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A simple wave function for the normal state of the
hydrogen molecule, in which both the atomic and ionic
configurations are taken into account, was set up and
treated by a variational method. The dissociation energy
was found to be 4.00 v.e. as compared to the experimental
value of 4.68 v.e. and Rosen’s value of 4.02 v.e. obtained by
use of a function involving complicated integrals. It was

found that the atomic function occurs with a coefficient
3.9 times that of the ionic function. A similar function with
different screening constants for the atomic and ionic
parts was also tried. It was found that the best results are
obtained when these screening constants are equal. The
addition of Rosen’s term to the atomic-ionic function
resulted in a value of 4.10 v.e. for the dissociation energy.

TTEMPTS to obtain some of the properties

of the normal hydrogen molecule by wave-
mechanical methods date to the early days of
wave mechanics. Heitler and London! applied a
first-order perturbation method, and Sugiura,?
by evaluating an integral whose value Heitler
and London had only estimated, obtained results
qualitatively comparable with known experi-
mental data. Eisenschitz and London? applied a
second-order perturbation treatment and ob-
tained results in poorer agreement with experi-
mental values than the results of previous calcu-
lations. For example, Heitler-London-Sugiura’s
value for the dissociation energy is 3.2 v.e. and
the experimental value corrected for the zero
point energy is 4.68 v.e., while Eisenschitz and
London obtained 9.5 v.e. Thus it seems that
the perturbation method is not very satisfactory
for the treatment of the hydrogen molecule.
The variational method, by approaching the
value of energy from one side, is safe from the
possibility of overshooting the mark. Wang,*
using a variational method involving the intro-
duction of a shielding constant as a parameter,
obtained 3.7 v.e. for the dissociation energy.
Rosen,® by using the three-parameter function
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Y=y +oy’, where ¢° is the hydrogenic wave
function for the lowest state with a shielding
constant Z, ¥’ is a function symmetrical about
the axis but not about a plane through the
nucleus perpendicular to it, and ¢ is a parameter,
has obtained 4.02 v.e. for the dissociation energy.
The improvement on the previous value is
considerable, but the calculations are rather
laborious.

All these calculations were based on the
assumption that each of the nuclei always has
one electron attached to it, these electrons some-
times interchanging their positions, which leads
to the interchange energy. It was suggested by
Hund and Mulliken® that a truer picture would
be given by a wave function (Y14 ¢1){(¥2+ ¢2)
which takes account not only of the atomic
configuration but also of the ionic configuration,
when both electrons are on the same nucleus,
the other being completely stripped of electrons.
However, a function of the type suggested by
Hund and Mulliken would give the hydrogen
molecule in the normal state as much ionic
character as atomic. There seems to be no
reason to assume this, and a logical wave
function to take care of the atomic-ionic char-
acter of the hydrogen molecule appears to be

c(Yree+ orde) + (e + o192)
where ¢ is a parameter,

Yy1=Ne %741 and ¢ =Ne Z81,

§ F. Hund, Zeits. f. Physik 73, 1 (1931).
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It has been shown’ that the integral
E=f¢*Hedr/ S ¢*edr,

where H is the Hamiltonian operator and ¢ is a
function which satisfies certain boundary condi-
tions but is otherwise arbitrary, containing, say,
some variable parameters, has the property that
the lowest value W obtained from varying the
numerical parameters is the best approximation
to the value of E, and that E—W is always
positive or zero. Hence the variational integral
presents, as already mentioned, a satisfactory
means for evaluating the energy of the normal
state of the hydrogen molecule.
The first test for the wave function

¥ =c(r1p2t o) + (et e102)

would be to consider it a two-parameter function.
The results obtained by varying ¢ would then be
comparable with the Heitler-London-Sugiura
results. It is, however, more convenient to treat

Y=cr1o2+ o) + (Yda+ e192)

as a three-parameter function, and then, at a
certain point in the algebra, to reduce it to a
two-parameter function by letting Z=1.

It is useful to set up the following scheme,
devised by Slater:

I I I11 v
¥ + - +—
@ - + +-
and rewrite our wave function as
Y =c(Yr—¢m) Hm -+, )

where Y1—yr11 is the atomic Heitler-London
term and Yrir+v¢iv is the ionic term. The
variational integral

W= fy*Hydr/ S¥*Ydr (2)
then takes the form
W=E/Z=fH[C(¢I_¢II)+¢III+¢IV]2dT
d  Sle(r—va) Hm+yiv Jdr

The wave equation for a hydrogen-like atom,
in a system of units where unit of length
29=0.52845A and unit of energy e%/a,=27.06

(2a)

7 C. Eckart, Phys. Rev. 36, 878 (1930).
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volt-electrons, is
VY +2(W—V)y=0 (3)
or, in a rewritten form,
Wy =—3vy¥+Vy,

where W= —22/2. The general wave equation
may be written as

(3a)

Wy =Hy, 4)
with

H=—-1v*+V and V=3IZ(Z.Z;/ry), (5)

the Hamiltonian function for the case of a
hydrogen molecule being

H=—3(v:*+v:?)
1 1t 1 1 1 1
——————— —+—+— (6)
Ya1 Y42 ¥B1 ¥B2 T2 Tan

In subsequent calculations the letter I with
a subscript will be used to indicate the different
integrals occurring. The integral Sy edr will be
denoted by s.

Leaving out for the present the term 1/r4p in
the Hamiltonian we can now set up the following
expressions:

vi? 1 1
f%Hl’thl = flﬁl( —————— —“) !P1d7'1
2 ra rm

Z* Z—-1 1
=f¢1(_'—"+ —'——>¢1dT1
2 Y41 ¥B1

=—[2?24+(1-2)Z+I]=4 (1)

f WiHipdri= —[(Zo/2)s+(2—2)I]=B.  (Ta)

Let us denote integrals of the type S ¢y1Hy11d7
by Hiri. These integrals may be represented
also by Z,(—)*(y¢/H/{¢), where p stands for
the number of permutations of the signs of the
spin that are necessary to obtain the same spin
for functions pertaining to the same electron.
Then, in terms of 4 and B, we obtain

Hii=Huu=24+1,; Hiy m=Hwy v=24+1,,
Hin=Hni= —2Bs—Is;Hmwv=Hw m=ZBs—|—(186),
Him=Hni=Hiw=Hwi=—Hum=—Humn
=—Hnw=—Hyu=As+B4I.
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Making use of the relations (8), we find
%WN =c*Hy 1+ Hu m — AHy n+Hiuw +4cHy
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=224 +1)+24+ I3+ A(2Bs+1o) +2Bs+ Ie+4c(As+B+1;) (9)

and putting I =Z2F, where F is a function of p(=Zr45) only, this becomes

IWh=2(2+ 1)1+ 2sFo—s®)+4cF ]+ Z[(*+1)(Fs—2—2F, —4sFy)

where

+ F3+ctFy—4c(s+ Fis+2F,— Fs) |=\224uZ, (9a)
A=(2H+1)(1+2sFy—s?) +4cFe (10)
p=(2+1)(Fe—2—2F —4sF5)+ Fs+Fy—4c(s + Fis+2F— Fy). (10a)
The denominator in the expression for W has the value
d= f V¥dr=2dy 1+ 2dur mn — 2d1 n+2dm v+ 861 1
=224+ 2+42c2524 252+ 8cs = 2[ (2 4+ 1) (1 +s) +4es]=2».  (11)
As p=_Zr,p, introducing the term 1/r,5 that we left out of the calculations, we have
W=MZ+uZ)/v+Z/p=N/V)Z*+(u/v+1/p)Z. (12)
Substituting Z=1 in (12) we obtain W as a function of parameters ¢ and p:
M 1 (@D (—1—52=2F,—2Fs+Fo)+ F3+c*Fy—4c(s+ Fis+F,—Fs) 1
W= +- (3

v o p

Minimizing (13) with respect to ¢, dW/dc=0
yields a quadratic in ¢. Substituting the value
of ¢ obtained from this quadratic back in (13)
and varying p, the lowest value of W was found
to be W= —1.1187 with p=1.67 and ¢=6.322.
The Sugiura value for W is W= —1.1156, so
that the inclusion of the ionic term gives an
improvement in the dissociation energy of 0.0031
or 3 percent.

Going back to (12), we can improve the
treatment by minimizing (12) with respect to Z,
which is equivalent to Wang's treatment plus
an ionic term. We get

AW/AZ =2\/v)Z+p/v+1/p (14)
and
Zmin=—(v/2M)(n/v+1/p). (15)
Substituting (15) into (12) we have
W zemin= — (v/4N) (n/v+1/p)*. (16)

Expression (16) is a function of ¢ and p, as
was the case for (13). But while in the case of
(13) dW/dc=0 gave a quadratic in ¢, in the case

(2 +1) (1 +s2) +4es p

of (16) dW/dc=0 gives an equation of the fifth
degree in ¢. However, to evaluate ¢ by direct
substitution of different values of ¢ for a given
p involves very little labor. The procedure
employed was as follows: the best value of ¢
was first obtained for p=1.67; then p was varied
to get the best value for the obtained ¢; then ¢
was varied again, and so on, until the variation
in either ¢ or p would result in a lower value of W.
The lowest value of W obtained from (16) is
W= —1.148, with p=1.69, ¢=3.9 and Z=1.193.

This result compares very favorably with the
result of Wang's treatment (improvement of
8 percent in dissociation energy) and is just very
slightly lower than Rosen’s result, which requires
very elaborate calculations. Thus the results of
this calculation show that the ratio of the
coefficients of the atomic and ionic parts of the
wave function is about four and not one as was
suggested by Hund and Mulliken.

So far it has been assumed that the effective
nuclear charge Z is the same for both the atomic
and ionic parts. The next step is to introduce a
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new parameter e=Z2'/Z, where Z’ is the effective
nuclear charge in the ionic term. On carrying
out the calculations* it was found that the
value e=1 gives the lowest energy. This inter-
esting fact shows that the screening constants
for the atomic and ionic contributions to the
normal state of the hydrogen molecule are the
same.

The ionic term and the Rosen term giving
independently an improvement in Wang’s result,
a function including both these terms was set up.
As both the Wang-ionic and the Rosen treatment
give the same internuclear distance, it is a good
approximation to use p=1.7 for the Rosen-ionic
treatment. With p=1.7, ¢ and ¢ were varied
until the combination of ¢ and ¢ giving the
lowest value for W was obtained.* The results
obtained are W= —1.1515, ¢=5.7, ¢=0.07 and
Z=1.190; p has not been varied as such a
variation would require very long computations
and the expected improvement in the value for
W was small.

The comparison of the results of the different
calculations can be seen from Fig. 1 and from
Table 1.

TasLE 1.
w AE(v.e) J.(g-cm?) ».{cm™)
Present paper
Wang-ionic —1,148 400 4.65X10% 4750
Rosen-ionic —1.1515 4.10
Heitler-London-

Sugiura -1.116 3.14 5.2 4800
Wang —1.138 3.76 4,59 4900
Rosen —1.1485 4.02 4,65 4260
Observed —1.173 4.68 4,5378 44188

The fundamental frequency »v. was calculated
by means of a Morse® function

AE = De—2e(po—pm) — Q2 Deg—0o{oo—pm) (17)

By substituting in (17) three different values of

* Details of these calculations are in the author’s
dissertation.

8 Private communication from Professor Birge.

9 P. M. Morse, Phys. Rev. 34, 57 (1929).
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Fic. 1. Calculated energy curves of normal H, Curve
I, Heitler-London; curve II, Heitler-London-ionic; curve
III, Wang; curve IV, Wang-ionic; curve V, Rosen; curve
VI, Rosen-ionic.

1.00

po with the corresponding values of AE we
obtain three simultaneous equations which when
solved give D=0.1479 and a=1.216. Then v, was
calculated from the formula

ve=(a/0.1227)(D/ M)}

where @ is in 1/A, D is in wave numbers and
M=M M./(Mi+ M,) is in terms of oxygen=16.

Table I shows that the introduction of the
ionic term in the wave function gives an im-
provement of 8 percent over Wang's value for
the dissociation energy of hydrogen molecule.
Thus from a simple wave function results almost
equivalent to Rosen's were obtained. It should
be noticed that while the ionic term corresponds
to a definite physical picture, the physical
significance of the Rosen term is not very clear.
The addition of the Rosen term to the atomic-
ionic wave function gives only about 21 percent
increase in the value of the dissociation energy.ft

The writer wishes to thank Professor Pauling
for suggesting the problem and for valuable

(18)

criticism during the progress of the work.

t A. S. Coolidge and H. M. James (Phys. Rev. 43, 588
(1933)) have recently reported a better value for the
energy, obtained by the use of a function involving the
distance between the two electrons explicitly.
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