MTH 453-553 W2013, Assignment 1

Students registered for 453 solve Problem 1 and one other problem (or all for extra credit).

Students registered for 553 solve all problems.

1. Follow instructions for Exercise 3.1ac from the book to solve $- \triangle u = f$ on $[0,1] \times [0,1]$ so that u(x,y) = exp(x+y/10) is the true solution. Make it clear what boundary conditions and what source (right hand side) function f you are using.

In a), show that the algorithm is second order accurate (use error_log.m and error_table.m to see how to show the results.).

In c), propose the best choice of $\Delta x, \Delta y$ for the problem so that the total error is smaller than $\tau = 1e - 6$, but the number of unknowns is as small as possible.

- 2. Solve 3.2.
- 3. Consider a diagonal positive definite matrix $K \in \mathbb{R}^{2 \times 2}$ and consider solving $-\nabla \cdot (K \nabla u) = f$.

Propose a FD scheme and show its consistency.

Modify **poisson.m** to solve this problem on $[0,1] \times [0,1]$. Use $u(x,y) = \sin(\pi x)\sin(\pi y)$ as a true solution, and $K_{11} = 1, K_{22} = 10$. Derive the boundary conditions and the source terms.

Test convergence and propose $\Delta x, \Delta y$ so that the error is less than $\tau = 1e - 6$, with the smallest number of unknowns possible.