MTH 351, HW Assignment 2

The goal of this assignment is to explore a few methods of root-finding, that is, methods for solving

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

In fact, we seek a solution of the problem $x=\exp (-x)$ which is set up in the form (1) using either $f_{1}(x)=x-\exp (-x)$, or $f_{2}(x)=1000 x \exp (x)-1000$, or $f_{3}(x)=1 / x-\exp (x)$.

Notes and additional info: Let x^{*} be the true solution to (1). Recall that a method has convergence rate C /order α if the error $e_{n+1}:=\left|x^{*}-x_{n+1}\right| \leq C e_{n}^{\alpha}$ for iterates $n=1,2,3, \ldots$. A good estimate for α can be provided by calculating

$$
\alpha \approx \frac{\log \left(e_{n+1}\right)-\log \left(e_{n}\right)}{\log \left(e_{n}\right)-\log \left(e_{n-1}\right)}
$$

for a few subsequent iterations. Note that in order to do that, one must know the exact root x^{*}. If it is not known, then e_{n} cannot be calculated! IHowever, in Newton (and secant) method a good estimate for e_{n} is $e_{n} \approx v_{n}=x_{n+1}-x_{n}$. (For fixed-point iteration one can use Aitken's formula, discussed in Section 3.4.1 of the textbook).

1. Use bisection method to solve the problem (1) with each f_{1}, f_{2}, f_{3} (if possible) on interval $[0,1]$ with tolerance $=1 . \mathrm{e}-4$ and $\max \#$ iterations 20 . Note: you can use Atkinson/Han's MATLAB code. I DO NOT NEED TO SEE YOUR CODE. If there is a problem for any f_{i}, modify the setup to eliminate this problem. How many iterations did the algorithm take for each f_{1}, f_{2}, f_{3} ? Discuss.

Pick only one of f_{1}, f_{2}, f_{3} and predict how many iterations would be needed to solve the problem i) with tolerance $1 \mathrm{e}-6$, and ii) to machine precision (call the solution xbis). Verify in MATLAB. Is $f_{i}(x b i s)=0$?. Comment.
2. Use Newton method to solve the problem as in $\# 1$. Note: you can use Atkinson/Han's MATLAB code appropriately modified. DO NOT SHOW THE CODE.

Explore sensitivity to the starting point and choice of the function: try using $x_{0}=1,0,-1,10$ for each f_{i}, if possible. Use tolerance eps=1.e-10. Problems ? For which f_{i} does the method appear to converge the fastest? Discuss. Call one good converged solution xnewt.
3. Pick the same f_{i} as in $\# 2$ and investigate convergence rate of the Newton method: assume x^{*} is known and equal to xnewt obtained in $\# 2$. Is α really equal 2 as predicted by theory ? What if we do not know x^{*} and only use estimates v_{n} of e_{n} ?

Note: here you have to write your own code or modify Atkinson/Han's M-file newton.m and make it deliver, for each iteration n, the error ε_{n} and its estimate v_{n}. SHOW THE CODE.
4. Write your own code to find the solution of a problem $x=\exp (-\beta x)$ using the fixed-point method with an initial guess $x_{0}=0$. SHOW THE CODE. Try $\beta=10,2,1,0.1$. For what β are we guaranteed that the fixed-point method
converges ? Does it actually converge ? Estimate the convergence rate (if applicable) for $\beta=0.1$ (use Aitken's formula)

Extra: do \# 3 with secant method.

