MTH 453-553 W2013, Assignment 1
Students registered for 453 solve Problem 1 and one other problem (or all for extra credit).

Students registered for 553 solve all problems.

1. Follow instructions for Exercise 3.1ac from the book to solve $-\triangle u=f$ on $[0,1] \times[0,1]$ so that $u(x, y)=\exp (x+y / 10)$ is the true solution. Make it clear what boundary conditions and what source (right hand side) function f you are using.
In a), show that the algorithm is second order accurate (use error_log.m and error_table.m to see how to show the results.).
In c), propose the best choice of $\Delta x, \Delta y$ for the problem so that the total error is smaller than $\tau=1 e-6$, but the number of unknowns is as small as possible.
2. Solve 3.2.
3. Consider a diagonal positive definite matrix $K \in \mathbb{R}^{2 \times 2}$ and consider solving $-\nabla \cdot(K \nabla u)=f$.
Propose a FD scheme and show its consistency.
Modify poisson.m to solve this problem on $[0,1] \times[0,1]$. Use $u(x, y)=$ $\sin (\pi x) \sin (\pi y)$ as a true solution, and $K_{11}=1, K_{22}=10$. Derive the boundary conditions and the source terms.
Test convergence and propose $\triangle x, \Delta y$ so that the error is less than $\tau=$ $1 e-6$, with the smallest number of unknowns possible.
