MTH 351, Assignment \# 3
In this assignment you are asked to use polynomials to approximate a function and to (ultimately) find its (numerical) integral(s). Hint: you may find the following MATLAB and Atkinson/Han routines useful: polyfit with polyval, interp1, spline, trapz, quad*. Remember to check what these different routines do.

1. Let $f(x)=\sin (x)$. In MATLAB, interpolate f on the interval $[0, \pi]$ using $n=3$ equally spaced nodes and a Lagrange polynomial $p_{2}(x)$ (use polyfit). Plot $f(x)$ and the polynomial and verify how the error that you can read from the plot agrees with the theoretical estimate that you can derive. Repeat with a (piecewise) linear $s_{1}(x)$ (use interp1), and a cubic spline $s_{3}(x)$ (use spline) of your choice. Comment on the performance of these interpolating polynomials.
2. (Runge phenomenon) a) Find a Lagrange interpolating polynomial for $g_{\alpha}(x)=\frac{1}{1+25 x^{2}}$ using $n=3,7,11$ equally spaced nodes $x_{0}, x_{1}, \ldots x_{n-1}$ in the interval $[-1,1]$ (use polyfit in MATLAB). Plot the polynomials and the function. Is the fit good ? b) To improve the results for $n=7$, use instead of equally spaced nodes $x_{0}, x_{1}, \ldots x_{n-1}$ the Chebyshev nodes $z_{0}, z_{1}, \ldots z_{n-1}$ that is, the roots of Chebyshev polynomial of degree n which are given by the formula: $z_{i}=\cos \left(\frac{(2 i+1) \pi}{2 n}\right), i=0,1,2 \ldots n-1$. Discuss this improvement.
