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Abstract. In this paper we study computational schemes to simulate freezing and thawing in
permafrost modeled by a nonlinear heat equation with constitutive properties resembling those in
the well known Stefan problem but featuring distinct challenges. The models are discretized with
low order conservative discretization and fully implicit time stepping. We explore the challenges due
to the nonsmooth nature of the temperature-enthalpy relationship and the domain heterogeneity,
with focus on the solver and the use of enthalpy as a primary variable in contrast to the temperature
variable used commonly in applications literature. We prove and demonstrate the convergence of
our algorithms in realistic physical scenarios.
Keywords: Nonlinear degenerate parabolic equation, mixed finite elements, heat conduction with
phase change, permafrost models, semismooth Newton’s method, heterogeneous media.

1. Introduction

In this paper we address the challenges in computational schemes for heat conduction models
involving phase transitions in permafrost soils. Our focus is on various forms of heterogeneity and
their impact on the solvers. In particular, we demonstrate that the use of enthalpy as primary
unknown is by far a more robust choice than the use of temperature variable, even though the
latter choice dominates in the applications literature. We provide theoretical explanations and
illustrate with numerical experiments. Our work provides a bridge between the rigorous computa-
tional mathematics approaches and the permafrost applications literature, with an aim to provide
concrete details for computational algorithms in realistic setting, and to annotate their context
within rigorous literature results.

In recent years, there has been an increased interest in permafrost modeling due to its role within
the global climate studies. Permafrost is formally defined as ground that remains frozen for two
or more years [49, 36]. The part of permafrost that undergoes annual freezing and thawing is
called the active layer; its thickness may range from 0.1 to 1 [m] [4](Pg. 7). Permafrost features
heterogeneity in the form of multiple soil types and ground ice wedges with length scales of 0.01 to
10 [m] [4](Pg. 8) [61]. A holistic modeling approach involves the study of the thermal, hydrological,
and mechanical processes across the scales, and we refer to [33, 64, 24, 63, 7] for recent discussion of
some modeling aspects, but we do not attempt to give an exhaustive list of references. In this paper
we focus only on the thermal aspect of permafrost, and defer the study of the coupled hydrological
and mechanical processes to our forthcoming work in [56, 38]. We also refer to [8, 40] for our
first explorations of computational schemes as well as the connection between Stefan problem and
permafrost models.

Heat conduction with phase change is modeled with the following nonlinear degenerate parabolic
equation, written in the sense of distributions,

∂tw −∇ · (k∇θ) = f, w ∈ α(θ), (1)

where θ is the temperature, w is the enthalpy which is related to the temperature using the relation-
ship α, k = k(θ) is the thermal conductivity, and f is an external heat source. For the permafrost
models (P ), which are our focus here, α = αP is a nonlinear, piecewise-differentiable, monotone
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function whose derivative features a singularity at some freezing temperature θ = θ∗. For the well
known Stefan problem, α = αST is a multivalued graph. We refer to [40] for our work on the
connection and the upscaling of Stefan-like models αST to αP .

The low regularity of the solutions to (1) for Stefan problem [55] makes finite elements a natural
choice for approximation of the temperature θ and enthalpy w variables; see, e.g., [35, 26] where
proofs of convergence are given. In most works on Stefan and permafrost models θ is approximated
using P1 (piecewise-linear) finite elements, and convergence is proven within the so-called Kirchhoff
transformation or upon regularization of αST . The approximation of enthalpy is done separately.
For θ − w, we have thus P1-P1 or P1-P0 schemes or P0-P0 schemes, where P0 means piecewise-
constant finite elements. For reference, we mention a few works without attempting to provide a
comprehensive list. For Stefan problem, P1-P0 schemes with P0 used for enthalpy are in [35, 54],
but P1-P1 are in [47, 60, 34], and P0-P0 finite volume in [3]. For permafrost, P1-P1 is used
in [59, 32, 31, 16], but P1-P0 or P0-P0 in [51, 27]. Furthermore, in some application papers, the
schemes apply chain rule in (1) to w = αP (θ), with the so called “apparent heat capacity” technique.
Such approaches, along with regularizations or model approximations may bear a modeling error
significant in permafrost applications relevant especially when coupling (1) to multiphysics scenarios
involving thermal or hydrological fluxes.

In this work we focus on permafrost models with the constitutive properties αP , kP in d ≥ 1
dimensions. We use P0-P0 mixed finite element scheme with fully implicit time stepping for ap-
proximation of (1) written as

∂tw +∇ · q = f, w ∈ α(θ), q = −k∇θ. (2)

We introduced the P0-P0 scheme for Stefan problem in this formulation in [8] where we showed it
was conservative and compared very well to P1-P0 and P1-P1 approaches. In this paper we focus on
P0-P0 schemes and solvers for permafrost applications with heterogeneity. Generally, theoretical
techniques such as Kirchhoff transformation or regularizations which are powerful for deriving
convergence results do not apply for problems featuring heterogeneity or to coupled multiphysics
scenarios. These challenges motivate our focus on solvers and practical scenarios.

Heterogeneity is an important aspect of the processes in porous media including the flow and
thermal processes in permafrost, and is associated with the presence of different soil types such as
peat, silt, bedrock and gravel which feature different physical properties including the porosity, grain
distribution, as well as thermal properties; see, e.g. [23, 32, 31, 19]. To indicate heterogeneity we
write α = αP (x, θ) and k = kP (x, θ); these incorporate distinct soil-type specific properties which
may lead to different qualitative behavior, e.g., mild or sharp or even nearly infinite gradients in θ
and/or x. A particular heterogeneous medium challenge comes with modeling massive ice or rock
wedges embedded in soil; see Figure 1 for an illustration of the media heterogeneity in permafrost.

Our contributions are as follows. After giving the model details, we begin by (i) analyzing the
relationships αP and βP = (αP )−1 to isolate the challenges specific to permafrost model within
the class of nonlinear degenerate parabolic equations. Next, (ii) we discuss the applicability of
the known theoretical results for convergence of approximations to (2) to permafrost models. We
also discuss numerical methods for (1) in geotechnical engineering and outline their limitations
when compared with our P0-P0 scheme. (iii) We define two nonlinear iterative solvers denoted by
P0-P0-Θ and P0-P0-W referring to the primary unknowns temperature and enthalpy, respectively.
We prove convergence of our nonlinear solvers and demonstrate their robustness when dealing with
practical permafrost scenarios and media heterogeneity. We demonstrate the advantages of the
enthalpy-based algorithm P0-P0-W over the temperature formulation P0-P0-Θ. Finally, (iv) we
provide simulations for physically meaningful heterogeneous scenarios using data from Alaska, USA
as well as an example with an ice wedge.
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Figure 1. Illustration of heterogeneity due to multiple soil layers and the presence
of ice wedges (motivated by [16, 20, 21]). In the domains Ω(j), j ∈ {1, 2, 3}, the
subdomains correspond to different soil types, such as clay, silt, gravel, with the soil
type specific temperature enthalpy relationship αP (x, θ)|Ω(j) = α(j)(θ). In Ω(4), the
thermal properties of ice wedge are α(x, θ)|Ω(4) = αST (θ) which is multivalued.

The outline of this paper is as follows. In Section 2 we provide the details of (1) and in Section 3,
we define our P0-P0 scheme to discretize (2). We review theory and literature in Section 4. In
Section 5 we present our solvers and prove their convergence. In Section 6 we provide numerical
examples on the order of convergence as well on the robustness of our solvers, followed by simulations
of practical scenarios. We conclude in Section 7, with acknowledgements in Section 8. Auxiliary
results and supplemental data are in Section 9.

2. Model Description

A list of symbols used in this paper is given in Table 1. We provide now the narrative to this
notation.

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a connected open bounded set representing a heterogeneous per-
mafrost domain. We denote by ν the outward normal to ∂Ω.

We assume that Ω is divided into Nr non-overlapping subdomains Ω(j), where each Ω(j) is
occupied by a particular soil type, or ice, or solid rock. Within each, we denote the variables and
data associated with the liquid water, ice, and rock grains by subscripts l, i, and r, respectively.
The rock types j = 1, 2, . . . Nr have heat capacity and conductivity

cr(x) = c(j)
r , kr(x) = k(j)

r , ∀x ∈ Ω(j). (3)

We make the following natural assumptions.

Assumption 2.1. The thermal parameters within each Ω(j) are constant in x, θ and satisfy

0 < cmin ≤ cl, ci, c(j)
r ≤ cmax <∞, 0 < kmin ≤ kl, ki, k(j)

r ≤ kmax <∞, 1 ≤ j ≤ Nr. (4)

The latent heat of water L = const ≥ 0.

For functional spaces, we consider Lebesgue and Sobolev spaces M = L2(Ω) and X = Hdiv(Ω).
The L2 inner product of scalar valued f1, f2 ∈ L2(Ω) or vector valued f1, f2 ∈ (L2(Ω))d is denoted
by (f1, f2) =

∫
Ω f1f2.

2.1. Heat conduction in permafrost soil. The model (1) for permafrost applications reads

∂tw −∇ · (kP (x, θ)∇θ) = f, w = αP (x, θ), (5)
3



Subscript/Notation Description

{l, i, r} Liquid l, ice i (solid) phase, and rock r

ST, P Stefan problem (ST ) and permafrost models (P )

SFC Soil freezing curve

Variable Description/SI Unit

θ Temperature [◦C]

w Enthalpy/energy per unit volume [J/m3]

q Heat flux [J/m2 s]

χl Liquid volume fraction [−]; χl = χP
l or χST

l

Parameter Description/SI Unit Typical values

c Volumetric heat capacity [J/m3 ◦C] Water 4.19× 106, Ice 1.9× 106 [45]

k Thermal conductivity [J/m s ◦C] Water 0.58, Ice 2.3 [45]

L Latent heat per unit volume [J/m3] Water 3.06× 108 [45]

θ∗ Freezing point depression [◦C] Water 0

η Porosity [−] Mineral soil [0.2, 0.4] [31]

Relationship Description

α Temperature-enthalpy relationship; w ∈ αST (θ) or w = αP (θ)

β Enthalpy-temperature function β := α−1; θ = βST (w) or θ = βP (w).

Table 1. Variables and parameters in this work.

where the temperature-enthalpy relationship αP is defined as follows

αP (x, θ) =

∫ θ

θ∗

c(x, v)dv + LηχPl (x, θ), c(x, v) = cf (x) + χPl (x, v)(cu(x)− cf (x)). (6)

Here cu(x) = clη(x) + cr(x)(1− η(x)) and cf (x) = ciη(x) + cr(x)(1− η(x)) are the volumetric heat
capacities of “unfrozen” u and “frozen” f soil, respectively [32, 31], with η denoting the porosity of
the soil, and θ∗ denoting the freezing point depression above which water exists only in the liquid
phase l. Typically, θ∗ is close to 0[◦C] and is used in parametric models for αP . The water fraction
χPl = χPl (x, θ) is called the Soil Freezing Curve and is discussed below.

In turn, the thermal conductivity kP incorporates the presence of the liquid l, ice i and rock
r phases and materials; it is obtained through weighted averaging of the individual thermal con-
ductivities kp, p ∈ {l, i, r} [24, 64, 32, 63, 28]; see Section 9.1 for these expressions, and [40] for its
proper choice via upscaling.

2.1.1. Soil Freezing Curve (SFC). The definition (6) involves the water fraction χPl (θ); in hetero-

geneous soil, we have χPl = χPl (x, θ).

Unlike in bulk water (without soil grains), an important feature of permafrost is that χPl (θ) is
nonzero at a large range of temperatures below some given θ∗ < 0; this is due to surface energy
effects [12]. In experiments, this measured quantity called the soil freezing curve (SFC) is fit
to some algebraic parametric models, and depends on physical and chemical factors such as the
specific area of the soil particles, the presence of dissolved solutes and the size of the mineral
particles [25, 5, 61, 4].

Generally, χPl (θ) is monotone and continuous on R but not differentiable at θ = θ∗. However,
some of the data reported in literature based on mass fraction measurements [25, 5, 4] produces
discontinuous SFC, with the related numerical difficulties acknowledged in, e.g., [29, 32, 28]. In
fact, the fitted power function SFC expressions used in [25, 37, 46] are unbounded near θ = 0 [◦C],
thus they are used only for θ ≤ θ∗ < 0, or a smooth or regularized SFC [28, 51, 31, 16] can be
considered. Upscaled χPl from our work [40] is also discontinuous but can also be smoothed in
practice. In this paper we defer the study of discontinuous SFC to another venue, and focus on
other challenges, making the following assumption regarding the SFCs.
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Model Parameter values Adapted from
Adapted L (9a) b = 0.271 [−], θ∗ = −1.1544 [◦C] [25](Figure 9)
Adapted W (9b) b = 6.4216 [◦C], χres = 0.36 [−], θ∗ = 0 [◦C] [59](Table 3)
Adapted M (9c) b = 0.16 [1/◦C], χres = 0.20144 [−] θ∗ = 0 [◦C] [64](Pg. 7)

Table 2. SFC parameters for clay. These parameters have been used to plot Figure 2.

Assumption 2.2. (i) For a fixed soil type, the SFC χPl (θ) has the general form

χPl (θ) =

{
1; θ > θ∗

Υ(θ); θ ≤ θ∗
, (7)

where Υ is a smooth, monotone nondecreasing, convex, and Lipschitz function which satisfies
0 ≤ χres ≤ Υ(θ) ≤ 1, ∀θ ∈ (−∞, θ∗]; Υ(θ∗) = 1, and limθ→−∞Υ(θ) = χres, with Lipschitz
constant LχP

l
equal that for Υ.

(ii) For domains with multiple soil types we have

χPl (x, θ) = χPl
(j)

(θ), ∀x ∈ Ω(j), 1 ≤ j ≤ Nr, (8)

where each χPl
(j)

satisfies (i).

From Assumption 2.2 χPl is continuous and differentiable except at θ = θ∗, but globally Lipschitz.

In heterogeneous case, χPl is not necessarily continuous in Ω× R thus not globally Lipschitz.

SFC considered in this work. Typically, porous organic soils such as peat and moss have
“steep” SFCs, whereas mineral soils such as clay and silt feature a more gradual long tailed behavior.
Each satisfies Assumption 2.2, but has different Lipschitz constants. We use one of three SFCs
adapted from [25, 59, 29] denoted with superscripts L,W and M corresponding to the original
author’s names. Their expressions and the Lipschitz constants for χPl are given

ΥL(θ) = |θ∗|b|θ|−b, LΥL = b|θ∗|−1, (9a)

ΥW (θ) = χres + (1− χres)b4(b− θ + θ∗)
−4, LΥW = 4(1− χres)b−1, (9b)

ΥM (θ) = χres + (1− χres)eb(θ−θ∗), LΥM = (1− χres)b. (9c)

See illustrations in Figure 2, with typical data in Table 2.

2.1.2. Properties of temperature-enthalpy function αP . We prove now some properties of αP and
its inverse βP = (αP )−1.

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold and αP be given by (6). Then αP is continuous,
piecewise-smooth, globally Lipschitz, and strictly monotone. Further, |(αP )′| whenever defined
is bounded above and below by positive constants. Moreover, βP = (αP )−1 is well-defined and
is also continuous, piecewise-smooth, globally Lipschitz, and strictly monotone with derivative
|(βP )′| bounded above and below by positive constants, except at w = w∗ = αP (θ∗), where βP is
non-differentiable.

Proof. We set (AP )′(θ) = cuχ
P
l (θ) + cf (1− χPl (θ)) + Lη(χPl )′(θ) and calculate from (6)

(αP )′(θ) =

{
cu; θ > θ∗

(AP )′(θ); θ < θ∗
. (10)

Now we see (αP )′ is discontinuous at θ = θ∗. Further, from Assumption 2.1 and Assumption 2.2,
AP is smooth and each term in the definition of (AP )′ is positive, and since χPl ∈ [0, 1], we can
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Figure 2. Illustration of the water fraction χl (left) and temperature-enthalpy
relationships α (middle) and β (right) for the permafrost model compared to Stefan
problem. Note that χSTl and αST are multivalued at θ = θ∗, whereas χPl and αP

are functions with a long tailed behavior as θ → −∞. Here we use the SFC and
thermal parameters for clay and water as listed in Table 2 and Table 5.

conclude that (AP )′ ≥ min{cu, cf} ≥ cmin. Also, at θ = θ∗ we have

lim
θ→θ+

∗

(αP )′(θ) = cu, lim
θ→θ−∗

(αP )′(θ) = cu + Lη lim
θ→θ−∗

(χPl )′(θ),

and thus

[(αP )′]θ∗ = −Lη lim
θ→θ−∗

(χPl )′(θ). (11)

Now we see that the upper bound and Lipschitz constant is

|(αP )′(θ) |≤ (cmax + LηLχP
l

) = LαP (12)

which can be found in practice for each SFC from (9).
We may further prove that

αP (θ2)− αP (θ1) ≥ cmin(θ2 − θ1), ∀θ1, θ2 ∈ R, θ1 ≤ θ2. (13)

Indeed, for θ1 < θ2, since χPl is monotone, we have from (6)

αP (θ2)− αP (θ1) ≥
∫ θ2

θ1

(
cuχ

P
l (v) + cf (1− χPl (v))

)
dv ≥ min{cu, cf}(θ2 − θ1) ≥ cmin(θ2 − θ1).

This proves (13) and consequently that αP is strictly increasing monotone.
Since αP is continuous and strictly monotone, βP is well-defined and continuous. Further,

(βP )′(w) =
1

(αP )′(βP (w))
=

{
1
cu

; w > w∗
1

(AP )′(βP (w))
, w < w∗

, w∗ = αP (θ∗), (14)

thus βP is piecewise-smooth. Moreover, from (12) and (13) we have ∀w1, w2 ∈ R
1(

cmax + LηLχP
l

) |w2 − w1| ≤ |βP (w2)− βP (w1)| ≤ 1

cmin
|w2 − w1|. (15)

Hence βP is globally Lipschitz, strictly monotone, and differentiable except at w∗. �

From Lemma 2.1, it follows immediately that αP and βP are semismooth on R [53](Pg. 35,
Prop. 2.26). In fact, since αP and βP are piecewise-smooth, they are order 1-semismooth. We also
make the following observation when comparing the behavior of αP and βP . From (15), it follows
that (βP )′ ≤ c−1

min even when χPl features steep gradients. This is in contrast with a large slope of
6



αP near θ ≈ θ∗ and its jump given in (11). These features support the improved robustness of our
P0-P0 solver in the enthalpy formulation over the temperature formulation discussed in Section 5.

2.2. Heat conduction in ice wedges. In heterogeneous permafrost, it is common to encounter
subdomains filled with ice wedges of considerable size, where porosity η = 1, i.e., there are no
soil grains. In such subdomains, the model (1) takes the form of the well-known Stefan problem
[55, 52, 17, 8] where α = αST and k = kST . For completeness we provide its definition now, in
a form consistent with (6) in which we set η = 1, and use χSTl (θ) = H (θ − θ∗), where H is the
Heaviside graph with H (v) = 0, ∀v < 0, H (v) = 1, ∀v > 0, and H (0) = [0, 1].

We obtain multivalued α = αST given by

αST (θ) =

∫ θ

θ∗

c(v)dv + LχSTl (θ), c(θ) =

{
cl; θ > θ∗

ci; θ < θ∗
, (16)

with its inverse function βST = (αST )−1 given by

βST (w) =


w−L
cl

+ θ∗; w > L

θ∗; w ∈ [0, L]
w
ci

+ θ∗; w < 0

. (17)

In turn, the thermal conductivity k = kST is given by

kST (θ) =

{
kl; θ > θ∗

ki; θ < θ∗
, kST (θ∗) =

ki + kl
2

. (18)

Now we discuss the properties of αST and βST . In comparison with those of αP , βP given in
Lemma 2.1, we see that αST is a monotone multi-valued graph with singularity at θ = θ∗. In turn,
the function βST is globally Lipschitz, piecewise-linear, and thus semismooth. A plot of αST and
βST is included in comparison with αP and βP in Figure 2.

2.2.1. Approximating χSTl and αST . As mentioned in Introduction, theoretical results and practical

computational models of Stefan problem frequently approximate the multivalued graph χSTl as well

as the resulting αST with functions of finite slopes. In heterogeneous models involving permafrost
with ice wedges, it is possible to set up domain decomposition and not regularize. However, in this

paper, we consider two approximations χ̃STl to χSTl . One is (i) a piecewise-linear approximation

χ̃l ≈ χSTl

χ̃l(θ) =


0; θ < θ∗ − ε
(θ−θ∗+ε)

ε ; θ ∈ [θ∗ − ε, θ∗]
1; θ > θ∗

, ε > 0. (19)

We also consider (ii) a sufficiently steep SFC, e.g., the adapted L SFC (9a) with a high b and a

small |θ∗|. The corresponding approximation α̃ST ≈ αST are calculated with (16). An illustration

of χ̃STl and α̃ST is shown in Figure 3.

3. Approximation Scheme

To approximate the solutions to (2) we use the lowest order mixed finite elements: we approx-
imate the temperature and enthalpy with P0 elements enforcing w = αP (θ) pointwise for each
degree of freedom and flux q with RT[0] element. We provide details below, assuming for simplicity
homogeneous Dirichlet boundary conditions θ|∂Ω = 0. We also assume some given initial data
w0 ∈M .
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Figure 3. Illustration of approximations to χSTl (left). Plotted are χSTl as well as its
piecewise-linear χ̃l given by in (19) with ε = 0.01 [◦C], and the adapted L permafrost
SFC function χPl with b = 1.5, θ∗ = −0.01 [◦C] in (9a). The corresponding αST and
its approximations by (16) are shown on right.

For simplicity of notation, we consider Ω ⊂ R2, and assume Ω can be well covered by a rectangular
grid T h with Nω elements ωi,j so that Ω =

⋃
i,j ωi,j , with each ωi,j having cell widths hx,i, hy,j in

the x and y direction, respectively. We also assume that the grid edges align with any material
interfaces. We further denote hmin = mini,j{hx,i, hy,j} and hmax = maxi,j{hx,i, hy,j}. Each cell ωi,j
has edges γi− 1

2
,j , γi,j+ 1

2
, γi+ 1

2
,j and γi,j− 1

2
when listed clockwise from its left edge.

On T h we consider the space of piecewise-constant functions Mh ⊂M (P0) and the lowest order
Raviart-Thomas space Xh = RT[0] ⊂ X. We also use the generic subscript h in (·, ·)h to denote the
use of the trapezoidal-midpoint (TM) quadrature for numerical integration [48, 39]. In the end,
the discretization is implemented as a cell–centered finite difference/finite volume scheme.

We consider a time grid tn = tn−1 + τn, 1 ≤ n ≤ N, t0 = 0, where τn is the time step. Our
fully discrete implicit P0-P0 mixed element scheme at each 1 ≤ n ≤ N , given wn−1

h ∈ Mh seeks
(θnh , q

n
h) ∈Mh ×Xh such that

(wnh , ηh) + τn(∇ · qnh , ηh) = (wn−1
h + τnf

n, ηh), ∀ηh ∈Mh, w
n
h ∈ α(θnh), (20a)

(k̃−1qnh , ψh)h − (θnh ,∇ · ψh) = 0, ∀ψh ∈ Xh, (20b)

where k̃ ∈ Mh is a suitable approximation to k(θnh) based on time or iterative lagging to be

discussed in Section 5, and has similar properties to k so that k̃−1 is well-defined. The use of the
(·, ·)h quadrature allows us to eliminate qh and implement (20) as a cell-centered finite difference
(CCFD) scheme for θnh , w

n
h .

Next we rewrite (20) in the matrix-vector as a nonlinear algebraic system; here we follow notation
from [8]. The basis functions of Mh are simply the indicator functions 1ωi,j . For θh, wh ∈ Mh, we
denote by Θi,j = θh|ωi,j and Wi,j = wh|ωi,j . The vector-valued functions of Xh are tensor products
of piecewise-linear functions in one direction and piecewise-constants in the other direction. For
any qh = (qh1, qh2) ∈ Xh, qh1 and qh2 are defined by their values on the edges γi± 1

2
,j and γi,j± 1

2
,

respectively, and we denote Qi± 1
2
,j = qh1|γi± 1

2 ,j
and Qi,j± 1

2
= qh2|γi,j± 1

2

. We denote the basis

functions for Xh by ψi+ 1
2
,j for first component and by ψi,j+ 1

2
for the second component. Finally,

the vector F collects the entries Fi,j = (f,1ωi,j ). Let Θ,W , and Q denote the degrees of freedom
of θh, wh, and qh, respectively, in their respective basis.

Let M be the mass matrix defined by (wh, θh) = ΘTMW, ∀θh, wh ∈ Mh; for a uniform square
spatial grid M = h2INω×Nω . We denote by B the matrix defined by (∇· qh, θh) = −ΘTBQ, ∀θh ∈
Mh, qh ∈ Xh, and by K̃ the matrix defined by (k̃−1qh, φh)h = ΦT K̃ Q, ∀qh, φh ∈ Xh, where Φ
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denotes the degrees of freedom of φh. With these, (20) can be written as

MWn − τnBQn = τnF
n + MWn−1, Wn ∈ α(Θn), (21a)

BTΘn + K̃ Qn = 0, (21b)

where we use the superscript to denote the time step. Since the matrix K̃ is diagonal and invertible
(see Section 9.2 below), we can easily eliminate Qn to get

MWn + τnA Θn = τnF
n + MWn−1, (22)

where A := BK̃ −1BT , with details in Section 9.2. The model is closed with a component-wise
relationship between Wn and Θn, a counterpart of w = αP (θ) or θ = βP (w). In the former case, we
have the temperature formulation with primary unknown Θn. In the latter, we have the enthalpy
formulation with Wn as primary unknown.

The problem (22) is nonlinear, and must be solved by iteration which we discuss in Section 5.

4. Literature Review on Convergence Rates and Numerical Models

In this section we identify and briefly review the literature context relevant for our scheme (22)
for the permafrost model (5), as a specific case of (1). First in Section 4.1 we discuss known results
on mixed finite element approximation to degenerate parabolic problems of a structure as in (1). In
Section 4.2 we recall the schemes used specifically for (5) in the applications literature and discuss
their features in contrast to our scheme (22).

4.1. Orders of convergence derived in literature. We are not aware of any rigorous work in
computational mathematics literature devoted to the specific challenges of permafrost modelled by
(5). If framed as a generic doubly nonlinear degenerate parabolic problems with structure (1), the
analysis of mixed finite element schemes as well as their CCFD formulation is well known, and the
order of convergence depends on the character of nonlinearity in (1).

For the simplest linear case when α(θ) = cθ, c = const and k = k(x) in (1), under Neumann
boundary conditions and strong regularity assumptions on θ and q, [58](Thm. 5.1) derives the
estimates

‖θh − θ‖∞,2 + max
n

(
k−1(qnh − qn), qnh − qn

) 1
2

h
= O(h2 + τ). (23)

For nonlinear α(θ) and k = k(x) motivated by applications in reservoir engineering, the analysis
in [6] is based on Kirchhoff framework. The Kirchhoff transform is defined as K : R→ R, K(θ) =∫ θ
θ∗
k(v)dv. One defines the Kirchhoff temperature u = K(θ), and change variables in (1) as

∂tw −∆u = 0. (24)

Further using θ = β(w) we have

u = P (w), P := K ◦ β. (25)

For the degenerate case, when (P )′(w) vanishes for some values of w ∈ R (as in Stefan problem),
[6](Theorem 3) provides optimal estimates of the form

n∑
m=1

τm (wmh − wm, P (wmh )− P (wm)) +

∥∥∥∥∥
n∑

m=1

Ψm
h τm −Π1

h

∫ tn

0
Ψ

∥∥∥∥∥
2

= O(h+ τ), (26)

where Ψ = −∇u, and Π1
h : L2(Ω)d → Xh is the L2 projection operator. For the nondegenerate

case, i.e., when (P )′ 6= 0 (such as for permafrost models), under strong assumptions of smoothness
of P and (P )′, [6](Theorem 5) proves the estimate

‖wh − w‖∞,2 + ‖Ψ−Ψh‖2,2 = O(h+ τ). (27)
9



Further, [6](Theorem 7) extends (27) to superconvergent orders on rectangular grids, i.e.,

‖wh −Π0
hw‖∞,2 + ‖Ψ−Π1

hΨh‖2,2 = O
(
h2 + τ

)
, (28)

where Π0
h : L2(Ω)→Mh is the L2 projection operator.

In turn, [50](Theorem 2) focuses on the case of Richards equation, where the authors prove first
order convergence assuming that P−1 is continuously differentiable and Lipschitz∥∥∥∥∥

N∑
m=1

∫ tm

tm−1

(umh − um)

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
m=1

∫ tm

tm−1

(Ψm
h −Ψ)

∥∥∥∥∥
2

= O(h+ τ). (29)

Also for Richards equation, optimal orders are given in [62](Thm. 5.2), who consider an expanded
mixed finite element scheme and prove

‖θh − θ‖∞,2 + ‖q̃h − q̃‖2,2 = O(h+ τ), (30)

where q̃ = −∇θ.

Remark 4.1. The orders of convergence given by (27)–(29) require that α or P for (1) are smooth
and are derived by employing a mean value argument which requires |(P )′′| to be well-defined
and bounded. This assumption does not hold for permafrost model (5) since the corresponding
P = K ◦ βP is only piecewise-smooth. Indeed, from Lemma 2.1

(P )′(w) = kP
(
βP (w)

)
(βP )′(w), w 6= w∗, (31)

and (P )′ is discontinuous at w = w∗, i.e, (P )′′ features the Dirac delta δ(w − w∗) and is not a
well-defined function. Thus, the estimates (27)–(29) do not formally apply to (5). Furthermore,
any arguments based on Kirchhoff transformation do not apply to heterogenenous problems.

In spite of that theoretical results do not apply to the permafrost model, we show that our
P0-P0 scheme leads to linear orders of convergence for θ, w, and q robustly for realistic permafrost
scenarios, with quadratic superconvergence similar to that (28) for temperatures all strictly above,
or all below θ∗, in homogeneous media. Thus, the scheme (22) for (5) appears well grounded in
theory even if the rigorous results from the literature do not apply directly.

4.2. Schemes in the applications literature. The majority of numerical models in the per-
mafrost applications literature are based on P1 finite element or nodal finite difference approaches,
and exploit the “apparent heat capacity” concept, essentially an application of the chain rule; see
[32, 31, 16, 23, 13, 18, 64, 28]. This involves rewriting (5) as

capp(θ)∂tθ −∇ · (kP∇θ) = f, capp(θ) := c(θ) + ηL(χPl )′(θ), (32)

where capp(θ) = (αP )′(θ) is the “apparent heat capacity”. Such an approach allows an evaluation
of capp by time-lagging and appears natural. However, (i) the non-smooth behavior of αP at
θ = θ∗ with the jump of the derivative given by (11) and (ii) steep gradient of capp near θ∗ lead to
difficulties. These features pose a challenge for P1 schemes when mass matrices involving capp are
computed unless a fine mesh and appropriate numerical quadrature is used, since the contribution
of the latent heat term at phase change may not be captured properly [41, 57, 9]. These difficulties
are not present for our P0-P0 scheme since we handle w = α(θ) in (22) directly without chain rule

The difficulty presented by (i) is avoided by some by considering appropriate smooth approxi-
mations of χPl [31, 16]. For (ii), if the enthalpy wnh = αP (θnh) is interpolated using P1 elements,
certain “spatial” [11, 13] or “temporal” [30] averaging methods are employed, and improve the per-
formance of the scheme over the direct use of (32). Recently, techniques similar to the temporal
averaging were employed in [31, 16] to approximate (χPl )′(θ) in (32), while in [32], χPl is used as
the integrating variable in evaluating mass matrices. In turn, in [51, 27] the enthalpy formulation
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is used, but (αP )′ is approximated with a finite difference approximation. The resulting nonlinear
system of equations is usually solved by the Newton’s or Picard’s method [23, 51, 32, 16].

While some of the above approximations seem natural to implement, the use of chain rule
involving capp is not conservative since αn−αn−1 6= capp(θ

n−θn−1). Further, the use of regularized
SFCs or capp approximations lead to modeling errors.

Our P0-P0 algorithms do not suffer from these issues since the semismooth framework for New-
ton’s method allows us to consider non-smooth SFCs (see Assumption 2.2) without any need for
regularization or chain rule application.

5. Computational Algorithm and Solver

In this section we provide details of solvers for our P0-P0 algorithm (22) in both the temperature
and enthalpy variants, with a solver based on Newton’s iteration. First we provide implementation
details and next we analyze the nonlinear solver, and show that it is robust and efficient.

The standard Kantorovich result for convergence of Newton iteration requires the nonlinearity
to be smooth with Lipschitz continuous derivative [22]. However in the permafrost models and
scheme (22), we only have piecewise-smoothness for the nonlinearities α and β. Thus we work in
the semismooth framework [44, 53] which establishes super-linear or even quadratic convergence
under some assumptions. In practice, we obtain quadratic convergence for an appropriate initial
guess.

Second, nonlinear solvers based on the Newton’s method are well known to be quadratically
convergent but require a good enough initial guess for convergence. For transient problems, this
means the Newton solver may require small time steps for robust convergence. These are frequently
the reasons why researchers consider other schemes, e.g., the L-scheme is considered in [42] for
the Richards’ equation, while recent work on Anderson acceleration improves over Newton’s and
Picard’s methods for stationary problems in [14]. However, we find that accurate simulation of the
dynamics of the free boundary in permafrost (or Stefan problem) requires moderate size time steps
anyway; with these, our solver is robust.

5.1. Implementation details. First we complete (22) by the relationship between W and Θ, the
counterpart of w = αP (θ). Both are solved by iteration until the residuals achieve an absolute
tolerance of 10−12 or a relative tolerance of 10−6 (with respect to the first iteration). Further, we
use adaptive time stepping: at every t = tn, starting with an initial fixed τn = τ , if convergence of
our algorithm is not achieved within mmax = 30 iterations, we repeat the step with reduced time
step τn = τ

2 . If not successful, we continue the reduction further.

Temperature formulation: at each time step tn we seek Θn such that

MαP (Θn) + τnA Θn = τnF
n + MWn−1, (33)

We solve the problem by iteration, with an initial guess Θn,(0) = Θn−1.
In each iteration m = 1, 2, . . ., given Θn,(m−1), we find Θn,(m) as

(P0-P0-Θ)


R(Θn,(m−1)) = MαP (Θn,(m−1)) + τnA Θn,(m−1) −MWn−1 − τnFn, (34a)

(MJ n,(m−1)
α + τnA )δΘn,(m) = −R(Θn,(m−1)), (34b)

Θn,(m) = Θn,(m−1) + δΘn,(m), (34c)

where J
n,(m−1)
α ∈ ∂αP (Θn,(m−1)) is a diagonal matrix. We note that (34b) involves solving a linear

system. Also, ∂αP is the Clarke’s generalized Jacobian defined as the convex hull ∂αP = co(∂Bα
P ),

with the B-subdifferential

∂Bα
P (θ) = {Jα ∈ R | ∃{θk}k ∈ Dα, θk → θ, (αP )′(θk)→ Jα}, (35)

where Dα ⊂ R is the set where αP admits a Fréchet derivative.
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Now we need to state how we make the selection out of ∂αP in our implementation. We use
∂αP (θ) = (αP )′(θ), ∀θ 6= θ∗. Also, we set ∂αP (θ∗) = cu.

Enthalpy formulation: we seek Wn such that

MWn + τnA β(Wn) = τnF
n + MWn−1, (36)

with β = βP or βST . We start with an initial guess Wn,(0) = Wn−1. Next, we consider the enthalpy
formulation (36): in each iteration m, given Wn,(m−1), we find Wn,(m) as follows

(P0-P0-W )


R(Wn,(m−1)) = MWn,(m−1) + τnA β(Wn,(m−1))−MWn−1 − τnFn, (37a)

(M + τnA J
n,(m−1)
β )δWn,(m) = −R(Wn,(m−1)), (37b)

Wn,(m) = Wn,(m−1) + δWn,(m), (37c)

where J
n,(m−1)
β ∈ ∂β(Wn,(m−1)) is Clarke’s generalized Jacobian, a diagonal matrix. In our

implementation, we set ∂βP (w∗) = cu
−1 for permafrost models and ∂βST (0) = 0, ∂βST (L) = cl

−1

for the Stefan problem.
Finally, the algebraic expression for βP in (37a) is not easy to find explicitly, and the use of

look-up tables to invert some piecewise-linear α̃P ≈ αP leads to a modeling error and discrepancy
between the results obtained with P0-P0-Θ and P0-P0-W .

For our numerical experiments, we employ a local nonlinear solver to invert βP (Wn,(m−1)) com-

ponentwise in (37a), i.e., we need to solve αP (Θ
n,(m−1)
ij )−Wn,(m−1)

ij = 0 in every cell ωij . For this

purpose, we choose Ridder’s method [43](Pg. 452) which is known to be very robust; we apply the
same relative and absolute tolerances as those listed above. In our experiments, Ridder’s method
converges within a maximum of 25 iterations and an average of 3 iterations.

5.2. Convergence of solvers P0-P0-Θ and P0-P0-W . Now we demonstrate theoretical results

for our algorithms. For these, we time-lag the conductivity values k̃ = k(θn−1
h ) in (20b).

Lemma 5.1. At each time step n, the sequence {Θn,(m)}m generated by (34) converges quadrati-
cally to the solution Θn of (33) for an appropriate initial guess.

Proof. From Lemma 2.1 J
n,(m−1)
α has positive entries. Moreover, since M is the diagonal ma-

trix of cell volumes, the product MJ
n,(m−1)
α is diagonal and the eigenvalues λ

(
MJ

n,(m−1)
α

)
≥

h2
mincmin. Since A is symmetric positive semidefinite, the Jacobian Jn,(m−1)

α = MJ
n,(m−1)
α +τnA

in (34b) is symmetric positive definite and thus invertible.

Now, since λ
(
Jn,(m−1)
α

)
≥ min

{
λ
(
MJ

n,(m−1)
α

)}
, we have∥∥∥∥(Jn,(m−1)

α

)−1
∥∥∥∥

2

≤ 1

h2
mincmin

. (38)

Finally, since α is order-1 semismooth, we see that the sequence {Θn,(m)}m generated by the
semismooth Newton’s method will converge quadratically for an appropriate initial guess [53](Pg.
31, Prop. 2.18). �

Lemma 5.2. At each time step n, the sequence {Wn,(m)}m generated by (37) converges quadrat-
ically to the solution Wn of (36) for an appropriate initial guess.

Proof. The Jacobian in (37b) is given by

Jn,(m−1)
β = M + τnA J

n,(m−1)
β =

(
I + τnA J

n,(m−1)
β M−1

)
M . (39)

Since A J
n,(m−1)
β M−1 in (39) is not symmetric, we cannot proceed as in the proof of Lemma 5.1.
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Since A is symmetric positive semidefinite and J
n,(m−1)
β M−1 is diagonal with non-negative

entries from Lemma 2.1 and (17), the product A J
n,(m−1)
β M−1 has non-negative eigenvalues.

Hence λ
(
I + τnA J

n,(m−1)
β M−1

)
≥ 1, and consequently

(
I + τnA J

n,(m−1)
β M−1

)
is invertible.

Since Jn,(m−1)
β in (39) is a product of two invertible matrices, it is invertible.

We now apply a result from literature to prove the uniform boundedness of

∥∥∥∥(Jn,(m−1)
β

)−1
∥∥∥∥

1

.

Since A is symmetric and weakly diagonally dominant (see Section 9.2), the product A J
n,(m−1)
β M−1

is also column-wise weakly diagonally dominant since right multiplication of a matrix by a diagonal
matrix scales the columns of the former by the diagonal entries of the latter. Hence from Lemma 9.1
we have∥∥∥∥(Jn,(m−1)

β

)−1
∥∥∥∥

1

≤
∥∥M−1

∥∥
1

∥∥∥∥(I + τnA J
n,(m−1)
β M−1

)−1
∥∥∥∥

1

≤
∥∥M−1

∥∥
1
≤ 1

h2
min

. (40)

Finally, since β is order-1 semismooth, we see that the sequence {Wn,(m)}m converges quadratically
for an appropriate initial guess [53](Pg. 31, Prop 2.18). �

5.3. Local convergence of P0-P0-Θ and P0-P0-W . In Lemmas 5.1 and 5.2 we showed local
convergence of our nonlinear P0-P0 solvers P0-P0-Θ and P0-P0-W for an appropriate initial guess
regardless of which primary variable is used (temperature or enthalpy). Now we compare their
performance, with focus on the magnitude of the time step that guarantees convergence.

We recall that when using the semismooth Newton’s method to seek a solution S∗ to g(S) = 0,
for some g : RI → RI , convergence is guaranteed if the initial guess S0 is in a neighbourhood
Br0(S∗), where r0 > 0 is such that ∀δS, ‖δS‖ < r0, we have

‖g(S + δS)− g(S)−JgδS‖q ≤ (2C)−1‖δS‖q, Jg ∈ ∂g(S + δS), (41)

with C > 0 being the uniform upper bound of the Jacobian ‖Jg
−1‖q ≤ C [53](Prop. 2.7, Eq.

(2.1)), and q ∈ {1, 2}.
In the temperature formulation (33), the nonlinearity is g = αP . For the linear part of αP ,

the left hand side of (41) equals 0, but near θ < θ∗, from (11) (αP )′ is large for SFCs with steep
gradients, i.e., large LχP

l
. Hence, in such cases, we anticipate r0 to be small for (41) to hold near

θ ≈ θ∗. That is, convergence would be guaranteed only if the initial guess is really close to the
solution, or equivalently, we would only expect P0-P0-Θ to converge for small time steps.

On the other hand, in the enthalpy formulation (36), the nonlinearity is g = βP . In this case,
by (15), (βP )′ remains bounded independently of LχP

l
. In fact, (βP )′ decreases near w ≈ w∗ as

LχP
l

increases. Thus we do not need r0 to be too small for (41) to hold, and we expect P0-P0-W

would converge for large time steps.
We illustrate these observations through numerical tests in Section 6.2 and Section 6.3.

6. Numerical Experiments

In this section, we provide numerical experiments to demonstrate the performance of our P0-
P0 algorithm as well as the features of P0-P0-Θ and P0-P0-W solvers. We start with tests of
convergence to verify the theoretical estimates from Section 4. Next, we provide physical per-
mafrost scenarios to test the robustness of our algorithms when handling different SFCs, boundary
conditions, and media heterogeneity.
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ci, cl, cr ki, kl, kr L θ∗
1 1 1 0

Table 3. Parameters used in Example 6.1

Case τ ‖θerr‖∞,2 ‖θerr‖∞,1 ‖θerr‖2,2 ‖werr‖∞,2 ‖werr‖∞,1 ‖werr‖2,2 ‖qerr‖∞,2 ‖qerr‖∞,1 ‖qerr‖2,2
(ST ) O(h) 1.25 1.33 1.23 0.51 1.01 0.50 0.51 0.97 0.50

O(h2) 1.22 1.44 1.23 0.50 1.01 0.49 0.40 0.78 0.50

(P ) O(h) 1.29 1.28 1.11 1.33 1.18 1.11 1.21 1.24 1.16
O(h2) 1.85 1.99 1.85 1.85 2.00 1.84 1.25 1.50 1.24

Table 4. Results for Example 6.1.

6.1. Order of convergence. We now provide convergence studies for permafrost models using
our P0-P0-Θ algorithm. Similar tests were given in [8] for the Stefan problem and θ, w variables.

Here we give the errors for θ, w, and q and in the ‖ · ‖∞,2, ‖ · ‖∞,1 and ‖ · ‖2,2 error norms (see
Section 9.4 for their details). We estimate the orders of convergence using two examples: one with
a known analytical solution and another with a fine grid solution.

For the first example, we consider a non-physical scenario with a known analytical solution
adapted from [54](Example 1). We provide the convergence orders obtained for the Stefan problem
using P0-P0-W.

Example 6.1. Let Ω = (0, 0.4) × (0, 0.2) and S(x, t) = 0, S(x, t) = −x + t + 0.1, be the free
boundary between the frozen and thawed states, with material parameters as in Table 3. In the
first case, we consider the Stefan problem with analytical solution [54](Example 1)

wST =

{
eS − 1; S < 0

2(eS − 1) + 1; S ≥ 0
, θST =

{
eS − 1; S < 0

2(eS − 1); S ≥ 0
, qST =

{
eS ; S < 0

2eS ; S ≥ 0
, (42)

and external source fST = 0. For the second case, we modify (42) to satisfy the permafrost model.
We choose the adapted M SFC with parameters bM = 2, χMres = 0, θM∗ = 0, and a porosity of
η = 0.5. The thermal parameters of the rock material are as in Table 3. The analytical solution is
given by

θP =

{
e2S − 1; S < 0

2(eS − 1); S ≥ 0
, wP =

{
(e2S − 1) + 0.5e2(e2S−1); S < 0

2(eS − 1) + 0.5; S ≥ 0
, qP =

{
2e2S ; S < 0

2eS ; S ≥ 0
, (43a)

with the external source term

fP =

{
2
[
e2(e2S−1) − 1

]
e2S ; S < 0

0; S ≥ 0
. (43b)

It is worthwhile to note that

[qST ]S=0 = 2− 1 = 1 = L
∂S

∂t

∣∣∣
S=0

, (44a)

however

[qP ]S=0 = 2− (2) = 0. (44b)

This difference is in accordance with the fact that qP ∈ Hdiv but qST /∈ Hdiv.
We obtain the errors using grid sizes h ∈ {2, 1, 0.5} × 10−3 and τ = (1.25 × 10−1)h and τ =

(1.5625× 10)h2. The convergence rates are tabulated in Table 4. We seek the order p of the error
O(hp).
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Material c [J/m3 ◦C] k [J/m s ◦C] L [J/m3] θ∗ [◦C] Reference

Liquid water 4.19× 106 0.58 306× 106 0 [45](Section 4)

Ice 1.90× 106 2.30 306× 106 0 [45](Section 4)

Rock grains 2.36× 106 1.95 0 0 [64](Table 1)

Table 5. Thermal parameters of water and rock grains used in this paper.

Model τ ‖θerr‖∞,2 ‖θerr‖∞,1 ‖θerr‖2,2 ‖werr‖∞,2 ‖werr‖∞,1 ‖werr‖2,2 ‖qerr‖∞,2 ‖qerr‖∞,1 ‖qerr‖2,2
Example 6.2 (i)

L O(h) 0.97 0.97 0.96 0.96 0.96 0.95 0.76 1.00 0.92

O(h2) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.98 1.93

W O(h) 0.96 0.96 0.96 0.95 0.95 0.96 0.76 1.00 0.90

O(h2) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.97 1.93

M O(h) 0.96 0.97 0.97 0.98 0.96 0.97 0.76 1.00 0.89
O(h2) 2.01 2.01 2.01 2.00 2.01 2.02 1.53 1.97 1.94

Example 6.2 (ii)

L O(h) 1.34 1.35 1.40 1.46 1.58 1.34 0.95 1.16 1.04
O(h2) 1.08 1.27 1.57 1.39 1.89 1.65 1.01 1.15 1.08

W O(h) 1.69 1.55 1.31 1.38 1.34 1.21 1.08 1.33 1.06
O(h2) 1.60 1.63 1.69 1.56 1.89 1.85 1.16 1.41 1.21

M O(h) 1.52 1.46 1.41 1.55 1.48 1.30 1.05 1.29 1.13

O(h2) 0.98 1.32 1.63 1.62 1.95 1.85 1.13 1.21 1.22

Table 6. Results of Example 9.1 and Example 6.2. Orders of convergence are
obtained using fine grid solution with hfine = 2× 10−3 [cm] and τ fine = 1 [s].

For the permafrost model, we obtain at least p ≈ 1 for θ, w, and q when using τ = O(h); when
τ = O(h2), we obtain order p ∈ [1.8, 2] for θ, w, and order p ∈ [1.25, 1.5] for q. In contrast, for the
Stefan problem, p ≈ 1 for θ and p ≈ 0.5 for w and q regardless when τ = O(h) or O(h2). The higher
orders of convergence in permafrost models is due to the increased regularity of αP compared to
αST .

We consider next a realistic physical scenario, and compute the order of convergence using fine
grid solutions. The permafrost model features a moving thawing front. For reference, we provide
the test for the linear heat equation in Example 9.1 in Section 9.3.1.

Example 6.2. Let Ω = (0, 0.2) [m] be occupied by a soil with porosity η = 0.55 and SFC parameters
as in Table 7. The thermal properties are taken from Table 5. We choose w0 = αP (θ0) and boundary
conditions

θ(0, t) = θ0, θ(0.2, t) = θ0 +
2t

5000
, ∀t > 0, (45)

where (i) θ0 = −4 or (ii) θ0 = −1.5 [◦C]. The simulations are run over t ∈ (0, 5000) [s]. We consider
grid size h ∈ {0.4, 0.2, 0.1}× 10−2 [m] and time step τ = (5× 104)h [s] and τ = (5× 107)h2 [s]. The
results are tabulated in Table 6.

For permafrost models in Example 6.2, in case (i), we obtain order p = 1 and p = 2 for θ, w,
and q when using τ = O(h) and O(h2), respectively. This agrees with the estimate (28) since the
problem is only mildly nonlinear, i.e., the nonlinearity αP is smooth as θ(x, t) < θ∗,∀(x, t) ∈ ΩT . In
case (ii), however, we obtain orders p ≈ 1.2–1.6 for θ, w and p ≈ 1–1.2 for q, when using τ = O(h).
There is only a slight improvement when using τ = O(h2). This is expected since in this case
θ(x, t) > θ∗ for some (x, t) ∈ ΩT : about 5% of the domain completely thaws by the end of the
simulation. Since αP is non-smooth for some time of simulation, we can only expect orders in
accordance with (26).

Summary: We see that using our P0-P0 scheme for permafrost models we see roughly first
order of convergence for both θ, w, and q with τ = O(h) in all norms. In scenarios not involving
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Permafrost model SFC parameters

Adapted L (9a) b = 1.75 [−], θ∗ = −1 [◦C]

Adapted W (9b) b = 5 [◦C], χres = 0 [−], θ∗ = −1 [◦C]

Adapted M (9c) b = 1 [1/◦C], χres = 0 [−], θ∗ = −1 [◦C]

Table 7. SFC parameters used in Example 6.2 and Example 6.3.

phase transition, quadratic order can be obtained as long as τ = O(h2). These rates are better
than for the Stefan problem, where θ is first order convergent, but w only half [8](Section 3.4), and
results are better for weaker norms.

6.2. Robustness of solvers. In this section, we demonstrate robustness of our P0-P0 solvers for
permafrost scenarios with respect to different boundary conditions and domain heterogeneity. In
particular, we compare performance of P0-P0-Θ and P0-P0-W solvers and test their robustness.

6.2.1. Robustness in practical homogeneous scenarios. We start by comparing the performance of
our P0-P0 algorithms in homogeneous permafrost scenarios with physical data.

Example 6.3. Let Ω = (0, 1) [m] with porosity η = 0.55. We consider the SFCs with parameters as
in Table 7. We choose initial conditions w0 = αP (θ0) and consider two sets of boundary conditions:
(i) Dirichlet boundary conditions

θ(0, t) = −5 + 15 sin (2πt) + N , θ(1, t) = −5 [◦C], ∀t > 0, (46a)

and (ii) Neumann boundary conditions

q(0, t) · ν = −0.002 sin (2πt)− 0.0003N , q(1, t) · ν = 0.0001 [J/cm2 s], ∀t > 0, (46b)

where N ∼ N(0, 1) is Gaussian noise added to the signal to replicate the oscillatory nature of field
measured data; see Figure 4 for a plot of boundary conditions (46).

The simulation is run over t ∈ (0, 1) [year]. We choose grid sizes h ∈ {5, 1, 0.2} × 10−2 [m] and
τ ∈ {120, 24, 1} [hr]. The results are given in Tables 14–15, and shown in Figure 4 for h = 10−2 [m].

In both the cases of Dirichlet and Neumann boundary conditions, P0-P0-Θ performs robustly for
all three SFCs with a maximum of 10 and average of 1.6–3.9 iterations. Further, for large τ , some
time step reduction is observed for the adapted L SFC in the Dirichlet case, and for all SFCs in the
Neumann case. Moreover, when using P0-P0-W , for all SFCs the maximum and average iterations
are reduced to 8 and 1.3–3.4, respectively. More importantly, there was no time step reduction for
any SFC.

This example demonstrates that P0-P0-W is more robust than P0-P0-Θ for large time steps.

6.2.2. Robustness in heterogeneous domains. The argument in Section 5.3 shows that the rate of
convergence of our P0-P0 algorithms depends on the data for which (41) holds, which in turn
depends on the SFC. We now test this observation for a heterogeneous SFCs χPl = χPl (x, θ), and
demonstrate the robustness of our P0-P0 algorithms in heterogeneous domains.

Consider the stationary system

W +AΘ = F, W = α(Θ), (47)

where W =

[
W1

W2

]
, Θ =

[
Θ1

Θ2

]
∈ R2, A =

[
2k −k
−k 2k

]
, k > 0, and α : R2 → R2, α(Θ) =

[
α1(Θ1)
α2(Θ2)

]
,

for some semismooth α1, α2 : R→ R, and F ∈ R2 is a constant. The system (47) arises when (22)
is written for Nω = 2 cells; we do not consider (47) to be related to any particular physical scenario.
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Figure 4. Illustrations for Example 6.3. Top row: A plot of the surface temper-
ature corresponding to Dirichlet boundary conditions (46a) (left) and surface flux
corresponding to Neumann boundary conditions (46b) (right). Bottom row: the
maximum number of iterations taken by our P0-P0 algorithms when using Dirichlet
(left) and Neumann (right) boundary conditions. Here h = 10−2 [m].

When using P0-P0-Θ, the Jacobian in (34b) is given by J(m−1)
α = J

(m−1)
α +A, where J

(m−1)
α ∈

∂α(Θ(m−1)) is given by J
(m−1)
α =

[
J

(m−1)
α1 0

0 J
(m−1)
α2

]
, J

(m−1)
αj ∈ ∂αj(Θ(m−1)

j ). Now, substituting

g(Θ) = α(Θ) +AΘ in the left hand side of (41) gives, with δΘ = [δΘ1, δΘ2]T , that

‖α(Θ + δΘ)− α(Θ)−JαδΘ‖2 =

(
2∑
i=1

|αi(Θi + δΘi)− αi(Θi)− JαiδΘi|2
)1/2

, Jαi ∈ ∂αi(Θi + δΘi).

By extending the argument from Section 5.3, if either α1 or α2 features a steep gradient, the
algorithm P0-P0-Θ requires small time steps for convergence. The performance of P0-P0-Θ is
mostly affected by the features of α1 and α2 rather than the heterogeneity α1(Θ) 6= α2(Θ). Similar
reasoning applies to P0-P0-W .

We now illustrate the above with a numerical example.

Example 6.4. Consider the system (47). We choose smooth and semismooth expressions for α1

and α2 and compute the solution corresponding to a given F using our algorithms. We test P0-
P0-Θ and P0-P0-W with respect to different initial guesses Θ0 and W0 = α(Θ0), respectively, and
with respect to different values of k. The expressions of α1 and α2 and the value of F are listed in
Table 8. We also plot α1 and α2 in Figure 5. The results are given in Table 8.

We see that P0-P0-Θ struggles to converge in cases when α1 or α2 has a steep gradient. Further,
for semismooth functions, no convergence of P0-P0-Θ is observed when k is small. When using
P0-P0-W , however, convergence is achieved for all cases with fewer iterations than P0-P0-Θ.
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Figure 5. Illustration for Example 6.4 showing the selected smooth (left) and
semismooth (right) functions α1 and α2 used to compare the performance of our
P0-P0 algorithm. Note the difference in the gradients of the two curves in each plot.

α1(Θ) α2(Θ) F k Θ0 P0-P0-Θ P0-P0-W

Smooth functions Convergence?/Iter. Convergence?/Iter.

Θ3 + Θ Θ3 + Θ [1.5 1]T 1 [1 1]T Yes/4 Yes/4
[6 5]T Yes/7 Yes/5

10−3 [1 1]T Yes/4 Yes/2

[6 5]T Yes/7 Yes/2

Θ3 + Θ Θ7 + 3Θ [1.5 1]T 1 [1 1]T Yes/4 Yes/3

[6 5]T Yes/12 Yes/4
10−3 [1 1]T Yes/4 Yes/2

[6 5]T Yes/12 Yes/1

Θ7 + 3Θ Θ7 + 3Θ [1.5 1]T 1 [1 1]T Yes/4 Yes/3

[6 5]T Yes/13 Yes/3
10−3 [1 1]T Yes/4 Yes/2

[6 5]T Yes/13 Yes/1

Semismooth functions{
Θ + eΘ; Θ < 0

2Θ + 1; Θ ≥ 0

{
Θ + eΘ; Θ < 0

2Θ + 1; Θ ≥ 0
[0.98 0.95]T 1 [−2 − 2.5]T Yes/3 Yes/3

[3 2]T Yes/2 Yes/2

10−3 [−2 − 2.5]T Yes/3 Yes/2
[3 2]T Yes/2 Yes/1{

Θ + eΘ; Θ < 0

2Θ + 1; Θ ≥ 0

{
Θ + e10Θ; Θ < 0

Θ + 1; Θ ≥ 0
[0.98 0.95]T 1 [−2 − 2.5]T Yes/5 Yes/4

[3 2]T Yes/4 Yes/3
10−3 [−2 − 2.5]T No Yes/2

[3 2]T No Yes/2{
Θ + e10Θ; Θ < 0

Θ + 1; Θ ≥ 0

{
Θ + e10Θ; Θ < 0

Θ + 1; Θ ≥ 0
[0.98 0.95]T 1 [−2 − 2.5]T Yes/5 Yes/4

[3 2]T Yes/4 Yes/3

10−3 [−2 − 2.5]T No Yes/2
[3 2]T No Yes/2

Table 8. Results for Example 6.4 show that the performance of our P0-P0 algo-
rithm appears to depend on the steepness of gradient of α1 or α2 rather than the
heterogeneity represented by α1(Θ) 6= α2(Θ).

Summary: Our P0-P0 algorithms appear to perform robustly in heterogeneous permafrost sce-
narios regardless of the boundary conditions or SFC expressions used. We also see that P0-P0-W
performs better than P0-P0-Θ with fewer iterations and time step reductions. In particular, a time
step of 1–120 [hr] for a grid size of 0.2 × 10−2–5 × 10−2 [m] appears to suffice for convergence in
practical permafrost scenarios.
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Subdomain SFC parameters

Ω(1) = (0, 0.2) [m] b = 0.42, θ∗ = −0.002, η = 0.56

Ω(2) = (0.2, 0.4) [m] b = 0.81, θ∗ = −0.03, η = 0.46

Ω(3) = (0.4, 40) [m] b = 1.43, θ∗ = −0.05, η = 0.51
Table 9. SFC parameters used in Example 6.5. Here we use the adapted L SFC
given by (9a).

6.3. Physically realistic simulations. We now test the application of our P0-P0 scheme in
heterogeneous permafrost scenarios with physical data. First, in Section 6.3.1, we consider hetero-
geneity, i.e., multiple soil types, with data measured in Alaska. Next, in Section 6.3.2 we consider
heterogeneity due to an ice wedge in d = 1 and d = 2. We see that our P0-P0 algorithms apply
well in such scenarios, and we reconfirm the advantages of P0-P0-W over P0-P0-Θ.

6.3.1. Utqiagvik, Alaska. In this example, we use the data measured at Utqiagvik, Alaska (formerly
known as Barrow). The data is taken from Permafrost Laboratory, University of Alaska, Fairbanks
[2], and the Circumpolar Active Layer Monitoring Program [10, 1]. The purpose of our simulation
is not to exactly replicate the measured temperature values but to show the robustness of our
algorithms when handling heterogeneity and physical data. For that reason, we ignore additional
factors such as the dependence of the thermal soil properties on the temperature or the effects of
snow on the ground surface.

Data description and calibration: At Utqiagvik, we use data from two different sites: water
fraction data from NGEE Barrow C and ground surface temperature from Barrow 2 (N. Meadow
Lake No.2 / NML-2) [2]; see Figure 6 for a plot of the ground surface temperature. The two sites
are roughly 3.8 [km] apart and have available recorded data from 2012–2018. The yearly active
layer depth data is taken from [10, 1] Barrow CRREL plots from 2013–2018 which is measured
between mid August to September, when the thaw depth is the maximum [10](Pg. 169).

We calibrate the adapted L SFC using the available daily water fraction data from 2012–2013 at
depths of 0.15, 0.30, and 0.42 [m]. The obtained SFC parameters are tabulated in Table 9.

Example 6.5. Let Ω = (0, 40) [m] be partitioned into subdomains Ω(1) = (0, 0.2),Ω(2) = (0.2, 0.4),

and Ω(3) = (0.4, 40), where each Ω(j), 1 ≤ j ≤ 3 is occupied with a soil type with SFC parameters
as in Table 9. We use Dirichlet boundary conditions at x = 0 corresponding to the available surface
temperature data from 06/01/2013− 06/01/2018 and Neumann boundary conditions

q(40, t) · ν = −0.0565 [J/m2 s], ∀t > 0, (48)

corresponding to the constant geothermal flux [23].

We choose a non-uniform grid with grid size h = 10−2 [m] in (0, 2) [m] and h = 0.2 [m] in
(2, 40) [m], and an initial time step of τ = 24 [hr].

An interesting question concerns an initial condition, since it should reflect a physically realistic
distribution. We calculate the initial condition by using the surface temperature from 06/01/2012–
06/01/2013 by following a procedure similar to [23]: we first choose a uniform initial temperature
profile −9 [◦C] and compute the steady state solution by using the Dirichlet surface temperature
value on 06/01/2012 and Neumann condition (48). Using the steady state solution as an initial
condition, we further simulate the temperature profile at the end of 3 years by periodically extending
the surface temperature data from 06/01/2012–06/01/2013 and using it as the Dirichlet surface
boundary condition along with the Neumann condition (48). The temperature profile at the end
of the 3 year simulation is shown in Figure 6: we choose this to be our initial temperature profile
for the simulation from 01/06/2013–06/01/2018.
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Figure 6. Illustration for Example 6.5 showing the measured ground surface tem-
perature (left) and the initial temperature profile (right) used in the simulation.

Figure 7. Results for Example 6.5. Measured and simulated temperature at a
depth of approximately 1 [m] (left), simulated flux at the ground surface (middle),
and simulated and measured thaw depth (right).

We first run the simulation with P0-P0-Θ solver. At the end of the simulation, we compare the
measured and simulated temperature at a depth of 1 [m]. The results are shown in Figure 7. A
maximum difference of maxt |θsimulated(t) − θmeasured(t)| ≈ 1.13 [◦C] was obtained at a depth of
x ≈ 1 [m]. We also compute the location of the 0 [◦C] isotherm to compute the maximum thaw
depth. A good qualitative agreement was observed between the measured and simulated values;
see Figure 7.

We now discuss the performance of the solvers in this challenging case with heterogeneity of the
soil and the quickly varying surface temperature data. Figure 8 shows the time step reduction and
iteration count during the simulation.

For P0-P0-Θ solver, the time step is reduced to a minimum of τ = 0.04 [s]. With this reduction,
maximum of 28 iterations were taken throughout the simulation, with an average of 2.7.

We next re-run the simulation using P0-P0-W . Now there are only 13 maximum iterations, with
average 2.0. Most importantly, there is no time step reduction during the simulation; see Figure 8.

6.3.2. Ice wedge modeling. In this example, we model the inclusion of ice and rock wedges in
permafrost. We begin with a d = 1 example with an ice wedge modeled with different approaches
discussed in Section 2.2.1. Next we continue with a d = 2 example replacing the ice wedge with a
soil, or with solid rock.

Example 6.6. Let Ω = (0, 2) [m]. Let Ω(1) = (0, 0.2) be occupied by an organic mineral soil

mixture, Ω(2) = (0.2, 1.5) be occupied by ice, and Ω(3) = (1.5, 2) be occupied by a mineral soil. The
SFCs and thermal parameters are listed in Table 10 and shown in Figure 9. We choose an initial
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Figure 8. Performance of our P0-P0 algorithms in Example 6.5. Left: when P0-
P0-Θ is used, the time step is reduced even down to O(10−2) [s], whereas using
P0-P0-W requires no time step reduction. Right: iteration counts show that P0-
P0-W takes fewer iterations than P0-P0-Θ for convergence.

condition corresponding to θ0 = −5 [◦C] and boundary conditions

θ(0, t) = θs(t) + 3t, θ(2, t) = −5, ∀t > 0, (49)

where θs is the surface temperature (46a) (periodically extended over 3 years) and 3t represents an
additional warming scenario. A plot of the surface temperature (49) is shown in Figure 9.

The simulation is run over t ∈ (0, 3) [year] (1 [year]=365 [day]) using different grid sizes h ∈
{1.25, 2.5, 5} × 10−2 [m] and time steps τ ∈ {120, 24, 1} [hr]. With P0-P0-Θ, we consider the

two approximations α̃ST = α̃, αP shown in Figure 3. We distinguish the corresponding numerical
solutions by appropriate superscripts; e.g., θα̃ denotes the temperature obtained using P0-P0-Θ

with α̃ST = α̃ and θβ
ST

using P0-P0-W .
The temperature and water fraction profiles at t ≈ 0.25, 1.25 and 2.25 [year] are shown in

Figure 10 when using h = 1.25× 10−2 [m]. A maximum thaw depth of ≈ 0.53 [m] was observed at
the end of the simulation. The thawing front is captured most accurately by P0-P0-W , since no
regularization or approximation of χSTl is used in this case. Comparing to P0-P0-Θ, a maximum

difference of maxx | θα
P

(x, t) − θβST
(x, t) |≈ 0.12 [◦C] and maxx | θα̃(x, t) − θβST

(x, t) |≈ 0.77 [◦C]
occured near ground surface at x = 0 and at t ≈ 2.25 (the time of the maximum ground surface
temperature). We conclude that αP and α̃ serve as an effective and accurate approximation of
χSTl when used in soil-ice wedge scenarios.

We now compare the performance of the solvers for this complex case. Table 11 shows that with
P0-P0-Θ, the approximations αPl and α̃ perform similarly. For αP a maximum of 19 and average
of 2.1–4.1 iterations are taken, whereas for α̃ a maximum of 26 and average of 1.6–1.9 iterations
are taken. Further, time step reductions were observed down till O(10−1) [s] for αP and O(1) [s]
for α̃. This is expected due to the high gradients of the approximations αP and α̃. However, when
using P0-P0-W , a maximum of 9 and average of 1.5–3.2 iterations are taken. Further, time step
reduction was only observed for the high value of τ0 = 120; even then the time step was only
reduced till O(10) [hr].

Finally we consider a 2D example for ice wedge modeling. We focus on the features of het-
erogeneity, thus we use constant rather than time-varying boundary conditions. The example is
designed to show how easy it is to consider different scenarios, geometries, and rock types with our
robust P0-P0 algorithms. In fact, we are able to model the ice domain as (5) with αP , kP given
with η = 1, and the solid rock domain with η = 0, L = 0.
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Soil type SFC and thermal parameters Reference

Organic mineral mixture b = 0.6, θ∗ = −0.05, η = 0.50 [31](Table 1)

cr = 1.750× 106 [J/m3 ◦C], kr = 0.692 [J/m s ◦C] [16](Table A.3)

Mineral b = 0.5, θ∗ = −0.1, η = 0.40 [31](Table 1)
cr = 2.385× 106 [J/m3 ◦C], kr = 2.92 [J/m s ◦C] [61](Pg. 90, Table 4.1)

Table 10. SFC and thermal parameters used in Example 6.6. Here we use the
adapted L SFC given by (9a). A plot of the SFCs is shown in Figure 9.

Figure 9. Illustration for Example 6.6. Left: SFCs of the different soil types
used in the example. The parameters are taken from Table 10. Right: the surface
temperature (49) used in the simulation clearly showing the warming trend.

Ice wedge model h [cm] τ [hr] Max/min/mean iter. τ reduced?

P0-P0-Θ

χP
l , α

P 5 120 13/1/3.7 τ ≈ 0.41 [s]

24 9/1/3.0 τ ≈ 0.65 [s]
1 4/1/2.1 τ ≈ 0.87 [s]

2.5 120 9/1/3.9 τ ≈ 1.6 [s]

24 13/1/3.3 τ ≈ 1.3 [s]
1 4/1/2.3 τ ≈ 1.7 [s]

1.25 120 18/1/4.1 τ ≈ 0.41 [s]
24 19/1/3.5 τ ≈ 1.3 [s]
1 4/1/2.4 τ ≈ 1.7 [s]

χ̃l, α̃ 5 120 11/1/1.9 τ ≈ 13.1 [s]
24 7/1/1.9 τ ≈ 5.2 [s]

1 4/1/1.6 τ ≈ 3.5 [s]
2.5 120 26/1/1.9 τ = 6.5 [s]

24 7/1/1.9 τ ≈ 5.2 [s]
1 4/1/1.7 τ ≈ 7.0 [s]

1.25 120 16/1/1.8 τ ≈ 3.2 [s]

24 9/1/1.9 τ ≈ 5.2 [s]
1 4/1/1.7 τ = 1.7 [s]

P0-P0-W

χST
l , βST 5 120 8/1/2.5 No

24 6/1/1.8 No

1 3/1/1.5 No

2.5 120 8/1/2.8 τ = 60 [hr]
24 8/1/2.0 No

1 4/1/1.5 No
1.25 120 9/1/3.2 τ = 30 [hr]

24 9/1/2.2 No

1 4/1/1.5 No

Table 11. Results for Example 6.6 comparing the performance of our P0-P0 algo-
rithms. Note that P0-P0-W takes fewer iterations than P0-P0-Θ and converges for
larger time steps.
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Figure 10. Results for Example 6.6 showing the temperature (left) and water frac-
tion (right) at different times corresponding to the different model approximations
to the ice wedge. Here h = 1.25× 10−2 [m].

Example 6.7. Let Ω = (0, 1) × (0, 1.2)[m2] be partitioned to three material subdomains shown

in Figure 11 (top left), with the layout summarized in Table 12. The subdomains Ω(1) and Ω(3)

are occupied by soil types S1 and S2. For Ω(2), we consider three different scenarios. The ice
wedge case (A) features ice in Ω(2), with η = 1 (no rock). This case is compared to (B) where soil

type 2 is assigned to Ω(2), and case (C) when Ω(2) is occupied by solid rock (e.g., a boulder) with
η = 0, b = 0, L = 0, ηres = 0. The thermal parameters for all materials are in Table 5, and the SFC
using model M (9c) in Table 12.

We consider constant initial conditions θinit = −10 [◦C] and a constant Dirichlet boundary
condition θ = 10 on y = 1.2. On the boundaries x = 0, x = 1, and y = 1.2 we consider the no-flux
conditions q · ν = 0. We choose a spatial grid of 100× 120 elements and a time step τ = 12[hr]. We
use θ as a primary unknown, since the case is only mildly challenging.

The simulation is run over t ∈ (0, 1) [year], with results presented in Figures 11–12.

The plots in Figures 11–12 show complex profiles of evolving θ and water fraction χl. We see that
θ is continuous across material interfaces, but that the water fraction χl features a sharp contrast
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Material η L θres b

S1 0.5 Lw 0.21 0.16

S2 0.2 Lw 0.21 0.16

Ice wedge 1 Lw 0.01 2
Solid rock 0 0 0 0

Case Ω(1),Ω(2),Ω(3) Min,Maxx∈Ωχ(x, T ) Newton iter.

A S1,Ice,S2 0,1 4(5).
B S1,S2,S2 0.2986,1 3(5)
C S1,Rock,S2 0.3114,1 4(5)

Table 12. Definition of Cases A-B-C in Example 6.7, with SFC parameters used
in the adapted M model given by (9c). Top: data. Bottom: simulation results for
Example 6.7.

across material interfaces. In addition, as expected, the ice wedge in case (A) thaws the slowest,
while χl|Ω(2) is meaningless in case C and is not plotted.

As concerns solver, the solver P0-P0-Θ is quite robust for this general d = 2 case. With the time
steps of half-day chosen for accurate dynamics, the solver requires only about 2-4 iterations and
no time step cutting. After thawing is initiated, the time step can easily be increased. We do not
report more details for brevity.

Summary: The numerical experiments provided in this section further demonstrate the robustness
of our P0-P0 algorithms in practical heterogeneous domains. As observed in Section 6.2, we see
that P0-P0-W converges with fewer iterations and minimal time step reductions when compared to
P0-P0-Θ. However, it requires additional iterations of Ridder’s iteration per each cell. This set-up
due to its robustness may be more advantageous especially for large domains where the cost of
linear solver needed in each iteration of P0-P0-Θ easily outweighs the cost of Ridder’s iterations.

7. Summary and Conclusions

In this paper we presented and analyzed a robust algorithm to model heat conduction in per-
mafrost scenarios based on lowest order mixed finite elements and the semismooth Newton’s solver.
We demonstrated convergence and tested its robustness for realistic permafrost applications.

In particular, we verified the optimal order of convergence of our schemes as suggested by the
literature results for similar problems.

We also investigated the advantages of the enthalpy formulation over the temperature formula-
tion, with two variants of nonlinear solver, respectively, called P0-P0-Θ and P0-P0-W . We proved
their convergence based on the analysis of the properties of the nonlinear temperature-enthalpy
relationships αP and its inverse, βP . In the end, the algorithm P0-P0-W using enthalpy as primary
unknown is more robust, but it requires an additional local nonlinear solver. However it (i) does
not require any regularization of α, even in scenarios involving SFCs with steep gradients or ice
wedges, and it (ii) converges for large time steps.

We further demonstrated robustness of our P0-P0 algorithms in different permafrost scenarios
including those with extreme heterogeneity due to multiple soil types or ice or rock wedges. More-
over, our P0-P0 algorithms are conservative and consistent in contrast to other schemes frequently
used in literature which employ the “apparent heat capacity technique”.
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Figure 11. Simulation set-up and results for Example 6.7. Left column: sketch of
the domains (top), and temperature plot for case (A). Middle and right columns:
θ(0.5, y, t), χl(0.5, y, t) at t = 1[y] (top), and t = 0.5[y] (bottom) for cases A, B, C.
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9. Appendix

9.1. Weighting of kr, kl, ki in kP . To obtain kP (x, θ), one has to weigh kr, kl, ki depending on the
local geometry of pore space or at least the proportions of rock, liquid, and ice within the pores.
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Figure 12. Simulation results for Example 6.7. Profiles of θ (top), and χ (bottom)
at t = 1[y]. Visible is continuity of temperature, and discontinuity of water fraction.

In particular, one of the following three expressions can be employed

kA = kAu χ
P
l + kAf (1− χPl ), kAu = ηkl + (1− η)kr, k

A
f = ηki + (1− η)kr, (50a)

kG = (kGu )χ
P
l (kGf )1−χP

l , kGu = kl
ηkr

1−η, kGf = ki
ηkr

1−η, (50b)

kH =

(
χPl
kHu

+
1− χPl
kHf

)−1

, kHu =

(
η

kl
+

1− η
kr

)−1

, kHf =

(
η

ki
+

1− η
kr

)−1

, (50c)

representing the arithmetic (50a), geometric (50b), and harmonic (50c) average.
In general, upscaling should be used; see [40] for comparisons of kA, kG, kH . In d = 1 upscaled

values are the same as harmonically weighted. In this paper, we use harmonic averaging (50c) in
our numerical tests and simulations. Based on Assumption 2.1, we have the uniform bounds

kmin ≤ kH(x, θ) ≤ kG(x, θ) ≤ kA(x, θ) ≤ kmax, ∀x ∈ Ω, θ ∈ R. (51)
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9.2. Auxiliary properties of the matrices M ,B, K̃ and A . We now state some useful proper-

ties of the matrices M ,B, K̃ −1 and A introduced in Section 3. The matrix M is a diagonal matrix
of the cell-volumes of T h. We refer the reader to [8](Section 3.1, Section 7.5) and [39](Section 3.1,

Eq. (15)) for the complete details of B and K̃ , and here we only state that B is a constant matrix

with each column having at most two nonzero entries ∈ {−1, 1} and the matrix K̃ is a diagonal
matrix of the transmissibilities associated with each edge of T h. For example, the transmissibility
Ti+ 1

2
,j associated with γi+ 1

2
,j is defined as

Ti+ 1
2
,j = hy,j

(
1

2
hx,ik̃

−1
i,j +

1

2
hx,i+1k̃

−1
i+1,j

)−1

, (52)

so that with ψh = ψi+ 1
2
,j in (20b) we get

hy,jQ
n
i+ 1

2
,j

= −Ti+ 1
2
,j(Θ

n
i+1,j −Θn

i,j). (53)

The right hand side of (53) also explains how the nonzero entries of B are ∈ {−1, 1}.
The matrix A = BK̃−1BT is at least symmetric positive definite (SPD) (and at least positive

semidefinite for Neumann boundary conditions). We will now show that A is weakly diagonal
dominant (see Lemma 9.1 for the definition). Consider a cell ωi,j ∈ T h. For simplicity of exposition,
we let ωi,j be an interior cell. Then, using the basis functions ηh = 1i,j and ψh = ψi± 1

2
,j , ψi,j± 1

2

in (20) gives

hx,ihy,kW
n
i,j + τn[Ti+ 1

2
,j(Θ

n
i,j −Θn

i+1,j) + Ti− 1
2
,j(Θ

n
i,j −Θn
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2
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2
(Θn
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n−1
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Or,

hx,ihy,kW
n
i,j + τn

(
Ti− 1

2
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2
+ Ti+ 1

2
,j + Ti,j− 1

2

)
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(
−Ti+ 1

2
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Comparing (55) with the (22), we establish that the row of A corresponding to the degree of
freedom Θn

i,j has the entries{(
Ti− 1

2
,j + Ti,j+ 1

2
+ Ti+ 1

2
,j + Ti,j− 1

2

)
,−Ti+ 1

2
,j ,−Ti− 1

2
,j ,−Ti,j+ 1

2
,−Ti,j− 1

2

}
, (56)

with the first entry in (56) being the diagonal entry. This proves that A is row-wise weakly
diagonally dominant. Since A is symmetric, it is also column-wise weakly diagonally dominant.

We will use of the following result on weakly diagonally dominant matrices from [15](Thm. A.2).

Lemma 9.1. Let X ∈ RI × RI be a column-wise weakly diagonally dominant with non-negative
main diagonal and non-positive off-diagonal elements, i.e.,

Xj,j ≥
I∑

i=1,i 6=j
|Xi,j |, ∀1 ≤ j ≤ I,

Xj,j ≥ 0, ∀1 ≤ j ≤ I, Xi,j ≤ 0, ∀1 ≤ i, j ≤ I, i 6= j.

Then ‖(I +X)−1‖1 ≤ 1.

9.3. Supplemental data. In this section, we provide information for the narrative in Section 6.
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Case τ ‖θerr‖∞,2 ‖θerr‖∞,1 ‖θerr‖2,2 ‖werr‖∞,2 ‖werr‖∞,1 ‖werr‖2,2 ‖qerr‖∞,2 ‖qerr‖∞,1 ‖qerr‖2,2
Example 9.1

Linear O(h) 0.99 0.99 0.99 0.99 0.99 0.99 0.76 1.00 0.97
heat O(h2) 1.99 1.99 1.99 1.99 1.99 1.99 1.52 1.99 1.92

Table 13. Results of Example 9.1. Orders of convergence are obtained using fine
grid solution computed using hfine = 2× 10−3 [cm] and τ fine = 1 [s].

Model h [cm] τ [hr] P0-P0-Θ P0-P0-W

Max/min/mean iter. τ reduced? Max/min/mean iter. τ reduced?

Adapted L 5 120 10/1/2.6 No 7/1/2.2 No

24 5/1/2.4 ≈ 0.18 [hr] 5/1/2.0 No
1 4/1/2.0 ≈ 0.12 [hr] 3/1/1.8 No

1 120 10/1/2.3 No 7/1/2.1 No

24 6/1/2.3 No 8/1/1.9 No
1 4/1/2.0 No 3/1/1.7 No

0.2 120 10/1/2.1 No 6/1/2.2 No

24 6/1/2.0 No 7/1/1.9 No
1 4/1/1.8 No 3/1/1.4 No

Adapted W 5 120 7/2/2.7 No 6/1/2.1 No
24 5/2/2.8 No 4/1/2.0 No
1 5/2/3.3 No 3/1/2.1 No

1 120 6/1/2.4 No 7/1/2.0 No
24 6/1/2.4 No 7/1/1.9 No
1 5/2/3.0 No 4/1/2.1 No

0.2 120 6/1/2.2 No 6/1/2.1 No
24 6/1/2.1 No 7/1/1.9 No
1 5/2/2.7 No 4/1/2.0 No

Adapted M 5 120 7/1/2.4 No 7/1/2.1 No
24 5/1/2.0 No 5/1/1.8 No
1 4/1/1.8 No 3/1/1.5 No

1 120 7/1/2.1 No 7/1/2.0 No
24 5/1/1.9 No 7/1/1.7 No
1 4/1/1.7 No 4/1/1.4 No

0.2 120 7/1/2.0 No 6/1/2.1 No
24 6/1/1.8 No 7/1/1.7 No

1 4/1/1.6 No 4/1/1.3 No

Table 14. Results for Example 6.3 (i) when Dirichlet boundary conditions are used.

9.3.1. Orders of convergence for the linear heat equation.

Example 9.1. Let Ω = (0, 0.2) [m] be occupied with water with material properties as in Table 5.
We choose the initial condition w0 = αST (θ0), θ0 = −4 [◦C] and boundary conditions

θ(0, t) = θ0, θ(0.2, t) = θ0 +
2t

5000
, ∀t > 0. (57)

The simulations in Example 6.2 are run over t ∈ (0, 5000) [s]. We consider grid size h ∈
{0.4, 0.2, 0.1} × 10−2 [m] and time step τ = (5× 104)h [s] and τ = (5× 107)h2 [s]. The results are
tabulated in Table 13.

We obtain order 1 and 2 convergence for θ, w and q when using τ = O(h) and O(h2), respectively.
This is in accordance with the estimates (23).

9.3.2. Robustness of our P0-P0 algorithms in homogeneous permafrost scenarios. Here we provide
the results for Example 6.3. For the case when Dirichlet and Neumann boundary conditions are
used, the results are tabulated in Table 14 and Table 15, respectively.
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Model h [cm] τ [hr] P0-P0-Θ P0-P0-W

Max/min/mean iter. τ reduced? Max/min/mean iter. τ reduced?

Adapted L 5 120 5/2/3.3 ≈ 0.4 [hr] 4/2/2.8 No
24 4/1/2.7 ≈ 1.5 [hr] 4/1/2.0 No

1 4/1/1.9 0.5 [hr] 2/1/1.9 No
1 120 5/2/3.5 ≈ 1.8 [hr] 6/2/3.2 No

24 5/1/2.8 No 5/1/2.3 No

1 4/1/1.9 No 3/1/1.7 No
0.2 120 7/2/3.6 7.5 [hr] 7/2/3.4 No

24 5/1/2.9 No 5/1/2.5 No

1 4/1/2.1 No 4/1/1.9 No

Adapted W 5 120 6/1/3.6 60 [hr] 4/1/2.7 No
24 4/1/3.2 12 [hr] 3/1/2.2 No
1 5/1/3.5 No 3/1/1.9 No

1 120 7/1/3.7 12 [hr] 6/1/3.0 No
24 6/1/3.4 No 5/1/2.6 No
1 5/1/3.5 No 3/1/2.2 No

0.2 120 7/1/3.9 No 6/1/3.1 No
24 6/1/3.5 No 5/1/2.7 No
1 6/1/3.7 No 4/1/2.7 No

Adapted M 5 120 5/1/3.0 No 4/1/2.5 No

24 4/1/2.6 3 [hr] 4/1/2.0 No
1 4/1/1.8 No 2/1/1.8 No

1 120 5/1/3.0 3 [hr] 5/1/2.8 No

24 5/1/2.7 12 [hr] 5/1/2.3 No
1 4/1/1.9 No 3/1/1.9 No

0.2 120 6/1/3.1 No 6/1/3.0 No

24 5/1/2.8 12 [hr] 6/1/2.4 No
1 4/1/1.9 No 4/1/1.9 No

Table 15. Results for Example 6.3 (ii) when Neumann boundary conditions are used.

9.4. Error norms. We use the following formulas to compute the integrals in the error norms

(f, g) =

Nω∑
j=1

f(xj)g(xj)hj , (58a)

‖f‖2,2 =

(
N∑
n=1

τn‖f(·, tn)‖22

) 1
2

, ‖f(·, tn)‖2 =

Nω∑
j=1

hj |f(xj , tn)|2
 1

2

, (58b)

‖f‖∞,q = max
1≤n≤N


Nω∑
j=1

hj |f(xj , tn)|q
 1

q

 , q ∈ {1, 2}, (58c)

where xj ∈ ωj is the center of the cell ωj and hj = |ωj | is the size of the cell.
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