a

pioneer in this way, but not without problems. Although the two

populations didn’t overlap in classes they did –and experienced

friction—everywhere else.

My choice of this high school required long trolley car rides be-

tween upper Manhattan and the Bronx, but it proved fortunate in

several respects. The kids were better informed about most things

than average high school kids, and were often interesting to talk

to. Not many of them entertained ambitions of becoming scientists

however. They were there, mainly, it seemed, in search of some-

what higher educational standards. The lawyers, doctors and busi-

nessmen who emerged from my cohort, in fact, greatly outnum-

bered the handful of eventual scientists. Although all high schools

offered some elective courses, it would have been difficult in most

of them, to take both a science and a math course in each year. If

we were able to do that, it was at the expense of studying Latin or

taking a second modern language course. I was more than pleased

at the time by those omissions, but have come to regret them

since.

Whatever may have been the weaknesses of the school’s physical

plant or its curriculum, the faculty members seemed to make up

for them. They were mostly young, energetic and unjaded. We

seemed to have the depression years to thank for that. Most of the

teachers had graduated from the tuition-free city colleges during

the early 30s and, seeing no future in continuing their studies, had

taken refuge in positions with the school system. The subjects

they taught, like European history and economics, seemed to have

real substance, for a change, and mathematics stood out among

them. It was the real thing, not just an introduction one would

have to repeat and improve upon in college. When algebra

became more serious in the second year of high school it became

more interesting. My teacher in intermediate algebra, Samuel Alt-

werger, appreciating my involvement with astronomy and my

growing enthusiasm for mathematics, suggested that it might be a

good idea for me to learn calculus. He assured me I could learn it

just by reading a textbook. He gave me one small book for that

purpose and borrowed a larger one for me from the library. I

found, to my surprise, that he was right. I had no trouble with

these and absorbed an understanding of elementary calculus

quickly. In fact that was well before I really needed calculus, but

the experience marked a kind of turning point for me. I had never

felt inclined toward mathematics before, but what I had learned by

the time I reached college permitted me to skip several elementary

courses there.

However much I came to like mathematics, my passion was still

building optical instruments. I had been reading about the pivotal

role played by spectroscopy in developing an understanding of

atoms, and I resolved to build a spectroscope myself. Most of its

parts would have to be made of metal, and that meant even more

numbing use of hand files, this time not on wood, but brass. It

wasn’t difficult putting the spectroscope together. Neither its struc-

ture nor its optics presented other problems. But there was one

central element missing. I had neither a prism nor a diffraction gra-

ting to use as the dispersive device that generates the spectrum.

Fortunately the principal of the new high school, Dr. Morris Meis-

ter, had been given a replica diffraction grating as a graduation

present, and he was happy to loan it to me. That spectroscope, en-

tered in the 1939 science fair, won two prizes. I had very little

chance to use it after that, since the American Institute exhibited it

over many months in a display case at the New York World’s Fair

of 1939 and its repetition in 1940.

The Junior Astronomy Club also had an involvement in those

World’s Fairs. Part of the extensive Westinghouse exhibit was de-

voted to the scientific hobbies of kids of high school age. I was

happy to organize demonstrations of the grinding of telescope
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mirrors for the exhibit and enlist a succession of our club mem-

bers, each to spend a week or two on public display at the task.

When my own turns came I became good friends with the young

chemist who worked next to me, notwithstanding the shower of

ashes his synthetic volcano blew over my optical surfaces. Young

Frank Pierson never did become a chemist. He became a well-

known screen writer and for several years president of the Acade-

my of Motion Picture Arts and Sciences.

In the Science Congress of 1939, I gave a talk that presented some

of the photographs I had managed to take through my telescope,

my spectroscope, and through a borrowed microscope. It won one

of the prizes, a visit to the Westinghouse Corporation in Pittsburgh,

Pennsylvania, where I had a chance to visit their “atom smasher”, a

vertically mounted Van de Graaf generator, and to talk briefly with

a couple of real scientists, including a well-known theorist, E. U.

Condon. Then, as a climax to the trip, I was ushered into the office

of the president of the corporation. He promptly drew from his

top desk drawer a tattered old pocket notebook. It was his official

record, he explained, of the hours he had worked for the company

at the turn of the century for a wage of only a few cents an hour.

The junior year of high school meant starting to think about going

to college. The teacher assigned as my guidance counselor, think-

ing perhaps of the experience of his colleagues, assured me that

there were too few positions available anywhere for astronomers

or physicists, and that I would be best off going to an engineering

school. He felt I should apply to a range of them, but he saw Re-

nsselaer Polytech as the ideal compromise. The father of my best

friend, a Harvard graduate himself, gave me rather different advice.

Disappointed at the unlikelihood of his own son’s admission to

Harvard, he guessed that I might make it. More to the point, he

suggested that scholarship support could be available. Neither my

parents nor I would otherwise have been so presumptuous as to

imagine that large leap in social status. I did fill out the lengthy

Harvard applications, however, and took the several required ex-

aminations. The application for the scholarship awarded by the

New York Harvard Club involved a searching interview conducted

in a large, oak-paneled room by a dean and half a dozen club

member contributors. I was eventually admitted to a number of

colleges, including Rensselaer, but without scholarship aid. Har-

vard, on the other hand, granted me a Harvard Club scholarship,

while making it clear that there were many more exams to take

before I would be declared admitted.

Beginning at Harvard in the fall of 1941 meant suddenly being

treated like a member of the gentry. We had waiter service at our

dining tables and daily printed menus listing alternative dishes. Of

course, some fraction of the waiters were fellow classmates, work-

ing for board. Our society was stratified in many other ways as

well. The rents for the dormitory rooms were graded according to

their location, with the result that the scholarship students were

clustered in the less desirable areas. They never got to meet the

occupants of the higher priced real estate. I scarcely minded any

of that. I had come from a different world than those normal Har-

vard students. College was for them primarily a social experience,

overlaid by a burden of course work. For me, on the other hand,

having skipped a couple of grades along the way, and some two

years younger than most of my classmates, it was the other way

around. I enjoyed a few social contacts, but worked hard at my

Taken at December 1940 Science Congress talk. At left is a 6 inch
richest-field telescope f4, much more portable than my original f8,
in the center is the diffraction grating spectroscope, at right a pho-
tomicrographic camera, with odd bits of paraphernalia in the fore-
ground.

May 1941 announcement of talks at the Electrical Engineering Audi-
torium by four high school students. My talk was about photo-
graphs I had taken with the instruments I had shown at the 1940
Science Congress. The talk by Baruch Blumberg dealt with a model
refrigerator he had constructed. He didn’t continue with physics,
however, and switched to medicine, winning the Nobel Prize in
1976 for the discovery of the hepatitis B virus. The chairman, Irwin
Arias, also turned out to be a distinghuished hepatologist.
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studies, finding them demanding at times, but on the whole well

planned and satisfying.

That freshman year was punctuated on December 7 by the Japa-

nese attack on Pearl Harbor and by the entry the next day of the

U.S. into the war in Europe as well as the Pacific. The next few

months saw significant changes in our lives as students. The rather

searching physics course I was taking had been planned as the

first half of a two year cycle. Because faculty members were de-

parting for war work the remaining year-long course would not be

offered as planned. It would instead be packed into the second se-

mester of the first-year course. That proved to be quite a tall order

but a fast way of learning.

The entire school then began operating during the summer and

accelerating its course programs with the thought of providing as

much education as possible before the young men left for the

armed forces. In the meantime Harvard’s dining halls lost their gra-

ciousness and were transformed into the cafeteria-style mess halls ;

they have been ever since. The draft age, then 21, was presently

lowered to 18 and the university began losing students in large

numbers. With its faculty depleted the Physics Department an-

nounced that its graduate courses were shortly to be given for the

last time “for the duration.” That announcement made it a good

idea to jump directly into the graduate courses, skipping the inter-

mediate ones which had looked neither demanding nor very inter-

esting anyway. It was with the war thus cracking the whip that I

managed to assimilate most of the courses of a graduate school

education by the time I turned 18 in September 1943. At that

point I felt ready for war work myself and filled out a questionnaire

sent out by an agency called the National Roster of Scientific Per-

sonnel. Its purpose was to ascertain scientific training and try to

place people accordingly.

The armed forces by that time had become vastly larger than the

country’s immediate needs. The Army developed what it called a

Specialized Training Program, in effect for storage of its legions in

the universities for a year or so, until they would be needed in the

invasion of Europe. The program exposed a large population of

draftees to college courses for the first time and was a productive

experiment in education. I was given a position teaching elementa-

ry physics in the program and had my hands full doing that along

with taking a full program of courses of my own.

Then one day in October 1943, a stranger in a dark suit appeared

in the Physics Department office evidently asking for me. He intro-

duced himself as a Mr. Trytten from Washington, D.C. and asked to

speak privately to me. We withdrew to a faculty meeting room in

which the blinds were never raised. Closing the door, he asked if I

would be interested in joining a new project that was engaged in

interesting work. That it was “out west” was the most he would

tell me about either the location of the place or what it was doing.

It sounded fascinating nonetheless, and I found the security ques-

tionnaires he put before me easy to fill out. Having so little prior

history helped. His seeking me out seemed to relate to my having

filled out the National Roster blanks. It was then a matter of several

weeks before my security clearance had been completed and I was

instructed to send whatever belongings I needed to the now

famous Post Office Box 1663, Santa Fe, New Mexico. In my case it

was a trunk sent not by mail but by Railway Express. There were

many occasions, then and later to imagine what a capacious P.O.

box that one must be.

I could find many tiny hints at what was going on out there, all of

them questionable and several, as it later became clear, completely

wrong. The most solid hint was in fact a negative one. For about

two years after the discovery of uranium fission in 1939 there had

been occasional notes in the New York Times speculating on the

possibility of starting a chain reaction. They had stopped appear-

ing, it was hard to say just when, but at least two years earlier.

So I had no idea whether it had become a dead issue, or my

offer of a position implied some real progress toward a chain reac-

tion.

The train ride from New York to Lamy, New Mexico, the stop for

Santa Fe, consumed two and a half days. A driver from Los Alamos

had come to the station principally to meet a short man in a black

overcoat, but took me along, stopping first at an unassuming proj-

ect office in Santa Fe, where I learned that the man in the overcoat

was John Von Neumann, a legendary mathematician.

The ride from Santa Fe up to “the Hill” was an experience I shall

never forget. First there was the breathtaking scenery of the can-

yons of the Pajarito Plateau. Then there was my fellow passenger,

John Von Neumann, who engaged in a lively conversation for

most of the trip with the driver, whom I learned only later was a

mathematician who had worked with “Johnny” earlier. With a

thought perhaps of maintaining security, they discussed some cal-

culations underway using the most outlandish mathematical termi-

nology, and describing mathematical errors in physical terms that I

knew represented physical impossibilities. The ride was an incredi-

ble mixture of visual thrills and intellectual enigmas.

I was astonished, shortly after arrival at the project, to be told that

the chain reaction had long since been achieved in Chicago and

the present intention was to construct a reaction fast enough to

be a bomb. It was disturbing news and I recoiled from it at first,

but the challenges and uncertainties involved helped reconcile me

to it. More importantly, I felt, as everyone else on the project did,

that whatever these uncertainties might be, the Germans, possess-

ing the same understanding we had, were likely to be working on

the bomb as well. And if they reached that goal before we did

they would not be sentimental about using it to stave off eventual

defeat. That fear applied only to the known expertise of the Ger-

mans. The conflict with Japan didn’t appear to motivate anyone’s

involvement in the project.

The project was only a few months old when I joined it but most

of its eventual leaders were already there. Not many were yet well-

known. They were remarkably youthful. Oppenheimer in his late

thirties was one of the oldest. He had a universal understanding of

the work and an eloquence in describing it that kept us spell-

bound. Hans Bethe, the leader of the theoretical division, had a

penetrating understanding that seemed capable of formulating ab-

solutely anything quantitatively and evaluating it effortlessly, an

aura he maintained even many years later. Feynman was there as

leader of a small theoretical group. He was often cantankerously

teasing the security people. His lectures were always offbeat per-

formances demonstrating novel approaches to problems in ways

devoted as much to entertainment as to the technical message.

There were others, too many to mention, and among them as an
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occasional visitor, Niels Bohr, whom we called Nicholas Baker for

obvious reasons, together with his son Aage.

Overwhelmed by these giants, my own position in the Theory Divi-

sion at age 18 was a modest one. There were many problems in

neutron diffusion such as finding the critical mass that required

more careful formulations than had been carried out in the earliest

projections. I worked on those for the better part of the two years

I spent at Los Alamos and wrote three lengthy secret papers on

those subjects.

There were many delays before the Trinity Test of the bomb in July

1945 and with them the uncertainty of how well it would work

grew steadily. Unable to secure a position among the experiment-

ers at Alomogordo, I had to be content with watching for the flash

from the top of Sandia Peak near Albuquerque. I saw the flash

indeed and some of the glow that followed from a distance of

over a hundred miles. The test was followed by some tense days,

leading up to August 6, when the use of the bomb at Hiroshima

was announced. One thing the portentous announcement meant

was a certain release from secrecy. We could now resume contact

with the outside world. We could say, if only in general terms what

we had been working on. But there were no celebrations of any

sort until the war was over a few days later.

Resuming the life of an undergraduate at Harvard early in 1946

proved surprisingly difficult, even though I needed only a few cred-

its to graduate. Having had a team of assistants to do calculations

for me at Los Alamos didn’t make it any easier, I found, to do my

own homework back at school, particularly when I felt I had

moved beyond all that. Fortunately that time was brief, and then I

became a graduate student. But I had already taken most of the

graduate courses on offer, and so was largely left on my own,

being allowed to register, in effect, for independent reading and

research. The principal reason for my remaining at Harvard was the

addition of Julian Schwinger to the faculty. I had met him during a

brief appearance he made at Los Alamos, late in 1945, and was im-

mediately so impressed with his knowledge and his incredibly in-

formative lecturing style that I felt he was unique among teachers

and would be the ideal thesis advisor as well. I became friendly

with Julian over the next three years and was never less than

amazed by his ability to construct elegant mathematical structures

that would permit him to see further than any of his contempora-

ries. There were times in those postwar years when it seemed he

was responsible for most of the progress in theoretical physics,

and very likely would be for years to come. His lectures were bril-

liantly delivered and notes on them were highly prized and repro-

duced wherever they could be found. Many students crowded in

to work with him, however, and he limited the time he spent with

them, so they didn’t always produce great theses. Though nomi-

nally registered to work with Julian, I actually worked by myself

and produced in 1949 a quantum field theoretical thesis that was

useful to my later development, but scarcely much better than the

others of the day.

Robert Oppenheimer, who seemed to know more of me than I had

imagined, invited me to spend my first postdoctoral year in Prince-

ton at the Institute for Advanced Study. The group of 20 or so

postdocs who gathered there included quite a few eventual lead-

ers of the postwar generation of theorists. None had a stable posi-

tion anywhere else and so the atmosphere was quite competitive.

In the first term of 1950, Wolfgang Pauli was scheduled to visit the

Institute. Following the advice of friends who had worked in

ZRrich, I arranged with Pauli to return with him to ZRrich and work

with him until the fall of that year when I would return to Prince-

ton and the Institute. Having a few months to live in ZRrich and to

travel over Europe was the principal experience of that encounter.

Pauli at age 50 had relaxed into the role of a critic and was no

longer inspiring much research. He did retain a mordant sense of

humor, however, and was forever doing his best to tease me. Teas-

ing others as well, if not insulting them outright, he was always in-

teresting to be around.

After another year I spent at the Institute, Oppy found me a teach-

ing position. It was only a temporary one, replacing Feynman at

Caltech. Feynman was to spend the year in Brazil, where by his

own account, he worked hard on the bongo drums, and Caltech

needed someone to teach quantum mechanics. The chemistry de-

partment out there, under Linus Pauling, seemed to be an excep-

tionally active one. My research for the year was devoted to resolv-

ing a puzzle they had encountered in studying electron diffraction

by molecules. Solving the problem didn’t interest me in molecules

very much, but it did involve me deeply in scattering problems in

which the incident particles were of wavelength much smaller

than the ranges of interactions. Those problems, I understood,

would become steadily more important in nuclear physics as accel-

erator energies were increased. I continued studying those prob-

Life with Wolfgang Pauli ; a Spring 1950 outing. Prepared to
photograph Pauli kicking the ball into the lake, as he had done
earlier, I stood to one side, carefully aiming the camera at him.
Pauli indeed kicked the ball, and I managed to snap the shutter
just before the camera hit me squarely in the face.
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lems then when I was invited back to Harvard in the fall of 1952

and for some years after that. The result was a species of nuclear

diffraction theory analogous in some ways to optical diffraction

theory, but generalized to include inelastic collisions between inci-

dent particles and complex nuclear systems. The theory is even

used these days to treat the high-energy collisions of pairs of

heavy nuclei.

Once I was back at Harvard I began to climb the academic ladder

of professorial positions and was able to direct the thesis work of a

number of gifted students. Theoretical physicists weren’t nearly as

specialized in those days as they are now. All of theory was consid-

ered one’s province and so those theses ranged over half a dozen

fields, as did my own work.

The late 50s proved to be an exciting time for many reasons. A

radically new light source, the laser, was being developed and

there were questions in the air regarding the quantum structure of

its output. That was particularly so in view of the surprising discov-

ery of quantum correlations in ordinary light by Hanbury Brown

and Twiss. A second source of excitement, all my own, was that I

had met the young woman I was to marry, Cynthia Rich, and had

been going out with her since 1957. We married in July 1960,

bought a contemporary house a year later, and settled into quite a

happy life together. That was the period in which I began to work

on quantum optics with a surmise that the Hanbury Brown–Twiss

correlation would be found absent from a stable laser beam, and

then followed it with a sequence of more general papers on

photon statistics and the meaning of coherence.

Our first child, a son Jeffrey, arrived in 1963. I remember feeling his

arrival was a kind of redemption, a species of renewal for which I

was more than grateful at age 38. I was doing a good deal of trav-

eling in those days, particularly during vacations, and it always

amazed me how transportable the baby was. We had no trouble

taking him on short domestic trips anywhere, but thinking back on

my own experience perhaps, waited till he was nearly 4 before

taking him on a longer trip to Geneva for a sabbatical at CERN. My

work in this period gravitated back to high-energy collision theory,

since experiments had begun to reveal many of the results my dif-

fractive multiple scattering theory had predicted.

Our second child, a daughter Valerie, didn’t arrive until 1970, and

by that time our placid and comfortable academic life had been

roiled up in many ways. Years of demonstrations against the Viet-

nam War, the anguish of the black liberation movement, and finally

the bitter recriminations of militant feminism had left the world of

our university seriously fragmented. My wife, joining with the mili-

tants, decided that the days of traditional marriage were over, and

that her own should be one of the first to go. The law, she found,

would permit her to end it, of her own choice, while retaining cus-

tody of the children. Devastated by her decision, I simply couldn’t

believe she would hew to it, and it took some time to try to reach

a settlement. By that time, indeed, she no longer sought active

custody of the children, and having taken care of them earlier, I

proceeded thereafter to raise them as a single father. It was a

time-consuming occupation, but an immensely rewarding one,

and I managed fortunately to remain involved and reasonably pro-

ductive in my work. I’m sure there is some number of papers I

never got to write as a result, but raising those children and

seeing them succeed was not an experience I would trade for the

missing papers or any sort of recognition. Both Jeff and Val have

families of their own now and are busy raising my grandchildren. I

envy them that privilege, and wish I had the opportunity to be

raising them all myself.

Spreading the gospel at a July 1977 summer school organized by
F. T. Arecchi at Villa le Pianore, Versilia, Italy. The message consider-
ably outlasted the moustache.

At the Les Houches Summer School, July 1954. Don Hughes spoke
about neutron physics. Fermi about pion scattering, and I lectured
on particle collision theory.
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end of a spring. They had to be electrically charged. He knew
from Maxwell exactly how these charged oscillators interact
with the electromagnetic field. They both radiate and absorb
in a way he could calculate. So then he ought to be able to
find the equilibrium between these oscillators and the radia-
tion field, which acted as a kind of thermal reservoir—and
which he never made any claim to discuss in detail.

He found that he could not secure a derivation for his magic
formula for the radiation distribution unless he made an as-
sumption which, from a philosophical standpoint, he found all
but unacceptable. The assumption was that the harmonic os-
cillators he was discussing had to possess energies that were
distributed, not as the continuous variables one expected, but
confined instead to discrete and regularly spaced values. The
oscillators of frequency n would have to be restricted to
energy values that were integer multiples, that is, n-fold multi-
ples (with n=0, 1, 2, 3…) of something he called the quantum
of energy, hn.

That number h was, in effect, the single number that he had
to introduce in order to fit his magic formula to the observed
data at a single temperature. So he was saying, in effect, that
these hypothetical harmonic oscillators representing a simpli-
fied image of matter could have only a sequence amounting
to a “ladder” of energy states. That assumption permits us to
see immediately why the thermal radiation distribution must
fall off rapidly with rising frequency. The energy steps between
the oscillator states grow larger, according to his assumption,
as you raise the frequency, but thermal excitation energies, on
the other hand, are quite restricted in magnitude at any fixed
temperature. High-frequency oscillators at thermal equilibrium
would never even reach the first step of excitation. Hence
there tends to be very little high-frequency radiation present
at thermal equilibrium. Planck presented this revolutionary
suggestion[2] to the Physical Society on December 14, 1900, al-
though he could scarcely believe it himself.

The next great innovation came in 1905 from the young
Albert Einstein, employed still at the Bern Patent Office. Ein-
stein first observed that Planck’s formula for the entropy of the
radiation distribution, when he examined its high-frequency
contributions, looked like the entropy of a perfect gas of free
particles of energy hn. That was a suggestion that light itself
might be discrete in nature, but hardly a conclusive one.

To reach a stronger conclusion he turned to an examination
of the photoelectric effect, which had first been observed in
1887 by Heinrich Hertz. Shining monochromatic light on metal
surfaces drives electrons out of the metals, but only if the fre-
quency of the light exceeds a certain threshold value charac-
teristic of each metal. It would have been most reasonable to
expect that as you shine more intense light on those metals
the electrons would come out faster, that is with higher veloci-
ties in response to the stronger oscillating electric fields—but
they don’t. They come out always with the same velocities,
provided that the incident light is of a frequency higher than
the threshold frequency. If it were below that frequency there
would be no photoelectrons at all.

The only response that the metals make to increasing the in-
tensity of light lies in producing more photoelectrons. Einstein

had a naively simple explanation for that.[3] The light itself, he
assumed, consists of localized energy packets and each pos-
sesses one quantum of energy. When light strikes the metal,
each packet is absorbed by a single electron. That electron
then flies off with a unique energy, an energy which is just the
packet energy hn minus whatever energy the electron needs
to expend in order to escape the metal.

It took until about 1914–1916 to secure an adequate verifi-
cation of Einstein’s law for the energies of the photoelectrons.
When Millikan succeeded in doing that, it seemed clear that
Einstein was right, and that light does indeed consist of quan-
tized energy packets. It was thus Einstein who fathered the
light quantum, in one of the several seminal papers he wrote
in the year 1905.

To follow the history a bit further, Einstein began to realize
in 1909 that his energy packets would have a momentum
which, according to Maxwell, should be their energy divided
by the velocity of light. These presumably localized packets
would have to be emitted in single directions if they were to
remain localized, or to constitute “Nadelstrahlung” (needle ra-
diation), very different in behavior from the broadly continuous
angular distribution of radiation that would spread from har-
monic oscillators according to the Maxwell theory. A random
distribution of these needle radiations would look appropriate-
ly continuous, but what was disturbing about that was the ran-
domness with which these needle radiations could appear.
That was evidently the first of the random variables in the
quantum theory that began disturbing Einstein and kept net-
tling him for the rest of his life.

In 1916 Einstein found another and very much more conge-
nial way of deriving Planck’s distribution by discussing the rate
at which atoms radiate. Very little was known about atoms at
that stage save that they must be capable of absorbing and
giving off radiation. An atom lodged in a radiation field would
surely have its constituent charges shaken by the field oscilla-
tions, and that shaking could lead either to the absorption of
radiation or to the emission of still more radiation. Those were
the processes of absorption or emission induced by the prior
presence of radiation. But Einstein found that thermal equilibri-
um between matter and radiation could only be reached if, in
addition to these induced processes, there exists also a sponta-
neous process, one in which an excited atom emits radiation
even in the absence of any prior radiation field. It would be
analogous to radioactive decays discovered by Rutherford. The
rates at which these processes take place were governed by
Einstein’s famous B and A coefficients respectively. The exis-
tence of spontaneous radiation turned out to be an important
guide to the construction of quantum electrodynamics.

Some doubts about the quantized nature of light inevitably
persisted, but many of them were dispelled by Compton’s dis-
covery in 1922 that X-ray quanta are scattered by electrons ac-
cording to the same rules as govern the collisions of billiard
balls. They both obey the conservation rules for energy and
momentum in much the same way. It became clear that the
particle picture of light quanta, whatever were the dilemmas
that accompanied it, was here to stay.
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The next dramatic developments of the quantum theory, of
course, took place between the years 1924 and 1926. They had
the effect of ascribing to material particles such as electrons
much of the same wavelike behavior as had long since been
understood to characterize light. In those developments de
Broglie, Heisenberg, Schrçdinger and others accomplished lit-
eral miracles in explaining the structure of atoms. But however
much this invention of modern quantum mechanics succeeded
in laying the groundwork for a more general theory of the
structure of matter, it seemed at first to have little new bearing
on the understanding of electromagnetic phenomena. The
spontaneous emission of light persisted as an outstanding
puzzle.

Thus there remained a period of a couple of years more in
which we described radiation processes in terms that have
usually been called “semiclassical.” Now the term “classical” is
an interesting one—because, as you know, every field of study
has its classics. Many of the classics that we are familiar with
go back two or three thousand years in history. Some are less
old, but all share an antique if not an ancient character. In
physics we are a great deal more precise, as well as contempo-
rary. Anything that we understood or could have understood
prior to the date of Planck’s paper, December 14, 1900, is to us
“classical.” Those understandings are our classics. It is the intro-
duction of Planck’s constant that marks the transition from the
classical era to our modern one.

The true “semiclassical era,” on the other hand, lasted only
about two years. It ended formally with the discovery[4] by Paul
Dirac that one must treat the vacuum, that is to say empty
space, as a dynamical system. The energy distributed through
space in an electromagnetic field had been shown by Maxwell
to be a quadratic expression in the electric and magnetic field
strengths. Those quadratic expressions are formally identical in
their structure to the mathematical expressions for the ener-
gies of mechanical harmonic oscillators. Dirac observed that
even though there may not seem to be any organized fields
present in the vacuum, those mathematically defined oscilla-
tors that described the field energy would make contributions
that could not be overlooked. The quantum mechanical nature
of the oscillators would add an important but hitherto neglect-
ed correction to the argument of Planck.

Planck had said the energies of harmonic oscillators are re-
stricted to values n times the quantum energy, hn, and the
fully developed quantum mechanics had shown in fact that
those energies are not nhn but (n+ 1=2)hn. All of the intervals
between energy levels remained unchanged, but the quantum
mechanical uncertainty principle required that additional 1=2 hn
to be present. We can never have a harmonic oscillator com-
pletely empty of energy because that would require its posi-
tion coordinate and its momentum simultaneously to have the
precise values zero.

So, according to Dirac, the electromagnetic field is made up
of field amplitudes that can oscillate harmonically. But these
amplitudes, because of the ever-present half quantum of
energy 1=2 hn, can never be permanently at rest. They must
always have their fundamental excitations, the so-called “zero-
point fluctuations” going on. The vacuum then is an active dy-

namical system. It is not empty. It is forever buzzing with weak
electromagnetic fields. They are part of the ground state of
emptiness. We can withdraw no energy at all from those fluc-
tuating electromagnetic fields. We have to regard them none-
theless as real and present even though we are denied any
way of perceiving them directly.

An immediate consequence of this picture was the unifica-
tion of the notions of spontaneous and induced emission.
Spontaneous emission is emission induced by those zero-point
oscillations of the electromagnetic field. Furthermore it fur-
nishes, in a sense, an indirect way of perceiving the zero-point
fluctuations by amplifying them. Quantum amplifiers tend to
generate background noise that consists of radiation induced
by those vacuum fluctuations.

It is worth pointing out a small shift in terminology that
took place in the late 1920s. Once material particles were
found to exhibit some of the wavelike behavior of light
quanta, it seemed appropriate to acknowledge that the light
quanta themselves might be elementary particles, and to call
them “photons” as suggested by G. N. Lewis in 1926. They
seemed every bit as discrete as material particles, even if their
existence was more transitory, and they were at times freely
created or annihilated.

The countless optical experiments that had been performed
by the middle of the 20th century were in one or another way
based on detecting only the intensity of light. It may even
have seemed there wasn’t anything else worth measuring. Fur-
thermore those measurements were generally made with
steady light beams traversing passive media. It proved quite
easy therefore to describe those measurements in simple and
essentially classical terms. A characteristic first mathematical
step was to split the expression for the oscillating electric field
E into two complex conjugate terms given in Equations (1) and
(2):

E ¼ EðþÞ þ Eð�Þ, ð1Þ

Eð�Þ ¼ ðEðþÞÞ* , ð2Þ

with the understanding that E(+) contains only positive fre-
quency terms, that is, those varying as e�iwt for all w>0, and
E(�) contains only negative frequency terms eiwt. This is a sepa-
ration familiar to electrical engineers and motivated entirely by
the mathematical convenience of dealing with exponential
functions. It has no physical motivation in the context of classi-
cal theory, since the two complex fields E(� ) are physically
equivalent. They furnish identical descriptions of classical
theory.

Each of the fields E(� )(rt) depends in general on both the
space coordinate r and time t. The instantaneous field intensity
at r,t would then be [Eq. (3)]:

jEðþÞðr,tÞj2 ¼ Eð�Þðr,tÞEðþÞðr,tÞ: ð3Þ

In practice it was always an average intensity that was meas-
ured, usually a time average.
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The truly ingenious element of many optical experiments,
going all the way back to Young’s double-pinhole experiment,
was the means their design afforded to superpose the fields
arriving at different space-time points before the intensity ob-
servations were made. Thus in Young’s experiment, shown in
Figure 1, light penetrating a single pinhole in the first screen
passes through two pinholes in the second screen and then is
detected as it falls on a third screen. The field E(+)(rt) at any
point on the latter screen is the superposition of two waves
radiated from the two prior pinholes with a slight difference in
their arrival times at the third screen, due to the slightly differ-
ent distances they have to travel.

If we wanted to discuss the resulting light intensities in
detail we would find it most convenient to do that in terms of
a field correlation function which we shall define as Equa-
tion (4):

Gð1Þðr1t1,r2t2Þ ¼ hEð�Þðr1t1ÞEðþÞðr2t2Þi: ð4Þ

This is a complex-valued function that depends, in general, on
both space-time points r1t1 and r2t2. The angular brackets :::h i
indicate that an average value is somehow taken, as we have
noted. The average intensity of the field at the single point rt
is then just G(1)

ACHTUNGTRENNUNG(rt,rt).

If the field E(+)(rt) at any point on the third screen is given
by the sum of two fields, that is, proportional to E(+)

ACHTUNGTRENNUNG(r1t1)+
E(+)

ACHTUNGTRENNUNG(r2t2), then it is easy to see that the average intensity at rt
on the screen is given by a sum of the four correlation func-
tions,

Gð1Þðr1t1r1t1Þ þ Gð1Þðr2t2r2t2Þ þ Gð1Þðr1t1r2t2Þ þ Gð1Þðr2t2r1t1Þ:
ð5Þ

The first two of these terms are the separate contributions of
the two pinholes in the second screen, that is, the intensities
they would contribute individually if each alone were present.
Those smooth intensity distributions are supplemented howev-
er by the latter two terms of the sum, which represent the
characteristic interference effect of the superposed waves.
They are the terms that lead to the intensity fringes observed
by Young.

Intensity fringes of that sort assume the greatest possible
contrast or visibility when the cross-correlation terms like
G(1)

ACHTUNGTRENNUNG(r1t1r2t2) are as large in magnitude as possible. But there is a

simple limitation imposed on the magnitude of such correla-
tions by a familiar inequality. There is a formal sense in which
cross-correlation functions like G(1)

ACHTUNGTRENNUNG(r1t1r2t2) are analogous to the
scalar products of two vectors and are thus subject to a
Schwarz inequality. The squared absolute value of that correla-
tion function can then never exceed the product of the two in-
tensities. If we let x abbreviate a coordinate pair r,t, we must
have the inequality (6),

jGð1Þðx1x2Þj2 
 Gð1Þðx1x1ÞGð1Þðx2x2Þ: ð6Þ

The upper bound to the cross-correlation is attained if we
have Equation (7):

jGð1Þðx1x2Þj2 ¼ Gð1Þðx1x1ÞGð1Þðx2x2Þ, ð7Þ

and with it we achieve maximum fringe contrast. We shall
then speak of the fields at x1 and x2 as being optically coherent
with one another. That is the definition of relative coherence
that optics has traditionally used.[5]

There is another way of stating the condition for optical co-
herence that is also quite useful, particularly when we are dis-
cussing coherence at pairs of points extending over some
specified region in space-time. Let us assume that it is possible
to find a positive frequency field e(rt) satisfying the appropri-
ate Maxwell equations and such that the correlation func-
tion (4) factorizes into the form of Equation (8):

Gð1Þðr1t1,r2t2Þ ¼ e*ðr1t1Þeðr2t2Þ: ð8Þ

While the necessity of this factorization property requires a bit
of proof,[6] it is at least clear that it does bring about the opti-
cal coherence that we have defined by means of the upper
bound in the inequality (6) since in that case we have Equa-
tion (9):

jGð1Þðr1t1r2t2Þj2 ¼ jeðr1t1Þj2jeðr2t2Þj2: ð9Þ

In the quantum theory, physical variables such as E(� )(rt) are
associated, not with simple complex numbers, but with opera-
tors on the Hilbert-space vectors j i that represent the state of
the system, which in the present case is the electromagnetic
field. Multiplication of the operators E(+)

ACHTUNGTRENNUNG(r1t1) and E(�)
ACHTUNGTRENNUNG(r2t2) is not

in general commutative, and the two operators can be demon-
strated to act in altogether different ways on the vectors j i
that represent the state of the field. The operator E(+), in partic-
ular, can be shown to be an annihilation operator. It lowers by
one the number of quanta present in the field. Applied to an
n-photon state, nj i, it reduces it to an n�1 photon state,
n � 1j i. Further applications of E(+)(rt) keep reducing the
number of quanta present still further, but the sequence must
end with the n=0 or vacuum state, vacj i, in which there are
no quanta left. In that state we must finally have Equation (10):

EðþÞðrtÞ vacj i ¼ 0: ð10Þ

Figure 1. Young’s experiment. Light passing through a pinhole in the first
screen falls on two closely spaced pinholes in a second screen. The superpo-
sition of the waves radiated by those pinholes at r1 and r2 leads to interfer-
ence fringes seen at points r on the third screen.
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The operator adjoint to E(+), which is E(�), must have the
property of raising an n-photon state to an n+1 photon state,
so we may be sure, for example, that the state E(�)(rt) vacj i is a
one-photon state. Since the vacuum state can not be reached
by raising the number of photons, we must also require the re-
lation [Eq. (11)]:

vach jEð�ÞðrtÞ ¼ 0, ð11Þ

which is adjoint to Equation (10).
The results of quantum measurements often depend on the

way in which the measurements are carried out. The most
useful and informative ways of discussing such experiments
are usually those based on the physics of the measurement
process itself. To discuss measurements of the intensity of light
then we should understand the functioning of the device that
detects or counts photons.

Such devices generally work by absorbing quanta and regis-
tering each such absorption process, for example, by the de-
tection of an emitted photoelectron. We need not go into any
of the details of the photoabsorption process to see the gener-
al nature of the expression for the photon counting probabili-
ty. All we need to assume is that our idealized detector at the
point r has a negligibly small size and has a photoabsorption
probability that is independent of frequency so that it can be
regarded as probing the field at a well-defined time t. Then if
the field makes a transition from an initial state ij i to a final
state fj i in which there is one photon fewer, the probability
amplitude for that particular transition is given by the scalar
product—or matrix element

fh jEðþÞðrtÞ ij i: ð12Þ

To find the total transition probability we must find the
squared modulus of this amplitude and sum it over the com-
plete set of possible final states fj i for the field. The expression
for the completeness of the set of states fj i is given in Equa-
tion (13a):

X
f

fj i fh j ¼ 1, ð13aÞ

so that we then have a total transition probability proportional
to [Eq. (13b)]:

j fh j
X

f

fj iEðþÞðrtÞ ij ij2¼
X

f

ih jEð�ÞðrtÞ fj i fh jEðþÞðrtÞ ij i

¼ ih jEð�ÞðrtÞEðþÞðrtÞ ij i:
ð13bÞ

It is worth repeating here that in the quantum theory the
fields E(� ) are non-commuting operators rather than simple
numbers. Thus one could not reverse their ordering in the ex-
pression (13) while preserving its meaning. In the classical
theory we discussed earlier E(+) and E(�) are simple numbers
that convey equivalent information. There is no physical dis-
tinction between photoabsorption and emission since there
are no classical photons. The fact that the quantum energy hn

vanishes for h!0 removes any distinction between positive
and negative values of the frequency variable.

The initial state of the field in our photon counting experi-
ment depends, of course, on the output of whatever light
source we use, and very few sources produce pure quantum
states of any sort. We must thus regard the state ij i as depend-
ing in general on some set of random and uncontrollable pa-
rameters characteristic of the source. The counting statistics
we actually measure then may vary from one repetition of the
experiment to another. The figure we would quote must be re-
garded as the average taken over these repetitions. The neat-
est way of specifying the random properties of the state ij i is
to define what von Neumann called the density operator
[Eq. (14)]:

1 ¼ f ij i ih jgav, ð14Þ

which is the statistical average of the outer product of the
vector ij i with itself. That expression permits us to write the
average of the counting probability as Equation (15):

f ih jEð�ÞðrtÞEðþÞðrtÞ ij igav ¼ Tracef1Eð�ÞðrtÞEðþÞrtÞg: ð15Þ

Interference experiments like those of Young and Michelson,
as we have noted earlier, often proceed by measuring the in-
tensities of linear combinations of the fields characteristic of
two different space-time points. To find the counting probabili-
ty in a field like E(+)

ACHTUNGTRENNUNG(r1t1)+E(+)
ACHTUNGTRENNUNG(r2t2), for example, we will need to

know expressions like that of Equation (15) but with two differ-
ent space-time arguments r1t1 and r2t2. It is convenient then to
define the quantum theoretical form of the correlation func-
tion (4) as [Eq. (16)]:

Gð1Þðr1t1r2t2Þ ¼ Tracef1Eð�Þðr1t1ÞEðþÞðr2t2Þg: ð16Þ

This function has the same scalar product structure as the clas-
sical function (4) and can be shown likewise to obey the in-
equality (6). Once again we can take the upper bound of the
modulus of this cross-correlation function or equivalently the
factorization condition (8) to define optical coherence.

It is worth noting at this point that optical experiments
aimed at achieving a high degree of coherence have almost
always accomplished it by using the most nearly monochro-
matic light attainable. The reason for that is made clear by the
factorization condition (8). These experiments were always
based on steady or statistically stationary light sources. What
we mean by a steady state is that the function G(1) with two
different time arguments, t1 and t2, can in fact only depend on
their difference t1�t2. Optical coherence then requires
[Eq. (17)]:

Gð1Þðt1�t2Þ ¼ e*ðt1Þeðt2Þ: ð17Þ

The only possible solution of such a functional equation for
the function e(t) is one that oscillates with a single positive fre-
quency. The requirement of monochromaticity thus follows
from the limitation to steady sources. The factorization condi-
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tion (8), on the other hand, defines optical coherence more
generally for non-steady sources as well.

Although the energies of visible light quanta are quite small
on the everyday scale, techniques for detecting them individu-
ally have existed for many decades. The simplest methods are
based on the photoelectric effect and the use of electron pho-
tomultipliers to produce well-defined current pulses. The possi-
bility of detecting individual quanta raises interesting ques-
tions concerning their statistical distributions, distributions that
should in principle be quite accessible to measurement. We
might imagine, for example, putting a quantum counter in a
given light beam and asking for the distribution of time inter-
vals between successive counts. Statistical problems of that
sort were never, to my knowledge, addressed until the impor-
tance of quantum correlations began to become clear in the
1950s. Until that time virtually all optical experiments meas-
ured only average intensities or quantum counting rates, and
the correlation function G(1) was all we needed to describe
them. It was in that decade, however, that several new sorts of
experiments requiring a more general approach were begun.
That period seemed to mark the beginning of quantum optics
as a relatively new or rejuvenated field.

In the experiment I found most interesting, R. Hanbury
Brown and R. Q. Twiss developed a new form of interferome-
try.[7] They were interested at first in measuring the angular
sizes of radiowave sources in the sky and found they could ac-
complish that by using two antennas, as shown in Figure 2,
with a detector attached to each of them to remove the high-
frequency oscillations of the field. The noisy low-frequency sig-
nals that were left were then sent to a central device that mul-
tiplied them together and recorded their time-averaged values.

Each of the two detectors then was producing an output pro-
portional to the square of the incident field, and the central
device was recording a quantity that was quartic in the field
strengths.

It is easy to show, by using classical expressions for the field
strengths, that the quartic expression contains a measurable
interference term, and by exploiting it Hanbury Brown and
Twiss did measure the angular sizes of many radiosources.
They then asked themselves whether they couldn’t perform
the same sort of “intensity interferometry” with visible light,
and thereby measure the angular diameters of visible stars. Al-
though it seemed altogether logical that they could do that,
the interference effect would have to involve the detection of
pairs of photons and they were evidently inhibited in imagin-
ing the required interference effect by a statement Dirac
makes in the first chapter of his famous textbook on quantum
mechanics.[8] In it he is discussing why one sees intensity fring-
es in the Michelson interferometer, and says in ringingly clear
terms “Each photon then interferes only with itself. Interfer-
ence between two different photons never occurs.”

It is worth recalling at this point that interference simply
means that the probability amplitudes for alternative and in-
distinguishable histories must be added together algebraically.
It is not the photons that interfere physically, it is their proba-
bility amplitudes that interfere—and probability amplitudes
can be defined equally well for arbitrary numbers of photons.

Evidently Hanbury Brown and Twiss remained uncertain on
this point and undertook an experiment[9] to determine wheth-
er pairs of photons can indeed interfere. Their experimental ar-
rangement is shown in Figure 3. The light source is an ex-
tremely monochromatic discharge tube. The light from that
source is collimated and sent to a half-silvered mirror which
sends the separated beams to two separate photodetectors.
The more or less random output signals of those two detectors
are multiplied together, as they were in the radiofrequency ex-
periments, and then averaged. The resulting averages showed
a slight tendency for both of the photodetectors to register
photons simultaneously (Figure 4). The effect could be re-
moved by displacing one of the counters and thus introducing
an effective time delay between them. The coincidence effect

Figure 2. The intensity interferometry scheme of Hanbury Brown and Twiss.
Radiofrequency waves are received and detected at two antennas. The fil-
tered low-frequency signals that result are sent to a device that furnishes an
output proportional to their product.

Figure 3. The Hanbury Brown–Twiss photon correlation experiment. Light
from an extremely monochromatic discharge tube falls on a half-silvered
mirror which sends the split beam to two separate photodetectors. The
random photocurrents from the two detectors are multiplied together and
then averaged. The variable time delay indicated is actually achieved by
varying the distance of the detector D2 from the mirror.
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thus observed was greatly weakened by the poor time resolu-
tion of the detectors, but it raised considerable surprise none-
theless. The observation of temporal correlations between
photons in a steady beam was something altogether new. The
experiment has been repeated several times, with better reso-
lution, and the correlation effect has emerged in each case
more clearly.[10]

The correlation effect was enough of a surprise to call for a
clear explanation. The closest it came to that was a clever ar-
gument[11] by Purcell who used the semiclassical form of the
radiation theory in conjunction with a formula for the relaxa-
tion time of radiofrequency noise developed in wartime radar
studies. It seemed to indicate that the photon correlation time
would be increased by just using a more monochromatic light
source.

The late 1950s were, of course, the time in which the laser
was being developed, but it was not until 1960 that the
helium–neon laser[12] was on the scene with its extremely
mono ACHTUNGTRENNUNGchromatic and stable beams. The question then arose:
what are the correlations of the photons in a laser beam?
Would they extend, as one might guess, over much longer
time intervals as the beam became more monochromatic? I
puzzled over the question for some time, I must admit, since it
seemed to me, even without any detailed theory of the laser
mechanism, that there would not be any such extended corre-
lation.

The oscillating electric current that radiates light in a laser
tube is not a current of free charges. It is a polarization current
of bound charges oscillating in a direction perpendicular to
the axis of the tube (Figure 5). If it is sufficiently strong it can
be regarded as a predetermined classical current, one that suf-
fers negligible recoil when individual photons are emitted.
Such currents, I knew,[13] emitted Poisson distributions of pho-
tons, which indicated clearly that the photons were statistically
independent of one another. It seemed then that a laser beam
would show no Hanbury Brown–Twiss photon correlations at
all.

How then would one describe the delayed-coincidence
counting measurement of Hanbury Brown and Twiss? If the
two photon counters are sensitive at the space-time points r1t1

and r2t2 we will need to make use of the annihilation operators
E(+)

ACHTUNGTRENNUNG(r1t1) and E(+)
ACHTUNGTRENNUNG(r2t2) (which do, in fact commute). The ampli-

tude for the field to go from the state ij i to a state fj i with
two quanta fewer is [Eq. (18)]:

fh jEðþÞðr2t2ÞEðþÞðr1t1Þ ij i: ð18Þ

When this expression is squared, summed over final states fj i
and averaged over the initial states ij i we have a new kind of
correlation function that we can write as Equation (19):

Gð2Þðr1t1r2t2r2t2r1t1Þ ¼
Tracef1Eð�Þðr1t1ÞEð�Þðr2t2ÞEðþÞðr2t2ÞEðþÞðr1t1Þg:

ð19Þ

This is a special case of a somewhat more general second
order correlation function that we can write (with the abbrevi-
ation xj= rjtj) as [Eq. (20)]:

Gð2Þðx1x2x3x4Þ ¼ Tracef1Eð�Þðx1ÞEð�Þðx2ÞEðþÞðx3ÞEðþÞðx4Þg: ð20Þ

Now Hanbury Brown and Twiss had seen to it that the beams
falling on their two detectors were as coherent as possible in
the usual optical sense. The function G(1) should thus have sat-
isfied the factorization condition (8), but that statement
doesn’t at all imply any corresponding factorization property
of the functions G(2) given by Equations (19) or (20).

We are free to define a kind of second-order coherence by
requiring a parallel factorization of G(2) [Eq. (21)] ,

Gð2Þðx1x2x3x4Þ ¼ E*ðx1ÞE*ðx2ÞEðx3ÞEðx4Þ, ð21Þ

and the definition can be a useful one even though the Han-
bury Brown–Twiss correlation assures us that no such factoriza-
tion is present in their experiment. If it were present the coinci-
dence rate according to Equation (21) would be proportional
to [Eq. (22)]:

Gð2Þðx1x2x2x1Þ ¼ Gð1Þðx1x1Þ Gð1Þðx2x2Þ, ð22Þ

that is, to the product of the two average intensities measured
separately—and that is what was not found. Ordinary light
beams, that is, light from ordinary sources, even extremely
monochromatic ones as in the Hanbury Brown–Twiss experi-
ment, do not have any such second order coherence.

Figure 4. The photon coincidence rate measured rises slightly above the
constant background of accidental coincidences for sufficiently small time
delays. The observed rise was actually weakened in magnitude and extend-
ed over longer time delays by the relatively slow response of the photode-
tectors. With ideal detectors it would take the more sharply peaked form
shown.

Figure 5. Schematic picture of a gas laser. The standing light wave in the
discharge tube generates an intense transverse polarization current in the
gas. Its oscillation sustains the standing wave and generates the radiated
beam.
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We can go on defining still higher-order forms of coherence
by defining nth-order correlation functions G(n) that depend on
2n space-time coordinates. The usefulness of such functions
may not be clear since carrying out the n-fold delayed coinci-
dence counting experiments that measure them would be
quite difficult in practice. It is nonetheless useful to discuss
such functions since they do turn out to play an essential role
in most calculations of the statistical distributions of photons.
If we turn on a photon counter for any given length of time,
for example, the number of photons it records will be a
random integer. Repeating the experiment many times will
lead us to a distribution function for that number. To predict
those distributions[14] we need, in general, to know the correla-
tion functions G(n) of arbitrary orders.

Once we are defining higher-order forms of coherence, it is
worth asking whether we can find fields that lead to factoriza-
tion of the complete set of correlation functions G(n). If so, we
could speak of those as possessing full coherence. Now, are
there any such states of the field? In fact there are lots of
them, and some can describe precisely the fields generated by
predetermined classical current distributions. These fields have
the remarkable property that annihilating a single quantum in
them by means of the operator E(+) leaves the field essentially
unchanged. It just multiplies the state vector by an ordinary
number. That is a relation we can write as Equation (23):

EðþÞðrtÞ j i ¼ eðrtÞ j i, ð23Þ

where e(rt) is a positive frequency function of the space-time
point rt. It is immediately clear that such states must have in-
definite numbers of quanta present. Only in that way can they
remain unchanged when one quantum is removed. This re-
markable relation does in fact hold for all of the quantum
states radiated by a classical current distribution, and in that
case the function e(rt) happens to be the classical solution for
the electric field.

Any state vector that obeys the relation (23) will also obey
the adjoint relation [Eq. (24)]:

h jEð�ÞðrtÞ ¼ e*ðrtÞ h j: ð24Þ

Hence the nth-order correlation function will indeed factorize
into the form of Equation (25):

GðnÞðx1 . . . :x2nÞ ¼ e*ðx1Þ . . . :e*ðxnÞeðxnþ1Þ . . . :eðx2nÞ ð25Þ

that we require for nth order coherence. Such states represent
fully coherent fields, and delayed coincidence counting meas-
urements carried out in them will reveal no photon correla-
tions at all. To explain, for example, the Hanbury Brown–Twiss
correlations we must use not pure coherent states but mix-
tures of them, for which the factorization conditions like Equa-
tion (25) no longer hold. To see how these mixtures arise, it
helps to discuss the modes of oscillation of the field individual-
ly.

The electromagnetic field in free space has a continuum of
possible frequencies of oscillation, and a continuum of avail-

ACHTUNGTRENNUNGable modes of spatial oscillation at any given frequency. It is
often simpler, instead of discussing all these modes at once, to
isolate a single mode and discuss the behavior of that one
alone. The field as a whole is then a sum of the contributions
of the individual modes. In fact when experiments are carried
out within reflecting enclosures the field modes form a dis-
crete set, and their contributions are often physically separa-
ble.

The oscillations of a single mode of the field, as we have
noted earlier, are essentially the same as those of a harmonic
oscillator. The nth excitation state of the oscillator represents
the presence of exactly n light quanta in that mode. The oper-
ator that decreases the quantum number of the oscillator is
usually written as a, and the adjoint operator—which raises
the quantum number by one unit as a†. These operators then
obey the relation [Eq. (26)]:

aay�aya ¼ 1, ð26Þ

which shows that their multiplication is not commutative. We
can take the field operator E(+)(rt) for the mode we are study-
ing to be proportional to the operator a. Then any state vector
for the mode that obeys the relation (23) will have the proper-
ty [Eq. (27)]:

aj i ¼ aj i ð27Þ

where a is some complex number. It is not difficult to solve for
the state vectors that satisfy the relation (27) for any given
value of a. They can be expressed as a sum taken over all pos-
sible quantum-number states nj i, n=0, 1, 2…. that takes the
form of Equation (28):

aj i ¼ e�1
2 aj j2

X1
n¼0

anffiffiffiffi
n!

p nj i, ð28Þ

in which we have chosen to label the state with the arbitrary
complex parameter a. The states aj i are fully coherent states
of the field mode.

The squared moduli of the coefficients of the state nj i in
Equation (28) tell us the probability for the presence of n
quanta in the mode, and those numbers do indeed form a
Poisson distribution, one with the mean value of n equal to
aj j2. The coherent states form a complete set of states in the
sense that any state of the mode can be expressed as a suita-
ble sum taken over them. As we have defined them they are
equivalent to certain oscillator states defined by Schrçdinger[15]

in his earliest discussions of wave functions. Known thus from
the very beginning of wave mechanics, they seemed not to
have found any important role in the earlier development of
the theory.

Coherent excitations of fields have a particularly simple way
of combining. Let us suppose that one excitation mechanism
brings a field mode from its empty state 0j i to the coherent
state a1j i. A second mechanism could bring it, for example,
from the state 0j i to the state a2j i. If the two mechanisms act
simultaneously the resulting state can be written as
eif a1 þ a2j i where eif is a phase factor that depends on a1 and
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a2, but we don’t need to know it since it cancels out of the ex-
pression for the density operator [Eq. (29)]:

1 ¼ ja1 þ a2iha1 þ a2j: ð29Þ

This relation embodies the superposition principle for field ex-
citations and tells us all about the resulting quantum statistics.
It is easily generalized to treat the superposition of many exci-
tations. If, say, j coherent excitations were present, we should
have a density operator [Eq. (30)]:

1 ¼ a1 þ :::þ aj

�� �
a1 þ :::aj

� ��: ð30Þ

Let us suppose now that the individual excitation ampli-
tudes aj are in one or another sense random complex num-
bers. Then the sum a1+…+aj will describe a suitably defined
random walk in the complex plane. In the limit j!1 the prob-
ability distribution for the sum a=a1+…+aj will be given by
a Gaussian distribution which we can write as Equation (31):

PðaÞ ¼ 1
p nh i e� aj j2

nh i , ð31Þ

in which the mean value of ja j 2 which has been written as
nh i, is the mean number of quanta in the mode.

The density operator that describes this sort of random exci-
tation is a probabilistic mixture of coherent states [Eq. (32)] ,

1 ¼ 1
p nh i

Z
e� aj j2

nh i aj i ah jd2a, ð32Þ

where d2a is an element of area in the complex plane. When
we express 1 in terms of m-quantum states by using the ex-
pansion (28) we find [Eq. (33)]:

1 ¼ 1
1 þ nh i

X1
m¼0

nh i
1 þ nh i

� �m

mj i mh j: ð33Þ

This kind of random excitation mechanism is thus always asso-
ciated with a geometrical or fixed-ratio distribution of quan-
tum numbers (Figure 6). In the best known example of the

latter, the Planck distribution, we have nh i= e
hn
kT � 1

	 
�1
, and

the density operator (33) then contains the familiar thermal
weights e�mhn

kT .
There is something remarkably universal about the geomet-

rical sequence of n-quantum probabilities. The image of chaot-
ic excitation we have derived it from, on the other hand, exci-
tation in effect by a random collection of lasers, may well
seem rather specialized. It may be useful therefore to have a
more general way of characterizing the same distribution. If a
quantum state is specified by the density operator 1, we may
associate with it an entropy S given by Equation (34):

S ¼ �Traceð1 log1Þ, ð34Þ

which is a measure, roughly speaking, of the disorder charac-
teristic of the state. The most disordered, or chaotic, state is
reached by maximizing S, but in finding the maximum we
must observe two constraints. The first is [Eq. (35)]:

Trace 1 ¼ 1, ð35Þ

which says simply that all probabilities add up to one. The
second is [Eq. (36)]:

Trace ð1ayaÞ ¼ nh i, ð36Þ

which fixes the average occupation number of the mode.

When S is maximized, subject to these two constraints, we
find indeed that the density operator 1 takes the form given
by Equation (33). The geometrical distribution is thus uniquely
representative of chaotic excitation. Most ordinary light sour-
ces consist of vast numbers of atoms radiating as nearly inde-
pendently of one another as the field equations will permit. It
should be no surprise then that these are largely maximum en-
tropy or chaotic sources. When many modes are excited, the
light they radiate is, in effect, colored noise and indistinguisha-
ble from appropriately filtered black body radiation.

For chaotic sources, the density operator (32) permits us to
evaluate all of the higher-order correlation functions
G(n)

ACHTUNGTRENNUNG(x1…x2n). In fact they can all be reduced[14] to sums of prod-
ucts of first order correlation functions G(1)

ACHTUNGTRENNUNG(xixj). In particular, for
example, the Hanbury Brown–Twiss coincidence rate corre-
sponding to the two space time points x1 and x2 can be writ-
ten as Equation (37):

Gð2Þðx1x2x2x1Þ ¼ Gð1Þðx1x1ÞGð1Þðx2x2Þ þ Gð1Þðx1x2ÞGð1Þðx2x1Þ:
ð37Þ

The first of the two terms on the right side of this equation is
simply the product of the two counting rates that would be
measured at x1 and x2 independently. The second term is the
additional delayed coincidence rate detected first by Hanbury
Brown and Twiss, and it is indeed contributed by a two-
photon interference effect. If we let x1=x2, which corresponds
to zero time delay in their experiment, we see that [Eq. (38)]:

Gð2Þðx1x1x1x1Þ ¼ 2fGð1Þðx1x1Þg2, ð38Þ
Figure 6. Geometrical or fixed-ratio sequence of probabilities for the pres-
ence of n quanta in a mode that is excited chaotically.
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or the coincidence rate for vanishing time delay should be
double the background or accidental rate.

The Gaussian representation of the density operator in
terms of coherent states is an example of a broader class of
so-called “diagonal representations” that are quite convenient
to use—when they are available. If the density operator for a
single mode, for example, can be written in the form of Equa-
tion (39):

1 ¼
Z

PðaÞ aj i ah jd2a ð39Þ

then the expectation values of operator products like a+nam

can be evaluated as simple integrals over the function P such
as [Eq. (40)]:

faynamgav ¼
Z

PðaÞa*namd2a: ð40Þ

The function P(a) then takes on some of the role of a probabil-
ity density, but that can be a bit misleading since the condition
that the probabilities derived from 1 all be positive or zero
does not require P(a) to be positive definite. It can and some-
times does take on negative values over limited areas of the a-
plane in certain physical examples, and it may also be singular.
It is a member, as we shall see, of a broader class of quasi-
probability densities. The representation (39), the P-representa-
tion, unfortunately is not always available.[16,17] It can not be
defined, for example, for the familiar “squeezed” states of the
field in which one or the other of the complementary uncer-
tainties is smaller than that of the coherent states.

The difference between a monochromatic laser beam and a
chaotic beam is most easily expressed in terms of the function
P(a). For a stationary laser beam the function P depends only
on the magnitude of a and vanishes unless aj j assumes some
fixed value. A graph of that function P is shown in Figure 7,
where it can be compared with the Gaussian function for the
same mean occupation number nh i given by Equation (31).

How do we measure the statistical properties of photon dis-
tributions? A relatively simple way is to place a photon coun-
ter in a light beam behind either a mechanical or an electrical
shutter. If we open the shutter for a given length of time t, the

counter will register some random number n of photons. By
repeating that measurement sufficiently many times we can
establish a statistical distribution for those random integers n.
The analysis necessary to derive this distribution mathematical-
ly can be a bit complicated since it requires, in general, a
knowledge of all the higher-order correlation functions. Experi-
mental measurements of the distribution, conversely, can tell
us about those correlation functions.

For the two cases in which we already know all the correla-
tion functions, it is particularly easy to find the photocount dis-
tributions. If the average rate at which photons are recorded is
w, then the mean number recorded in time t is [Eq. (41)]:

nh i ¼ wt: ð41Þ

In a coherent beam the result for the probability of n photo-
counts is just the Poisson distribution [Eq. (42)]:

pnðtÞ ¼
wtð Þn

n!
e�wt: ð42Þ

In a chaotic beam, on the other hand, the probability of count-
ing n quanta is given by the rather more spread-out distribu-
tion [Eq. (43)]:

pnðtÞ ¼
1

1 þ wt
wt

1 þ wt

� �n

: ð43Þ

These results, which are fairly obvious from the occupation
number probabilities implicit in Equations (28) and (33) are il-
lustrated in Figure 8.

Here is a closely related question that can also be investigat-
ed experimentally without much difficulty. If we open the shut-
ter in front of the counter at an arbitrary moment, some
random interval of time will pass before the first photon is
counted. What is the distribution of those random times? In a
steady coherent beam, in fact, it is just an exponential distribu-
tion [Eq. (44)]:

Figure 7. The quasiprobability function P( aj j) for a chaotic excitation is Gaus-
sian in form, while for a stable laser beam it takes on non-zero values only
near a fixed value of aj j.

Figure 8. The two P( aj j) distributions of Figure 7 lead to different photon oc-
cupation number distributions p(n): for chaotic excitation a geometric distri-
bution, for coherent excitation a Poisson distribution.
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wcoh ¼ we�wt , ð44Þ

while in a chaotic beam it assumes the less obvious form
[Eq. (45)]:

wchðtÞ ¼
w

ð1 þ wtÞ2 : ð45Þ

There is an alternative way of finding a distribution of time
intervals. Instead of simply opening a shutter at an arbitrary
moment, we can begin the measurement with the registration
of a given photocount at time zero and then ask what is the
distribution, of time intervals until the next photocount. This
distribution, which we may write as w ACHTUNGTRENNUNG(0jt), takes the same
form for a coherent beam as it does for the measurement de-
scribed earlier, which starts at arbitrary moments [Eq. (46)] ,

wcohð0jtÞ ¼ we�wt ¼ wcohðtÞ: ð46Þ

This identity is simply a restatement of the statistically inde-
pendent or uncorrelated quality of all photons in a coherent
beam.

For a chaotic beam, on the other hand, the distribution
ACHTUNGTRENNUNGwchACHTUNGTRENNUNG(0jt) takes a form quite different from wch(t). It is [Eq. (47)]:

wchð0jtÞ ¼
2w

ð1 þ wtÞ3 , ð47Þ

an expression which exceeds wch(t) for times for which wt<1,
and is in fact twice as large as wch(t) for t=0 (Figure 9). The

reason for that lies in the Gaussian distribution of amplitudes
implicit in Equations (31) and (32). The very fact that we have
counted a photon at t=0 makes it more probable that the
field amplitude a has fluctuated to a large value at that
moment, and hence the probability for counting a second
photon remains larger than average for some time later. The
functions wch(t) and wch ACHTUNGTRENNUNG(0jt) are compared in Figure 8.

All of the experiments we have discussed thus far are based
on the procedure of photon counting, whether with individual
counters or with several of them arranged to be sensitive in
delayed coincidence. The functions they measure, the correla-
tion functions G(n), are all expectation values of products of
field operators written in a particular order. If one reads from
right to left, the annihilation operator always precedes the cre-
ation operators in our correlation functions, as they do, for ex-
ample, in Equation (19) for G(2). It is that so-called “normal or-
dering” that gives the coherent states, and the quasiprobability
density P(a) the special roles they occupy in discussing this
class of experiments.

But there are other kinds of expectation values that one
sometimes needs in order to discuss other classes of experi-
ments. These could, for example, involve symmetrically or-
dered sums of operator products, or even anti-normally or-
dered products which are opposite to the normally ordered
ones. The commutation relations for the multiplication of field
operators will ultimately relate all these expectation values to
one another, but it is often possible to find much simpler ways
of evaluating them. There exists a quasiprobability density that
plays much the same role for symmetrized products as the
function P does for the normally ordered ones. It is, in fact, the
function Wigner[18] devised in 1932 as a kind of quantum me-
chanical replacement for the classical phase space density. For
anti-normally ordered operator products, the role of the quasi-
probability density is taken over by the expectation value
which for a single mode is 1

p ah j1 aj i. The three quasiprobability
densities associated with the three operator orderings and
whatever experiments they describe are all members of a
larger family that can be shown to have many properties in
common.[17]

The developments I have described to you were all relatively
early ones in the development of the field we now call quan-
tum optics. The further developments that have come in rapid
succession in recent years are too numerous to recount here.
Let me just mention a few. A great variety of careful measure-
ments of photon counting distributions and correlations of the
type we have discussed have been carried out[19] and furnish
clear agreement with the theory. They have furthermore
shown in detail how the properties of laser beams change as
they rise in power from below threshold to above it.

The fully quantum mechanical theory of the laser was diffi-
cult to develop[20] since the laser is an intrinsically nonlinear
device, but only through such a theory can its quantum noise
properties be understood. The theories of a considerable as-
sortment of other kinds of oscillators and amplifiers have now
been worked out.

Nonlinear optics has furnished us with new classes of quan-
tum phenomena such as parametric down conversion in which
a single photon is split into a pair of highly correlated or en-
tangled photons. Entanglement has been a rich source of the
quantum phenomena that are perhaps most interesting—and
baffling—in everyday terms.

It is worth emphasizing that the mathematical tools we have
developed for dealing with light quanta can be applied equally
well to the much broader class of particles obeying Bose–Ein-

Figure 9. Time interval distributions for counting experiments in a chaotical-
ly excited mode: wch(t) is the distribution of intervals from an arbitrary
moment until the first photocount. wch(0 j t) is the distribution of intervals
between two successive photocounts.
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stein statistics. These include atoms of 4He, 23Na, 87Rb, and all
of the others which have recently been Bose-condensed by
optical means. When proper account is taken of the atomic in-
teractions and the non-vanishing atomic masses, the coherent
state formalism is found to furnish useful descriptions of the
behavior of these bosonic gases.

The formalism seems likewise to apply to subatomic parti-
cles, to bosons that are only short-lived. The pions that
emerge by hundreds or even thousands from the high-energy
collisions of heavy ions are also bosons. The pions of similar
charge have a clearly noticeable tendency to be emitted with
closely correlated momenta, an effect which is evidently analo-
gous to the Hanbury Brown–Twiss correlation of photons, and
invites the same sort of analysis.[21]

Particles obeying Fermi–Dirac statistics, of course, behave
quite differently from photons or pions. No more than a single
one of them ever occupies any given quantum state. This kind
of reckoning associated with fermion fields is radically different
therefore from the sort we have associated with bosons, like
photons. It has proved possible, nonetheless, to develop an al-
gebraic scheme[22] for calculating expectation values of prod-
ucts of fermion fields that is remarkably parallel to the one we
have described for photon fields. There is a one-to-one corre-
spondence between the mathematical operations and expres-
sions for boson fields on the one hand and fermion fields on
the other. That correspondence has promise of proving useful
in describing the dynamics of degenerate fermion gases.

I’d like, as a final note, to share with you an experience I had
in 1951, while I was a postdoc at the Institute for Advanced
Study in Princeton. Possessed by the habit of working late at
night—in fact on photon statistics[13] at the time—I didn’t
often appear at my Institute desk early in the day. Occasionally
I walked out to the Institute around noon, and that was closer
to the end of the work day for Professor Einstein. Our paths
thus crossed quite a few times, and on one of those occasions
I had ventured to bring my camera. He seemed more than will-
ing to let me take his picture as if acknowledging his role as a
local landmark, and he stood for me just as rigidly still. Here, in
Figure 10, is the hitherto unpublished result. I shall always
treasure that image, and harbor the enduring wish I had been
able to ask him just a few questions about that remarkable
year, 1905.
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Figure 10. Professor Einstein, encountered in the spring of 1951 in Prince-
ton, NJ.
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