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FLOW AND TRANSPORT WHEN SCALES ARE NOT

SEPARATED: NUMERICAL ANALYSIS AND SIMULATIONS OF

MICRO- AND MACRO-MODELS
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(Communicated by Hilbert)

Abstract. In this paper, we consider an upscaled model describing the multiscale flow of a
single-phase incompressible fluid and transport of a dissolved chemical by advection and diffusion
through a heterogeneous porous medium. Unlike traditional homogenization or volume averaging
techniques, we do not assume a good separation of scales. The new model includes as special cases
both the classical homogenized model and the double porosity model, but it is characterized by the
presence of additional memory terms which describe the effects of local advective transport as well

as diffusion. We study the mathematical properties of the memory (convolution) kernels presented
in the model and perform rigorous stability analysis of the numerical method to discretize the
upscaled model. Some numerical results will be presented to validate the upscaled model and to
show the quantitative significance of each memory term in different regimes of flow and transport.

Key words. upscaled model, double-porosity, memory terms, solute transport, non-separated
scale, stability

1. Introduction

We are concerned with advection-diffusion-dispersion equations when studying
the flow of a single-phase incompressible fluid and transport of contaminant through
heterogeneous porous media. The heterogeneities are represented by two different
porous materials. In particular, we do not assume a good separation of scales.
In [15], Peszyńska and Showalter derived a discrete version of the double-porosity
model with various memory (convolution) terms for the coupled flow-transport
equation without assuming a well-defined separation of scales in the porous medium.
This model has been numerically studied in [20], where different tailing effects due to
the memory terms were observed and the quantitative significance of each memory
term in different regimes of flow and transport was studied. However, no analysis
for the numerical methods used for the upscaled model was presented in [20]. The
main purpose of this paper is to present a rigorous mathematical analysis of the
numerical methods that are used to discretize the upscaled model proposed in [15].

For the numerical discretization of the upscaled model with convolution terms,
we used the cell-centered finite difference (CCFD) method combined with the prod-
uct integration rule for the convolution terms in which both the primary and sec-
ondary advection terms are approximated using the upwind method. Moreover,
the (primary) advection was treated explicitly while the (primary) diffusion and all
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by the National Science Foundation under Grant DMS-0511190 R.E. Showalter was partially
supported by the U.S. Department of Energy, Office of Science under Award 98089 and Award
9001997.

1



2 M. PESZYŃSKA, R.E. SHOWALTER, AND S.-Y. YI

of the memory terms are treated implicitly in time. Our stability analysis will be
given only for the 1d version of the upscaled model.

Known results on numerical analysis of integro-partial differential equations and
more general problems with memory terms include those in [18, 9, 10, 19, 12, 11].
All of these papers deal with memory terms of the form β ∗ Lu, where L is a self-
adjoint spatial differential operator. Moreover, all but [10] assume that the kernels
β are bounded and monotone. On the other hand, in [13], Peszyńska considered
a weakly singular memory term of the form β ∗ ut in a parabolic equation with a
self-adjoint elliptic part. Later, in [14], she also considered a memory term with
weakly singular β in a first order hyperbolic equation.

For our analysis, we first investigate the qualitative behavior of the convolution
kernels present in our model. We carefully represent the kernels in series repre-
sentations and study their qualitative properties analytically. Unlike the monotone
double-porosity and secondary advection kernels, the secondary diffusion kernel is
found to be only piecewise monotone. Our mathematical findings on the properties
of the convolution kernels will be confirmed numerically.

Using some assumptions on the convolution kernels based on the above findings,
we perform stability analysis of our numerical methods for the upscaled model.
First, we perform von-Neumann analysis for the upscaled model defined on an
infinite domain R. We study a simple version of the problem with only the double-
porosity term first, then include additional memory terms, i.e., the secondary ad-
vection and secondary diffusion terms, one by one. It is shown that the upwind-
memory scheme we employ for our 1d upscaled model with all memory terms is
(ultra-) weakly stable. We also discuss stability using the method of lines (MOL).

The rest of the paper is organized as follows: in Section 2, we describe the model
problem for a heterogeneous system with combined fast and slow flow regimes.
Then, in Section 3, we present the upscaled model with various memory terms for
the coupled flow-transport equation that was developed in [15]. In Section 4, we
investigate the qualitative properties of the memory kernels using Fourier series
representations. Section 5 is devoted to stability analysis of the numerical dis-
cretization of the upscaled model using von-Neumann stability analysis and MOL.
Finally, in Section 6, we present some numerical results.

2. The Model Problem

Let Ω be a two-dimensional heterogeneous porous medium containing two dis-
joint flow regimes. The subscripts f and s are associated with the fast and slow re-
gions Ωf and Ωs, respectively. These are disjoint open sets covering Ω, Ω = Ωf∪Ωs,
with an interface Γfs = ∂Ωf ∩∂Ωs. The region Ωf is connected, but Ωs = ∪Nincl

i=1 Ωis
is a union of disjoint connected regions Ωis.

Assume that Ω is covered by a union of rectangular subdomains Ωi, i = 1, . . . , Nincl,
with each Ωi containing exactly one inclusion Ωis. Let Ωif = Ωi ∩ Ωf be the fast
part surrounding Ωis and let Γi = ∂Ωis ∩ ∂Ωif denote the local interfaces so that
Ωi = Ωis ∪ Ωif ∪ Γi and Γfs = ∪iΓi. Let us assume that each Ωi is congruent to
a generic cell Ω0 which contains the fast flow region Ω0f surrounding the slow flow

region Ω0s. We also denote the volume fraction of the fast part by θf =
|Ω0f |
|Ω0|

and

analogously θs =
|Ω0s|
|Ω0|

= 1− θf .

Now, we describe the microscopic model of the flow and solute transport in the
heterogeneous porous medium, with porosity and permeability discontinuous across



MULTISCALE FLOW AND TRANSPORT 3

the interface Γi. The flow is described by conservation of mass and Darcy’s law:

∇ · vf = 0, vf = −Kf∇pf , x ∈ Ωf ,(1a)

∇ · vi = 0, vi = −Ks∇pi, x ∈ Ωis, i = 1, . . . , Nincl,(1b)

pi = pf , vi · n = vf · n, x ∈ Γi,(1c)

where v and p are the velocity and the pressure of the flow, respectively. The coef-
ficient K is the permeability of the porous medium. The solute transport equation
is an advection-diffusion-dispersion system

φf
∂uf
∂t

−∇ · (Df∇uf − vfuf ) = 0, x ∈ Ωf ,(2a)

φi
∂ui
∂t

−∇ · (Di∇ui − viui) = 0, x ∈ Ωis, i = 1, . . . , Nincl,(2b)

ui = uf , (Df∇uf − vfuf) · n = (Di∇ui − viui) · n, x ∈ Γi.

(2c)

Here, u is the solute concentration and φ is the porosity of the medium. The
diffusion-dispersion tensor in each region has the form

(3) D = D(v) ≡ φ [dmI+ |v|(dlE(v) + dt(I−E(v)))] .

Here, dm, dl, dt are coefficients of molecular diffusivity, longitudinal and transversal
dispersivity, respectively, and the dispersion tensor E(v) = 1

|v|2 vivj is a rank two
tensor.

3. The Upscaled Coupled Flow-Advection-Diffusion Model With Mem-

ory Terms

We shall describe the discrete version of the double-porosity model with various
memory terms for the coupled flow-transport equation as developed in [15]. To
describe the upscaled flow equation, we first define the upscaled permeability tensor
K∗ as follows:

(4) (K∗)jk =
1

|Ω0|

∫

Ω0f

(Kf )jm(y)(δmk + ∂mωk(y)) dA,

where the Ω0-periodic function ωk(y) is defined as the solution of the periodic cell
problem

(5)

{
−∇ · ∇ωj(y) = 0, y ∈ Ω0f

∇ωj(y) · n = −ej · n, y ∈ Γfs.

The discrete double-porosity model that we employ here uses a local affine approxi-
mation on the interfaces which enables the model to capture the effects of advection
and secondary diffusion.

To be precise, we define Π1 : H1
0 (Ω) → ∏Nincl

i=1 H
1
2 (Γi) such that, for i =

1, · · · , Nincl, and s ∈ Γi,
(6)

(Π1w)i(s) ≡
1

|Ωi|

(∫

Ωi

w(y) dA +

2∑

k=1

[∫

Ωi

∂kw(y) dA

]
(sk − (xci )k)

)
, s ∈ Γi.
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Here, xci is the centroid of Ωi. Then, we can show that the dual Π′
1 to Π1 satisfies

the following: for qi smooth on Ωis

(7) Π′
1((qi · n)i)(x) =

∑

i

χ̂i(x)
1

|Ωi|

∫

Ωis

∇ · qi(x)dA

−∇ ·
∑

i

χ̂i(x)
1

|Ωi|

∫

Ωis

(∇ · qi)(y − xc)dA −∇ ·
∑

i

χ̂i(x)
1

|Ωi|

∫

Ωis

qidA,

where χ̂i(x) denotes the characteristic function of the cell Ωi.
Finally, the upscaled system for the flow is as follows:

∇ · v∗ ≡ −Π′
1

(
(v∗

i · ni)Nincl

i=1

)
+∇ · v∗ = 0,(8a)

v∗ = −K∗∇p∗, x ∈ Ω,(8b)

∇ · v∗
i = 0, i = 1, · · · , Nincl(8c)

v∗
i = −Ks∇p∗i , y ∈ Ωis(8d)

p∗i|Γi
= (Π1(p

∗))i .(8e)

We can rewrite the above system by using v∗ and a coefficient K∗ = K∗ + θsKs

∇ · v∗ = 0, x ∈ Ω,(9a)

v∗ = −K∗∇p∗,(9b)

∇ · v∗
i = 0, y ∈ Ωis, i = 1, · · · , Nincl,(9c)

v∗
i = −Ks∇p∗i , y ∈ Ωis,(9d)

p∗i |Γi
= (Π1(p

∗))i.(9e)

In order to describe the upscaled transport system with memory terms in a
convolution form, consider a representative function r0 = r0(y, t) with constant
boundary input which is the solution of the initial-boundary-value problem





φs
∂r0

∂t −∇ · (D∇r0 − vr0) = 0, y ∈ Ω0s,
r0(y, 0) = 0, y ∈ Ω0s,
r0(y, t) = 1, y ∈ Γ0.

(10)

We defined the first kernel function by

T 00(t) ≡ 1

|Ω0|

∫

Ω0s

φs
∂r0(y, t)

∂t
dA(11)

Additional representative functions, rk = rk(y, t) for k = 1, 2, with affine boundary
input were defined as the solutions of





φs

∂rk

∂t −∇ · (D∇rk − vrk) = 0, y ∈ Ω0s,
rk(y, 0) = 0, y ∈ Ω0s,
rk(y, t) = (y − xc0)k, y ∈ Γ0.

(12)

Then we constructed kernels arising from various averages of rk. First, we used the
averages of rate of change in time as above to define averaged content rates

T k0(t) ≡ 1

|Ω0|

∫

Ω0s

φs
∂rk

∂t
(y, t) dA, k = 0, 1, 2,(13)
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where T 00 defined previously in (11) is included for completeness. Next, the kernels
T k1, T k2 for first moment rates were defined as

T kj(t) ≡ 1

|Ω0|

∫

Ω0s

φs
∂rk

∂t
(y, t)(y − (xC0 ))j dA, j = 1, 2; k = 0, 1, 2.(14)

Finally, for each rk, k = 0, 1, 2 we specify averaged flux

Sk(t) ≡ (Sk1, Sk2) ≡
[
Sk1

Sk2

]
≡ 1

|Ω0|

∫

Ω0s

(D∇rk(y, t) − vrk(y, t)) dA.(15)

In summary, we defined the total of fifteen geometry-based and time-dependent
kernels: nine zero’th and first order moments T k0, T k1, T k2 of rk, k = 0, 1, 2 and
six flux averages Sk1, Sk2 for k = 0, 1, 2. We note that many of these kernels may
vanish due to symmetry when v = 0. They are used to express the upscaled model

(16) φ∗
∂u∗

∂t
+ T 00 ∗ ∂u

∗

∂t

+ (T 10, T 20) ∗ ∇∂u∗

∂t
−∇ ·

(
(T 01, T 02) ∗ ∂u

∗

∂t

)
−∇ ·

(
(S01, S02) ∗ ∂u

∗

∂t

)

−∇ ·
([

T 11 T 12

T 21 T 22

]
∗ ∇∂u∗

∂t

)
−∇ ·

([
S11 S12

S21 S22

]
∗ ∇∂u∗

∂t

)

−∇ · (D∗∇u∗ − v∗u∗) = 0,

or, after we collect similar terms,

(17)

φ∗
∂u∗

∂t
+T 00 ∗ ∂u

∗

∂t
+Ξ ∗∇∂u∗

∂t
−∇·

(
Ψ ∗ ∇∂u∗

∂t

)
−∇· (D∗∇u∗ − v∗u∗) = 0,

in which the combined kernels are given by

φ∗ + T 00 −∇ ·
(
(T 01, T 02) + (S01, S02)

)
,(18a)

Ξ ≡ (T 10, T 20)−
(
(T 01, T 02) + (S01, S02)

)
,(18b)

Ψ ≡
[

T 11 T 12

T 21 T 22

]
+

[
S11 S12

S21 S22

]
.(18c)

The first reduces to φ∗ + T 00 since the remaining terms are functions of t only.

4. Series Representations of the Kernels

4.1. The constant representative r0. It is useful to consider the complementary
function r(y, t) = 1 − r0(y, t) which is the solution of the initial-boundary-value
problem





φ∂r∂t −∇ · (D∇r − vr) = 0, y ∈ Ω0s,
r(y, 0) = 1, y ∈ Ω0s,
r(y, t) = 0, y ∈ Γ0,

(19)

with homogeneous boundary conditions. We have suppressed the subscripts.
Note that all coefficients are constants.

Separation of variables in (19) leads to the eigenvalue problem

(20) −∇ · (D∇ξ − vξ) = φλξ in Ω0s, ξ = 0 on Γ0.

In order to eliminate the first-order terms, make a change of variable

ξ(y) = eµ·yξ̃(y)

∇ξ = eµ·y(∇ξ̃ + µξ̃)
(21)
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to get successively

−∇ · (eµ·y(D∇ξ̃ +Dµξ̃ − vξ̃) = φλeµ·yξ̃ ,

−∇ · (D∇ξ̃ +Dµξ̃ − vξ̃)− µ · (D∇ξ̃ +Dµξ̃ − vξ̃) = φλξ̃ ,

−∇ ·D∇ξ̃ − (Dµ− v + µ ·D)∇ξ̃ − µ · (Dµ− v)ξ̃ = φλξ̃ .

(22)

Choose µ so that Dµ+ µ ·D = v. Then by inserting (21) into (20) we obtain

−∇ ·D∇ξ̃ + µDµξ̃ = φλξ̃.

That is, ξ̃(y) satisfies the standard self-adjoint eigenvalue problem

(23) −∇ ·D∇ξ̃ + µDµξ̃ = λφξ̃ in Ω0s, ξ̃ = 0 on Γ0.

This has eigenfunctions and real positive eigenvalues {ξ̃i(y), λi}; the eigenfunctions
are an orthonormal basis for L2(Ω0s):

(24)

∫

Ω0s

ξ̃iξ̃j dy = δij , φλi > µDµ .

It follows that {ξi(y) = eµ·yξ̃i(y)} are the corresponding eigenfunctions for the
problem (20), and they are orthonormal in the weighted space,

(25)

∫

Ω0s

ξi(y)ξj(y)e
−2µ·y dy = δij , φλi > µDµ .

Now, we write the solution of (19) in the form

r(y, t) =
∞∑

i=1

ri(t) ξi(y)

and find that necessarily φṙi(t) + φλiri(t) = 0, i ≥ 1, so we have

r(y, t) =

∞∑

i=1

ci e
−λitξi(y).

The constants are determined by the initial condition in (19), namely,

r(y, 0) = 1 =

∞∑

i=1

ci ξi(y),

so from (25) we obtain

(26) cj =

∫

Ω0s

ξj(z)e
−2µ·z dz =

∫

Ω0s

ξ̃j(z)e
−µ·z dz, j ≥ 1.

In summary, we have

r(y, t) =

∞∑

i=1

∫

Ω0s

ξi(z)e
−2µ·z dz e−λitξi(y),

or equivalently in terms of the eigenfunctions of (23)

(27) r(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz e−λiteµ·yξ̃i(y).
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The original representative solution of (10) is given by

(28) r0(y, t) =

∞∑

i=1

∫

Ω0s

ξi(z)e
−2µ·z dz (1− e−λit)ξi(y)

=

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz (1 − e−λit)eµ·yξ̃i(y).

4.2. The affine representatives rk. It is useful to consider the translated func-
tion rk(y, t) = (y−xc0)k− rk(y, t) which solves the initial-boundary-value problem






φ∂rk∂t −∇ · (D∇rk − vrk) = vk, y ∈ Ω0s,
rk(y, 0) = (y − xc0)k, y ∈ Ω0s,
rk(y, t) = 0, y ∈ Γ0,

(29)

with homogeneous boundary conditions. As above, we write the solution of (29) in
the form

rk(y, t) =
∞∑

i=1

rki (t) ξi(y)

and find that necessarily φṙki (t) + φλir
k
i (t) = vkci, i ≥ 1. The general solution is

rki (t) = die
−λit +

vkci
λiφ

(1− e−λit),

and so we have

(30) rk(y, t) =

∞∑

i=1

di e
−λitξi(y) +

∞∑

i=1

vkci
λiφ

(1− e−λit)ξi(y).

The constants di are determined by the initial condition in (29), namely,

rk(y, 0) = (y − xc0)k =

∞∑

i=1

di ξi(y),

so from (25) we obtain

(31) dj =

∫

Ω0s

ξj(z)e
−2µ·z(z− xc0)k dz =

∫

Ω0s

ξ̃j(z)e
−µ·z(z − xc0)k dz, j ≥ 1.

In summary, we have

rk(y, t) =

∞∑

i=1

∫

Ω0s

ξi(z)e
−2µ·z(z− xc0)k dz e

−λitξi(y) +

∞∑

i=1

vkci
λiφ

(1− e−λit)ξi(y),

or equivalently in terms of the eigenfunctions of (23),

rk(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z(z− xc0)k dz e

−λiteµ·yξ̃i(y)

+
∞∑

i=1

vkci
λiφ

(1 − e−λit)eµ·yξ̃i(y).
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Finally, since rk(y, 0) = (y− xc0)k, the corresponding representative functions (12)
are given by

(32) rk(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z(z − xc0)k dz (1− e−λit)eµ·yξ̃i(y)

−
∞∑

i=1

vkci
λiφ

(1 − e−λit)eµ·yξ̃i(y)

=

∞∑

i=1

(∫

Ω0s

ξ̃i(z)e
−µ·z(z− xc0)k dz −

vkci
λiφ

)
(1 − e−λit)eµ·yξ̃i(y)

=

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)k −

vk
λiφ

)
dz (1 − e−λit)eµ·yξ̃i(y), k = 1, 2.

4.3. The kernels. Now, we can compute the kernels. The first is given by (28)
(33)

T 00(t) =
1

|Ω0|

∫

Ω0s

φ
∂r0(y, t)

∂t
dy =

φ

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz

∫

Ω0s

ξ̃i(y) e
µ·y dy λi e

−λit.

The remaining averages of rate of change in time are given likewise by (32)

(34) T k0(t) ≡ 1

|Ω0|

∫

Ω0s

φ
∂rk

∂t
(y, t) dy

=
φ

|Ω0|

∞∑

i=1

(∫

Ω0s

ξ̃i(z)e
−µ·z(z− xc0)k dz −

vkci
λiφ

)
(λie

−λit)

∫

Ω0s

eµ·yξ̃i(y) dy

=
φ

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)k −

vk
λiφ

)
dz

∫

Ω0s

eµ·yξ̃i(y) dy (λie
−λit) , k = 1, 2.

Next, the kernels T k1, T k2 arising from the first moments of rk are given by (28)
and (32), respectively, as

(35) T 0j(t) ≡ φ

|Ω0|

∫

Ω0s

∂r0

∂t
(y, t)(y − (xc0))j dy

=
φ

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz

∫

Ω0s

ξ̃i(y) e
µ·y(y − (xc0))j dy λi e

−λit, j = 1, 2,

(36) T kj(t) ≡ φ

|Ω0|

∫

Ω0s

∂rk

∂t
(y, t)(y − (xc0))j dy

=
φ

|Ω0|

∞∑

i=1

(∫

Ω0s

ξ̃i(z)e
−µ·z(z− xc0)k dz −

vkci
λiφ

)
(λie

−λit)

∫

Ω0s

eµ·yξ̃i(y)(y−(xc0))j dy

=
φ

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)k −

vk
λiφ

)
dz

∫

Ω0s

eµ·yξ̃i(y)(y−(xc0))j dy (λie
−λit).

j = 1, 2, k = 1, 2.

Finally, the flux kernels are given by

Sk(t) = (Sk1(t), Sk2(t)) =
1

|Ω0|

∫

Ω0s

(D∇rk(y, t)− vrk(y, t)) dy.
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The first term can be simplified. For each k = 0, 1, 2, we have
∫

Ω0s

∇rk(y, t) dy =

∫

Γ0

n(y)rk(y, t) dSy .

For k = 0, this is
∫
Γ0

n(y) dSy =
∫
Ω0s

∇(1) dy = 0, and for k = 1, 2, this is
∫

Γ0

n(y)(y − xc0)k dSy =

∫

Ω0s

∇(y − xc0)k dy = |Ω0s|ek.

Thus, we have

(37) S0(t) = − 1

|Ω0|

∫

Ω0s

vr0(y, t) dy

= − v

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz

∫

Ω0s

ξ̃i(y) e
µ·y dy (1 − e−λit).

and for k = 1, 2,

(38) Sk(t) =
|Ω0s|
|Ω0|

Dek −
1

|Ω0|

∫

Ω0s

vrk(y, t) dy

=
|Ω0s|
|Ω0|

Dek−
v

|Ω0|

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)k −

vk
λiφ

)
dz

∫

Ω0s

eµ·yξ̃i(y) dy (1−e−λit) .

4.3.1. L1 estimates. Each of the kernels will be shown to be integrable, and we
display the corresponding estimates. The first kernel is estimated by

(39)

∫ α

0

T 00(t) dt =
φ

|Ω0|

∫

Ω0s

r0(y, α)dy ≤ φ|Ω0s|
|Ω0|

,

and the remaining averages are estimated by

(40)

∫ α

0

T k0(t) dt =
φ

|Ω0|

∫

Ω0s

rk(y, α) dy ≤ φ|Ω0s|
|Ω0|

sup
y∈Γ0

|(y − xc0)k| , k = 1, 2.

The kernels T k1, T k2 arising from the first moments of rk are estimated by

(41)

∫ α

0

T 0j(t) dt =
φ

|Ω0|

∫

Ω0s

r0(y, α)(y − (xc0))j dy

≤ φ|Ω0s|
|Ω0|

sup
y∈Γ0

|(y − xc0)j | , j = 1, 2,

(42)

∫ α

0

T kj(t) dt =
φ

|Ω0|

∫

Ω0s

rk(y, α)(y − (xc0))j dy

≤ φ|Ω0s|
|Ω0|

sup
y∈Γ0

|(y − xc0)k| sup
y∈Γ0

|(y − xc0)j | , j = 1, 2, k = 1, 2.

4.4. An example. Set Ω0s = (0, ℓ) × (0, ℓ) and suppose that D is a diagonal

matrix: D =
(
d1 0
0 d2

)
with d1, d2 > 0. Since µ is determined by Dµ+µ ·D = v, we

have 2diµi = vi for i = 1, 2. To solve the eigenvalue problem (23) we rewrite it as

(43) −(d1∂
2
y1 + d2∂

2
y2)ξ̃ = βξ̃ in Ω0s, ξ̃ = 0 on ∂Ω0s,

and separate variables ξ̃ = X(y1)Y (y2) to get

−d1
X ′′

X
− d2

Y ′′

Y
= β, X(0) = X(ℓ) = Y (0) = Y (ℓ) = 0.
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The functions Xm(y1) = sin(mπy1ℓ ), Yn(y2) = sin(nπy2ℓ ) give the normalized solu-
tions

ξ̃m,n(y1, y2) = (2ℓ ) sin(
mπy1
ℓ ) sin(nπy2ℓ ),(44a)

βm,n = d1(
mπ
ℓ )2 + d2(

nπ
ℓ )2), m, n ≥ 1.

These are the eigenfunctions of (23) and the eigenvalues are

(44b) λm,n =
µDµ

φ
+

1

φ
βm,n =

1

φ
(d1µ

2
1+d2µ

2
2+d1(

mπ
ℓ )2+d2(

nπ
ℓ )2), m, n ≥ 1.

4.4.1. The representative functions. Here, we compute explicitly the repre-
sentative functions r0(y, t) = (28) and rk(y, t) = (32) for k = 1, 2. We shall use
the integration formulae

∫
eau sin(bu)du =

eau

a2 + b2
(a sin(bu)− b cos(bu))

and
∫
(u − c)eau sin(bu)du

=
u− c

a2 + b2
eau(a sin(bu)− b cos(bu)) +

1

(a2 + b2)2
eau(2ab cos(bu) + (b2 − a2) sin(bu)).

For the coefficients (26) of the constant representative (28), we compute (i = [m,n])
∫

Ω0s

ξ̃i(z)e
−µ·z dz

=

∫ ℓ

0

∫ ℓ

0

(2ℓ ) sin(
mπy1
ℓ ) sin(nπy2ℓ )e−(µ1y1+µ2y2)dy1dy2

=

∫ ℓ

0

(2ℓ )
1
2 sin(mπy1ℓ )e−µ1y1dy1

∫ ℓ

0

(2ℓ )
1
2 sin(nπy2ℓ )e−µ2y2dy2

= (
2

ℓ
)
1
2

[
e−µ1y1

µ2
1 + (mπℓ )2

(−µ1 sin(
mπy1
ℓ )− mπ

ℓ cos(mπy1ℓ ))

]ℓ

0

× (
2

ℓ
)
1
2

[
e−µ2y2

µ2
2 + (nπℓ )2

(−µ1 sin(
nπy2
ℓ )− nπ

ℓ cos(nπy2ℓ ))

]ℓ

0

= (2ℓ )
1
2

mπ
ℓ

µ2
1 + (mπℓ )2

(
1− e−µ1ℓ cos(mπ)

)
× (2ℓ )

1
2

nπ
ℓ

µ2
2 + (nπℓ )2

(
1− e−µ2ℓ cos(nπ)

)

= (
2

ℓ
)

mπ
ℓ

µ2
1 + (mπℓ )2

·
nπ
ℓ

µ2
2 + (nπℓ )2

(
1− e−µ1ℓ cos(mπ)

) (
1− e−µ2ℓ cos(nπ)

)
.

Note that we have used sin(mπy1ℓ )|y1=ℓy1=0 = 0.
In summary, we have

∫

Ω0s

ξ̃i(z)e
−µ·z dz =

ℓ

2ℓ4
2mπ

(µ2
1 + (mπℓ )2)

2nπ

(µ2
2 + (nπℓ )2)

(
1− e−µ1ℓ cos(mπ)

) (
1− e−µ2ℓ cos(nπ)

)
.

We shall denote this by

(45)

∫

Ω0s

ξ̃i(z)e
−µ·z dz = a(m,µ1)a(n, µ2),
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where we have defined

a(m,µ) ≡
∫ ℓ

0

(2ℓ )
1
2 sin(mπyℓ )e−µydy =

∫ ℓ

0

(2ℓ )
1
2 sin(mπyℓ )e−µydy =

1

ℓ2

√
2ℓmπ

µ2 + (mπℓ )2
(
1− e−µℓ cos(mπ)

)
=

√
2ℓmπ

(µℓ)2 + (mπ)2
(
1− e−µℓ cos(mπ)

)
.

The original representative solution (28) is finally given by

(46) r0(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z dz (1− e−λit)eµ·yξ̃i(y)

=
∑

m≥1,n≥1

a(m,µ1)a(n, µ2) (1− e−λm,nt)eµ·yξ̃m,n(y).

We continue with the coefficients of the affine representative (32) (with k = 1)
. The first part is

∫

Ω0s

e−µ·yξ̃i(y)(y − (xc0))1 dy

=

∫ ℓ

0

∫ ℓ

0

(2ℓ ) sin(
mπy1
ℓ ) sin(nπy2ℓ )e−(µ1y1+µ2y2)(y1 − xc0,1)dy1dy2

=

∫ ℓ

0

(2ℓ )
1
2 sin(mπy1ℓ )e−µ1y1(y1 − xc0,1)dy1 a(n, µ2) .

The second factor is the same as above, but the first factor is given by

(
2

ℓ
)
1
2
[ (y1 − xc0,1)

µ2
1 + (mπℓ )2

e−µ1y1(−µ1 sin(
mπy1
ℓ )− mπ

ℓ cos(mπy1ℓ ))

+
1

(µ2
1 + (mπℓ )2)2

e−µ1y1(−2µ1
mπ
ℓ cos(mπy1ℓ ) + ((mπℓ )2 − µ2

1) sin(
mπy1
ℓ ))

]ℓ
0

= (
2

ℓ
)
1
2
[ − ℓ

2

µ2
1 + (mπℓ )2

mπ
ℓ (1 + e−µ1ℓ cos(mπ)) +

2µ1
mπ
ℓ

(µ2
1 + (mπℓ )2)2

(1− e−µ1ℓ cos(mπ))
]

= −(
ℓ

2
)
3
2

2mπ

(µ1ℓ)2 + (mπ)2
(1 + e−µ1ℓ cos(mπ)) + (

ℓ

2
)
1
2

4µ1mπℓ
2

((µ1ℓ)2 + (mπ)2)2
(1 − e−µ1ℓ cos(mπ)).

We summarize this with our notation above as
∫

Ω0s

e−µ·yξ̃i(y)(y − (xc0))1 dy

= b̃(m,µ1) a(n, µ2)

=

(
− ℓ

2
ã(m,µ1) +

2µ1ℓ
2

(µ1ℓ)2 + (mπ)2
a(m,µ1)

)
a(n, µ2),(47)

where we have additionally defined

ã(m,µ) ≡
√
2ℓmπ

(µℓ)2 + (mπ)2
(1 + e−µℓ cos(mπ)),

b̃(m,µ) ≡ − ℓ

2
ã(m,µ) +

2µℓ2

(µℓ)2 + (mπ)2
a(m,µ).
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The complete expression for the first factor of the coefficients for the affine rep-
resentative (32) is obtained by subtracting the multiple

v1

λiφ
=

2d1µ1

d1µ2
1 + d2µ2

2 + d1(
mπ
ℓ )2 + d2(

nπ
ℓ )2

of our preceding calculation (45) to get

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z − xc0)1 −

v1
λiφ

)
dz =

(
− ℓ

2
ã(m,µ1)

+(
2µ1ℓ

2

(µ1ℓ)2 + (mπ)2
− 2d1µ1ℓ

2

d1(µ1ℓ)2 + d2(µ2ℓ)2 + d1(mπ)2 + d2(nπ)2
)a(m,µ1)

)
a(n, µ2)

= b(m,µ1) a(n, µ2),

(48)

where we have defined

b(m,µ1) ≡

− ℓ

2
ã(m,µ1)+

2d1µ1ℓ
2((µ2ℓ)

2 + (nπ)2)d2
d1((µ1ℓ)2 + (mπ)2)(d1(µ1ℓ)2 + d2(µ2ℓ)2 + d1(mπ)2 + d2(nπ)2)

a(m,µ1) .

We also specify the symmetric counterpart

b(n, µ2) ≡

− ℓ

2
ã(n, µ2)+

2d2µ2ℓ
2((µ1ℓ)

2 + (mπ)2)d1
d2((µ2ℓ)2 + (nπ)2)(d1(µ1ℓ)2 + d2(µ2ℓ)2 + d1(mπ)2 + d2(nπ)2)

a(n, µ2) .

The affine representative solution (32) is finally given by

r1(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)1 −

v1
λiφ

)
dz (1− e−λit)eµ·yξ̃i(y)

=
∑

m≥1,n≥1

b(m,µ1) a(n, µ2) (1− e−λm,nt)eµ·yξ̃m,n(y),(49)

for k = 1 and similarly for k = 2, we have

(50) r2(y, t) =

∞∑

i=1

∫

Ω0s

ξ̃i(z)e
−µ·z

(
(z− xc0)2 −

v2
λiφ

)
dz (1 − e−λit)eµ·yξ̃i(y)

=
∑

m≥1,n≥1

a(m,µ1) b(n, µ2) (1− e−λm,nt)eµ·yξ̃m,n(y).
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4.4.2. Summary of the kernels.

T 00(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) a(n, µ2) a(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 10(t) =
φ

|Ω0|
∑

m≥1,n≥1

b(m,µ1) a(n, µ2) a(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 20(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) b(n, µ2) a(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 01(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) a(n, µ2) b̃(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 02(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) a(n, µ2) a(m,−µ1) b̃(n,−µ2)λm,ne
−λm,nt,

T 11(t) =
φ

|Ω0|
∑

m≥1,n≥1

b(m,µ1) a(n, µ2) b̃(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 12(t) =
φ

|Ω0|
∑

m≥1,n≥1

b(m,µ1) a(n, µ2) a(m,−µ1) b̃(n,−µ2)λm,ne
−λm,nt,

T 21(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) b(n, µ2) b̃(m,−µ1) a(n,−µ2)λm,ne
−λm,nt,

T 22(t) =
φ

|Ω0|
∑

m≥1,n≥1

a(m,µ1) b(n, µ2) a(m,−µ1) b̃(n,−µ2)λm,ne
−λm,nt,

S0(t) = − v

|Ω0|
∑

m≥1,n≥1

a(m,µ1) a(n, µ2) a(m,−µ1) a(n,−µ2) (1− e−λm,nt),

S1(t) =
|Ω0s|
|Ω0|

De1 −
v

|Ω0|
∑

m≥1,n≥1

b(m,µ1) a(n, µ2) a(m,−µ1) a(n,−µ2) (1 − e−λm,nt),

S2(t) =
|Ω0s|
|Ω0|

De2 −
v

|Ω0|
∑

m≥1,n≥1

a(m,µ1) b(n, µ2) a(m,−µ1) a(n,−µ2) (1 − e−λm,nt).

4.4.3. Comments on graphs. The representative functions r = rk (or their
complements, 1− r, (y − x)k − rk) satisfy the abstract Cauchy problem,

ṙ(t) +Ar(t) = 0, r(0) = r0 ,

with Ar = −∇ · (D∇r − vr) ∈ V ′ for r ∈ V ≡ H1
0 (Ωos), so we have r ∈

L2(0, T ;H1
0 (Ωos)), ṙ ∈ L2(0, T ;H−1(Ωos)), and it follows that r ∈ C([0, T ];L2(Ωos))

and ∇r ∈ L2(0, T ;L2(Ωos)). From these observations, it follows that each T kj ∈
L1(0, T ) and Skj ∈ L1(0, T ). If D = constant (as in our example), then Skj ∈
C[0, T ].

The basic kernels T ij all consist of sums of terms λm,ne
−λm,nt which rapidly

decrease from a singularity at zero. We showed above and in Section 4.3 that they
are integrable at zero. The kernels Sij consist of terms 1 − e−λm,nt which start at
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Figure 1. Graphs of the kernels, T 00,Ξ1(top), and Ψ11,Ψ22 (bot-
tom) for various Kratio values.

zero and have a relatively steady rise to a constant value. Thus, all of these basic
kernels are integrable at zero.

Recall that the coefficients of the model equation consist of the combined kernels
given by (18). Since the kernels are not spatially dependent, the first is just the
double porosity kernel, T 00.

The secondary advection kernels are given by

Ξ = (T 10, T 20)−
(
(T 01, T 02) + (S01, S02)

)
.

The first two terms will sum approximately to zero (by near anti-symmetry proper-
ties of the integrands), so it is essentially a convex combination of terms (1−e−λm,nt)
with small competing terms near zero. In cases where the first two terms are sub-
stantial, we may get negative values at very early times.

The secondary diffusion kernels are

Ψ =

[
T 11 T 12

T 21 T 22

]
+

[
S11 S12

S21 S22

]
.

These consist of sums of respective terms of the form λm,ne
−λm,nt and 1− e−λm,nt.

The first accounts for the initial rapid decrease, and the second for the delayed
interval of increase to a constant level in the case of Ψ11 (with all coefficients
positive) and the delayed interval of even more rapid decrease in the case of Ψ22

(with the second set of coefficients containing negative terms).
Figure 1 illustrates the double porosity, secondary advection, and secondary

diffusion kernels for various Kratio ≡ Kf/Ks values.
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5. Numerical approximation and analysis of the upscaled model

In this section, we discuss and analyze the discretization of

ut + vux −Duxx +Υ ∗ ut + Ξ ∗ uxt −Ψ ∗ uxxt = 0,(51a)

u(x, 0) = u0(x),(51b)

where v is assumed to be nonnegative. Note that (51) is a 1d version of the upscaled
problem (17) considered in Section 3, with scalar fields Ψ and Ξ.

We implemented several schemes for (17) that share a common element that
the memory terms are treated implicitly in time, while the spatial derivatives cor-
responding to the advection and diffusion are handled in a way optimal for the
particular scheme. In this section, however, we consider only an upwind-memory
scheme which treats the advection explicitly and diffusion implicitly. We do not
report on schemes which treat the advection implicitly. While they can increase
the stability of the method, additional numerical diffusion can be introduced.

Below, we first formulate assumptions on the kernels that will be used in our
analysis. Then, we define discretization of convolution terms and proceed to define
and analyze the schemes corresponding to (51) with increasing level of difficulty.

In order to discretize the memory terms, we use the product integration rule
applied in [13] for self-adjoint parabolic equations with memory terms similar to
Υ ∗ ut. Recently, in [14], Peszyńska developed schemes for nonlinear conservation
laws in which the (possibly nonlinear) advection terms are treated explicitely in
time. The theory developed in [14] applies to (51) if D = 0,Ψ = 0,Ξ = 0. In this
paper, we improve on the strong stability result proved in [14] and extend it to the
case when D 6= 0,Ψ 6= 0,Ξ 6= 0. Since we are interested in (51) which is linear, we
only pursue the linear stability case.

In Section 5.3, we define the general setup of von-Neumann analysis which applies
to initial value problems on R. Then, in Sections 5.4–5.7, we use von-Neumann
analysis for problems with Υ 6= 0,Ξ = Ψ = 0, and Υ 6= 0,Ξ 6= 0,Ψ = 0, and finally
for Υ 6= 0,Ξ 6= 0,Ψ 6= 0. In Section 5.8, we provide discussion of stability using the
method of lines (MOL) which applies to initial-boundary value problems.

While we are able to prove weak stability for the comprehensive scheme for
(51), this is not optimal since the scheme for the micro-model is strongly stable,
reflecting the qualitative properties of the solution subject to maximum principles.
Thus, one could expect that the scheme for the limiting macro-model (51) would
share the same stability properties. However, we do not make assumptions on the
interdependence between the data v and D of the upscaled problem (51) and the
kernels Υ,Ξ, and Ψ. Hence, we obtain only weak stability. However, it is possible
that one could obtain a stronger result under appropriately stronger hypotheses
on v,D,Υ,Ξ, and Ψ. Furthermore, (51) truncates (17) to one dimension. While
we are not able to prove a stability result for (17) at this time, it is possible that,
unlike (51), it would have strong stability.

Finally, we remark that our analysis assumes only that Ξ and Ψ are both piece-
wise monotone and bounded as t→ ∞. This assumption is justifiable by Section 4.
On the other hand, we do not assume boundedness of Υ or of Ψ at 0, but rather
allow for their weak singularity at the origin. One can easily extend our results and
see that strong stability will hold for convolution terms with any monotonically
decreasing kernels that are weakly singular at t = 0 and that weak stability can be
obtained for increasing but asymptotically bounded kernels.

To close this preliminary discussion, we mention that it is expensive to keep all
the long-term history of the evolution of the solution, i.e., the values um. To rectify
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this problem, one can take advantage of the behavior of the kernels which seem to
asymptotically stabilize as discussed below in Remark 4. Thus, a truncation of the
scheme proposed here makes sense, but we will not deal with it in this paper.

5.1. Kernels. The kernels Υ and Ξ in (51) will be assumed to be smooth and
weakly integrable. Also, both Υ and Ξ are assumed to be monotone, but the
former is nonincreasing, whereas the latter is nondecreasing. More specifically,

Υ ∈ L1
loc(0,∞) ∩ C1(0,∞),Υ(t) ≥ 0, Υ′(t) ≤ 0, ∀t > 0,(52)

Ξ ∈ L1
loc(0,∞) ∩ C1(0,∞),Ξ(t) ≥ 0, Ξ′(t) ≥ 0, ∀t > 0.(53)

In addition, we assume

Ξ(0) = 0.(54)

These assumptions on Ξ are somewhat inconsistent with the comment on the possi-
ble negative values of Ξ at very early times in Section 4.4.3. However, the magnitude
of Ξ(t) tends to be really small, if not zero, at very early times. Moreover, these
assumptions make our analysis much simpler.

Indeed, Ξ has a stronger property of than that in (53). That is,

Ξ ∈ C0([0,∞)),

but we will not take advantage of this in our analysis.
On the other hand, Ψ is only piecewise monotone: there is a time t∗ > 0 such

that Ψ is nonincreasing on (0, t∗) and nondecreasing on (t∗,∞):

Ψ ∈ L1
loc(0,∞) ∩C1(0,∞),Ψ(t) ≥ 0, ∀t > 0,

Ψ′(t) ≤ 0, ∀t ≤ t∗,Ψ
′(t) ≥ 0, ∀t ≥ t∗.(55)

Furthermore, we note that there is another time t∗ > t∗ after which it makes
sense to approximate

Υ′(t) ≈ 0, Ξ′(t) ≈ 0,Ψ′(t) ≈ 0, t > t∗.(56)

5.2. Discretization of convolution terms. In this section, we consider memory
terms of the form Υ ∗ u and Υ ∗ ut, for which we temporarily assume u = u(t) and
drop the spatial dependence of u for exposition’s sake.

The approximations to Υ ∗ u and Υ ∗ ut depend on the qualitative properties of
Υ and possibly on whether, e.g., u(t) is approximated with a piecewise constant,
linear, or a higher order polynomial on each time interval [tm, tm+1]. First, we
consider approximations to Υ ∗ u. Since

Υ ∗ u|t=tn =

∫ tn

0

Υ(tn − s)u(s)ds =

n−1∑

m=0

∫ tm+1

tm

Υ(tn − s)u(s)ds,

we need to decide how to approximate the integral In,m :=
∫ tm+1

tm
Υ(tn − s)u(s)ds.

Define

Υm :=
1

k

∫ tm+1

tm

Υ(s)ds, τm := kΥm =

∫ tm+1

tm

Υ(s)ds.(57)

Note that Υm is the exact mean value of Υ on [tm, tm+1], and Υm and τm are well
defined for both bounded and weakly singular kernels. For bounded kernels, the
following approximations can also be considered:

Υlm := Υ(tm), τ lm := kΥ(tm),(58)

Υrm := Υ(tm+1), τrm := kΥ(tm+1).(59)
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One could also consider the midpoint formula, but it will not be pursued any further
here.

Assume for simplicity a uniform time-stepping with the timestep size k, i.e.,

tm = mk, m = 0, 1, . . . .

Then, changing variables gives us
∫ tm+1

tm

Υ(tn − s)ds =

∫ tn−tm

tn−tm+1

Υ(s)ds =

∫ tn−m

tn−m−1

Υ(s)ds = τn−m−1.(60)

Now, we introduce the following approximations to In,m:

In,m ≈ um+1τn−m−1,(61)

In,m ≈ umτn−m−1,(62)

In,m ≈ umτ
l
n−m−1,(63)

In,m ≈ um+1τ
r
n−m−1,(64)

where um is the approximate to u(mk), m = 1, 2, · · · . The formulas (61) and (62)
come from the product integration rules and (63) and (64) come from the left- and
right- rectangle rules. Also, they are O(k)-accurate methods. The rules (61) and
(64) lead to a fully implicit treatment of (51), whereas (62) and (63) lead to a fully
explicit method. A generic approximation to the convolution integral which allows
the implicit and explicit treatments can be written as

Υ ∗ u|t=tn =

n∑

m=0

τ̄n−mum,

where τ̄n−m can be chosen from (61)–(64) and is set to 0 at m = 0 for implicit
schemes or at m = n for explicit schemes. In this paper, we consider only implicit
treatments.

Next, we define an approximation to Υ ∗ ut using (57) and (60) as follows:

Υ ∗ ut|t=tn =

n∑

m=1

∫ tm

tm−1

Υ(tn − s)ut(s)ds

≈
n∑

m=1

)
1

k
(um − um−1)

∫ tm

tm−1

Υ(tn − s)ds

=

n∑

m=1

um − um−1

k
τn−m.(65)

For bounded kernels, one could also consider approximations (58) or (59) to replace
τn−m.

Remark 1. The qualitative properties of the sequence Υm and those of τm := kΥm
are inherited from those of the kernel Υ. In particular, we have by (52) that Υ is
nonnegative and nonincreasing, and so are the sequences (Υm)m and (τm)m, i.e.,

τm ≥ 0, τm − τm+1 ≥ 0, ∀m.(66)

Next, we define Ξm, ξm and Ψm, ψm for the kernels Ξ and Ψ, respectively, anal-
ogously to (57).

Remark 2. By (53), Ξ is nonnegative and nondecreasing, and so are the sequences
(Ξm)m and (ξm)m. More specifically,

0 ≤ ξm ≤ ξm+1 ≤ kΞ(tm+2) ≤ kΞ(T ), ∀m.(67)
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In Method of Lines analysis, it will be convenient to assume ξ0 = 0 which amounts
to replacing ξ0 by its approximation ξl0, which is 0 if (54) holds.

Remark 3. By (55), Ψ is nonnegative, and so are the sequences (Ψm)m and
(ψm)m. However, Ψ is not monotone. Without loss of generality, we assume that
t∗ and t∗ coincide with some discrete time tm. That is, t∗ = tm∗

and t∗ = tm∗ for
some m∗ and m∗. Thus, we have

ψm ≥ 0, ψm ≥ ψm+1, m < m∗ − 1,(68a)

ψm ≥ 0, ψm ≤ ψm+1, m ≥ m∗.(68b)

For m = m∗, the sign of ψm∗−1 − ψm∗
is in general undecided. Without loss of

generality, we assume further

ψm ≥ 0, ψm ≤ ψm+1, m = m∗ − 1.(68c)

Remark 4. The fact that for t > tm∗ the derivatives of the kernels Υ,Ξ,Ψ ap-
pear to vanish suggests to truncate the approximation to the memory terms to only
those time steps reaching to m∗. While we do not analyze the consequences of this
truncation, it is an important practical simplification.

5.3. Stability analysis for Υ = Ξ = Ψ = 0. One-level scheme for (51) with
Υ = Ξ = Ψ ≡ 0 defines un+1 in terms of un, n = 1, 2, . . .. More specifically, we
have

un+1 = C(k)un.(69)

Here, un = (uj,n)j∈J is a vector of nodal values at the nodes xj = jh of the
spatial grid and C(k) is a coefficient matrix depending only on the time step k and
the original (homogeneous) partial differential equation (PDE). In particular, C(k)
reflects how we treat the advection and diffusion terms.

In error analysis of (69), one considers an inhomogeneous version of (69) that
allows to account for, e.g., truncation errors in the following form:

un+1 = C(k)un + kfn.(70)

In fact, this equation holds for the vector of errors en. If we apply this recursively,
we obtain, with C = C(k),

en+1 = C (Cen−1 + kfn−1) + kfn = . . . = Cn+1e0 + k

n∑

m=0

Cn−mfm.(71)

It is clear that to keep the error bounded, one has to keep the growth of Cn

under control, i.e, require its uniform boundedness. To analyze the stability of
the numerical method, we will use the von Neumann approach, which is based
on Fourier analysis. To avoid the details of handling boundary conditions in the
von Neumann analysis, one usually studies the stability for the Cauchy problem,
which is the PDE on all space with no boundaries, −∞ < x < ∞. In this case,
j = 0,±1,±2, . . .. For initial boundary value problems on a bounded domain, J is
a finite set and we will discuss this case later in Section 5.8.

First, we recall the well-known von-Neumann ansatz that will be fundamental
for the understanding of what we develop for the memory terms. Consider the
following Fourier series for uj,n:

uj,n =
∑

χ

qn(χ)e
iχjh, n = 1, 2, . . . .(72)
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Here, the coefficient qn(χ) is the Fourier mode of the finite difference solution
un and q(χ, tn) is the Fourier coefficient of u(x, tn). Therefore, qn(χ) is an ap-
proximation to q(χ, tn). In particular, q0(χ) is an approximation to q(χ, 0) =
1
2π

∫ π
−π

u(x, 0)e−iχxdx, the Fourier coefficients of the initial data u0 ≈ u(x, 0).

Substituting (72) in the difference equation (69) for un+1 and un and collecting
like terms of eiχjh, we can identify, at every step n, the same factor g = g(k, χ) so
that

qn+1(χ) = g(k, χ)qn(χ).

Applying the above equation recursively, we obtain qn(χ) = g(k, χ)nq0(χ). Then,
a better-known version of (72) is

uj,n =
∑

χ

q0(χ)g(k, χ)
neiχjh.(73)

The amplification factor g(k, χ) is thus the counterpart of C(k) in the Fourier space.
In the von Neumann analysis, the following is required for the strong stability:

|g(k, χ)| ≤ 1, ∀χ.(74)

On the other hand, weak stability [[17], Chapter IV] relaxes (74) and requires only

|g(k, χ)| ≤ 1 +O(k), ∀χ.(75)

5.4. Strong stability for Υ 6= 0,Ψ ≡ 0,Ξ ≡ 0. In this section, we consider

ut +Υ ∗ ut + vux −Duxx = 0.(76)

First, we will consider the above model with no diffusion term, i.e., D = 0. Then,
we will extend our stability analysis to the case with nonzero diffusion term.

5.5. The case of D = 0. Consider

ut +Υ ∗ ut + vux = 0.(77)

In [14], Peszyńska proposed the following explicit upwind-memory scheme

(uj,n − uj,n−1) +

n∑

m=1

(uj,m − uj,m−1)τn−m + λv(uj,n−1 − uj−1,n−1) = 0,(78)

where λ = k/h. It arose from a standard upwind discretization combined with
the approximation (65) for Υ ∗ ut. Following Section 5.3, we can pursue Fourier
analysis of this problem and analyze the growth of qn(χ), the Fourier mode of
the finite difference approximation to un. Indeed, Peszyńska pursued the analysis
of the amplification factor g in the (pessimistic) case when qn = gqn−1, where g
does not depend on n. In this case, at t = tn, it was shown that g is the root
of a polynomial equation of order n + 1 and its magnitude was estimated using a
corollary to Rouche’s theorem. It was found that if the following CFL-τ condition

0 ≤ λv ≤ 1 + τ0(79)

is satisfied, we have |g| ≤ 1, which implies strong stability, i.e., |qn(χ)| ≤ |q0(χ)|.
In this paper, we prove a more general result in which the amplification sequence

gn is defined by

qn(χ) = gn(χ)q0(χ)(80)

and gn varies from one time step to another.
The following auxiliary result is elementary in stability analysis [8] and we recall

it for later use.
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Lemma 5.1. Assume A ∈ R. In order for

|1−A(1− e−iθ)| ≤ 1(81)

to hold for any θ, it is sufficient and necessary to have 0 ≤ A ≤ 1.

The proof of Lemma 5.1 is an exercise: we calculate the square of the quantity
on the left, and obtain, after some algebraic manipulations, that (81) is equivalent
to

1 + 2(A2 −A)(1− cos(θ)) ≤ 1.

From this, it further follows that we must have A2−A ≤ 0 and the lemma is proved.

Proposition 5.1. Assume that Υ satisfies (52). Then, the explicit upwind-memory
scheme, (78), is strongly stable, i.e.,

|gn| ≤ 1, ∀χ, n = 1, 2, . . . ,(82)

provided the CFL condition

0 ≤ vλ ≤ 1(83)

holds.

Proof. First, we recall that, by Lemma 5.1 with A = vλ, the CFL condition, (83),
is equivalent to

|1− γ∗| ≤ 1,(84)

where

γ∗ := vλ(1 − z), z := e−iθ.(85)

Then, the proof of (82) follows by induction. We substitute (72) in (78) and consider
the growth of the sequence |gn|, n = 1, 2, . . ..

In what follows, we set θ = χjh to be an arbitrary angle.

10: When n = 1, (65) gives us

(Υ ∗ ut)|x=xj,t=t1 ≈ 1

k
(uj,1 − uj,0)τ0.

Thus, rewriting (78) upon (72) for n = 1, we have, after collecting the like
powers of eiθ,

(1 + τ0)(q1 − q0) + q0γ
∗ = 0.(86)

where γ∗ arises from the upwind discretization of the advection term vux. Using
(80) to define g1 , we see that

(1 + τ0)g1 = (1 + τ0 − γ∗),(87)

thus, by recalling τ0 ≥ 0 from (52),

(1 + τ0)|g1| = |1 + τ0 − γ∗|.(88)

On the other hand, using τ0 ≥ 0 and (84), we can see that the right hand side
of (88) satisfies

|1 + τ0 − γ∗| ≤ |1− γ∗|+ τ0 ≤ 1 + τ0.

Thus, we obtain

|g1| ≤ 1.(89)

Alternatively, applying Lemma 5.1, we see that 0 ≤ A := vλ
1+τ0

≤ 1 is required

to show (89), thus only the CFL-τ condition is needed. In fact, this alternative
path can be followed with a possibly negative τ0, as long as 1 + τ0 ≥ 0. Fo a
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negative τ0, however, the CFL-τ condition is a more stringent assumption than
the CFL condition. However, if τ0 ≥ 0, (83) obviously suffices for the CFL-τ
condition.

20: Now, consider n > 1 and assume |gj | ≤ 1, j = 1, . . . n− 1. We will prove (82).
First, we rewrite (65) to get, for n > 1,

(90) (Υ ∗ ut)|x=xj ,t=tn

≈ 1

k
[(uj,1 − uj,0)τn−1 + (uj,2 − uj,1)τn−2 + . . . (uj,n−1 − uj,n−2)τ1 + (uj,n − uj,n−1)τ0]

=
1

k
[τ0uj,n + (τ1 − τ0)uj,n−1 + (τ2 − τ1)uj,n−2 + . . .+ (τn−1 − τn−2)uj,1 − τn−1uj,0]

=
1

k

[
τ0uj,n + (τ1 − τ0)uj,n−1 +

n−2∑

m=1

uj,m(τn−m − τn−m−1)− uj,0τn−1

]
.

Thus, we can rearrange the terms in (78) to get

(91)

(1 + τ0)(uj,n − uj,n−1) +

[
τ1uj,n−1 +

n−2∑

m=1

uj,m(τn−m − τn−m−1)− uj,0τn−1

]

+ vλ(uj,n−1 − uj−1,n−1) = 0.

Then, substituting the Ansatz (72) in (90), setting for convenience g0 = 1, and
collecting the like terms eijh, we obtain an equation for gn:

(92)

(1+τ0)(gn−gn−1)+

[
τ1gn−1 +

n−2∑

m=1

gm(τn−m − τn−m−1)− g0τn−1

]
+gn−1γ

∗ = 0.

Next, we rearrange

(93) (1 + τ0)gn =

(1 + τ0 − τ1 − γ∗)gn−1 −
n−2∑

m=1

gm(τn−m − τn−m−1) + g0τn−1.

We then take modulus of both sides and estimate the right hand side by ap-
plying the triangle inequality repeatedly. From the inductive assumption, each
|gj | ≤ 1, j = 1, . . . n− 1. Therefore, since τm are nonnegative, we have

(94)

(1 + τ0)|gn| ≤ |1 + τ0 − τ1 − γ∗||gn−1|+
n−2∑

m=1

|gm||τn−m − τn−m−1|+ |g0|τn−1

≤ |1− γ∗|+ |τ0 − τ1|+ |τn−1 − τn−2|+ |τn−2 − τn−3|+ . . .+ |τ2 − τ1|+ |τn−1|.
Now, by (66), we can replace |τn−1 − τn−2| = −(τn−1 − τn−2), etc. in (94) and
simplify the expression to obtain

(95) (1 + τ0)|gn|
≤ |1− γ∗|+ τ0 − τ1 − (τn−1 − τn−2)− (τn−2 − τn−3)− . . .− (τ2 − τ1) + τn−1

= |1− γ∗|+ τ0.

Then, |gn| ≤ 1 follows from (84).

�
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5.5.1. The case of D 6= 0. Now, consider

ut +Υ ∗ ut + vux −Duxx = 0.(96)

Then, an extension of the explicit upwind-memory scheme discussed in Section 5.3
to (96) is given as follows:

(97) (uj,n − uj,n−1) +

n∑

m=1

(uj,m − uj,m−1)τn−m + λv(uj,n−1 − uj−1,n−1)

+D
λ

h
(2uj,n − uj−1,n − uj+1,n) = 0,

in which the diffusion term is treated implicitly.
Straightforward modification of the calculations in the proof of Proposition 5.1

reveals that g1 satisfies, instead of (87),

(1 +Dh + τ0)g1 = (1 + τ0 − γ∗),(98)

where Dh = 2D(1− cos θ)λh . Since Dh ≥ 0, we obtain (89).
Proceeding similarly as in the proof of Proposition 5.1 for n > 1, we get the

modification of (95):

(1 +Dh + τ0)|gn|
≤ |1− γ∗|+ τ0 − τ1 − (τn−1 − τn−2)− (τn−2 − τn−3)− . . .− (τ2 − τ1) + τn−1

= |1− γ∗|+ τ0.

This proves the induction step and that |gn| ≤ 1, n = 1, 2, . . ..

Corollary 5.1. Let the assumptions of Proposition 5.1 be satisfied.
(a) If v 6= 0, then the scheme (97) is strongly stable as long as the CFL condition,
(83), holds.
(b) If v = 0, then the scheme (97) is unconditionally strongly stable. This provides
an alternative proof of the result considered in [13].

5.6. Weak stability for Υ 6= 0,Ψ ≡ 0,Ξ 6≡ 0. Now, consider the following model
with a secondary advection term, Ξ ∗ utx:

ut +Υ ∗ ut + Ξ ∗ utx + vux −Duxx = 0.(99)

We approximate Ξ ∗ utx in analogy to (65), with the upwind discretization for the
spatial derivative since Ξ is nonnegative:

Ξ ∗ utx|xj ,tn ≈
n∑

m=1

1

h
((uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)) ξn−m.

With this, the scheme for (99) is

(100) (uj,n − uj,n−1) +
n∑

m=1

(uj,m − uj,m−1)τn−m

+

n∑

m=1

λ ((uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)) ξn−m + λv(uj,n−1 − uj−1,n−1)

+D
λ

h
(2uj,n − uj−1,n − uj+1,n) = 0.

We will analyze its stability similarly as was done in the proof of Proposition 5.1.
For simplicity, we drop temporarily the diffusion terms as we have seen that the



MULTISCALE FLOW AND TRANSPORT 23

inclusion of the diffusion term requires only a minor change in the proof. Thus, in
what follows, we set D = 0.

First, we consider the difference equation (100) with D = 0 for n = 1. Using the
same von-Neumann framework as in what led to (86), we obtain

(1 + τ0 + ξ∗0)(q1 − q0) + q0γ
∗ = 0,(101)

where γ∗ and z are the same as in (85) and

ξ∗m := ξmλ(1 − z), m = 0, 1, . . . .(102)

A simple calculation shows that

|g1| =
|1 + τ0 + ξ∗0 − γ∗|

|1 + τ0 + ξ∗o |
=

|1 + τ0 + λ(ξ0 − v)(1− z)|
|1 + τ0 + λξ0(1− z)| .(103)

The following Lemma proves |g1| ≤ 1 and also establishes another inequality that
will be useful later.

Lemma 5.2. (i) If the CFL-τ condition, (79), holds, we have

|g1| ≤ 1.

(ii) In addition,

|1 + τ0 + ξ∗0 | = |1 + τ0 + λξ0(1 − z)| ≥ 1 + τ0 ≥ 1.(104)

Proof. Set A = 1 + τ0, B = λ(ξ0 − v), and B0 = λξ0 and rewrite (103) to obtain

|g1| =
|A+B(1− z)|
|A+B0(1 − z)| =

|A+B(1− cos θ) + iB sin θ|
|A+B0(1− cos θ) + iB0 sin θ|

.

Then, we compare the (square of the) moduli of the numerator and denominator.
To ensure that the former is less than or equal to the latter, we must have

A2 + 2(AB +B2)(1 − cos θ) ≤ A2 + 2(AB0 +B2
0)(1 − cos θ),(105)

which is equivalent to

A(B −B0) ≤ (B0 −B)(B0 +B).

Note that ξ0 ≥ 0 gives B ≤ B0. Therefore, we have

−A ≤ B0 +B = λ(2ξ0 − v).(106)

On the other hand, A ≥ 1 > 0 by definition. Thus, if the right hand side of (106)
is positive, the inequality (106) is obviously satisfied. However, the right hand
side can be negative asymptotically, since v ≥ 0 is the data for the problem and
ξ0 = kΞ0 → 0 with k → 0. Indeed, we have

A ≥ vλ ≥ λ(v − 2ξ0),(107)

where the first inequality is due to (79). Hence, the proof of (i) is complete.
To show (ii), we consider the minimum of the quantity |A+B0(1−z)| on the left

hand side of (104) over B0. Note that its square is the same as the right hand side
of (105). For a fixed θ, since B0 ≥ 0, the minimum occurs at B0 = 0 and equals
A2, thus (ii) is established. �

Next, we proceed with analysis of the steps for n > 1. In this case, it will
be shown that, unlike in Proposition 5.1, we do not have strong stability. The
von-Neumann Ansatz applied to (100) gives us a modification of the formula (92),
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defining the amplification sequence gn, that replaces each occurrence of τm in (92)
by τm + ξ∗m. First, we write the analogue of (92) as follows:

(108) (1 + τ0 + ξ∗0)(gn − gn−1)

+

[
gn−1(τ1 + ξ∗1) +

n−2∑

m=1

gm(τn−m − τn−m−1 + ξ∗n−m − ξ∗n−m−1)− g0(τn−1 + ξ∗n−1)

]

+ gn−1γ
∗ = 0.

Next, we rearrange the terms by grouping together the expressions involving τm
and those involving |ξ∗m| = ξmλ|1− z| and estimate similarly as in (94) to see

(109)

|1+τ0+ξ∗0 ||gn| ≤ (|1−γ∗|+ |τ0−τ1|)|gn−1|+
n−2∑

m=1

|gm||τn−m−τn−m−1|+ |g0|τn−1

+ |ξ∗0 − ξ∗1 ||gn−1|+
n−2∑

m=1

|gm||ξ∗n−m − ξ∗n−m−1|+ |g0||ξ∗n−1|.

Here, we do not invoke the inductive assumption as was done in the proof of Propo-
sition 5.1. Rather, we define Gn−1 := maxm=0,...n−1 |gm| and use |gm| ≤ Gn−1 for
m = 0, 1, . . . n − 1 to estimate the right hand side of (109). Also, we use the
monotonicity of τm and ξm, which allows to cancel some terms. Furthermore, we
accommodate the fact that ξm is nondecreasing. Then, we obtain

|1 + τ0 + ξ∗o ||gn|

(110)

≤ Gn−1 {|1 − γ∗|
+ (τ0 − τ1)− (τn−1 − τn−2)− (τn−2 − τn−3)− . . .− (τ2 − τ1) + τn−1

+ |ξ∗0 − ξ∗1 |+ |ξ∗n−1 − ξ∗n−2|+ |ξ∗n−2 − ξ∗n−3|+ . . .+ |ξ∗2 − ξ∗1 |+ |ξ∗n−1|
}

= Gn−1{|1− γ∗|+ τ0

+ λ|1 − z| (ξ1 − ξ0 + ξn−1 − ξn−2 + ξn−2 − ξn−3 + . . .+ ξ2 − ξ1 + ξn−1)}
= Gn−1(|1− γ∗|+ τ0 + λ|1− z|(2ξn−1 − ξ0))

≤ Gn−1(|1− γ∗|+ τ0 +
4

v
ξn−1),

where we have used the fact that |ξ∗m − ξ∗m−1| = λ|1− z|(ξm − ξm−1) by (67), and,
in the last inequality, (67), (83), and |1− z| ≤ 2.

Now, we divide both sides of (110) by |1 + τ0 + ξ∗o | and estimate

|gn| ≤ Gn−1

{ |1− γ∗|+ τ0
|1 + τ0 + ξ∗o |

+
4ξn−1

v|1 + τ0 + ξ∗o |

}
≤ Gn−1(1 +

4

v
kΞ(tn)),(111)

where we used Lemma 5.2(ii) and the monotonicity of ξn, (67).
The estimates above therefore suggest that the amplification sequence increases

proportionally from one step to another by a factor of 1 + O(k). This estimate is
sharp in a sense that it can be seen by calculating exactly the amplification term
g2; unlike g1 for which we have |g1| ≤ 1, |g2| can be shown to exceed 1.

Remark 5. When D > 0, a straightforward modification in the calculations above
can show that the inequalities (103) and (111) still hold with a denominator |1 +
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τ0 + ξ∗o +Dh|, where Dh = 2D(1 − cos θ)λh ≥ 0. Therefore, we can still prove the
same bound for |gn|, n ≥ 1.

Proposition 5.2. Assume that the CFL condition, (83), and the monotonicity of
τm and ξm, (66) and (67), respectively, hold. Then, the scheme (100) for (99) is
weakly stable on [0, tn] for tn ≤ T and some T .

Proof. The estimates preceding the statement of this proposition demonstrate that

|gn| ≤ Gn−1(1 + Ck),

where C depends only on Ξ and v. Via Bernoulli inequality, we have therefore

|gn| ≤ (1 + Ck)n−1 ≤ exp(Ck(n− 1)) ≤ exp(CT ),

that is, the amplification sequence is uniformly bounded. �

Remark 6. From the proof of Proposition 5.2, it seems that, under additional
assumptions on the relation of Ξ and v, one may be able to obtain strong stability. In
particular, in the problem considered in this paper, we are likely to have ξ0 = 0, and
Ξ is likely to be bounded by some constant related to v. Under these assumptions,
one may be able to group the terms ξ∗m somehow along with v and avoid being
left with ξ∗n−1 which causes the failure of strong stability. However, due to the
complexity of the calculations in Section 4.3, we are unable to pursue this direction
further at this time.

5.7. Weak stability for Υ 6= 0,Ψ 6≡ 0,Ξ 6≡ 0. First, we set Ξ ≡ 0 and consider
an extension of (78) for

ut +Υ ∗ ut −Ψ ∗ utxx + vux −Duxx = 0.(112)

We will include all the terms at the end.
Let us consider the new term Ψ ∗ utxx first. The term Ψ ∗ utxx is approximated

in analogy to (65):

Ψ ∗ utxx|t=tn,x=xj

≈
n∑

m=1

− 1

h2
(2(uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)− (uj+1,m − uj+1,m−1))ψn−m

With the above approximation, the scheme for (112) is

(113) (uj,n − uj,n−1) +

n∑

m=1

(uj,m − uj,m−1)τn−m

+

n∑

m=1

k

h2
(2(uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)− (uj+1,m − uj+1,m−1))ψn−m

+ λv(uj,n−1 − uj−1,n−1) +D
λ

h
(2uj,n − uj−1,n − uj+1,n) = 0.

The stability analysis follows analogously to those in Propositions 5.1 and 5.2.

Proposition 5.3. Let the CFL condition (83) hold and, further, (66), (68a)–(68c)
be satisfied. Then, the scheme (113) is ultra-weakly stable that is,

|g(k, χ)| ≤ 1 + gΨ(k), ∀χ,(114)

if (i) gΨ(k) =
k
ψ0

→ 0 as k → 0. Alternatively, the scheme is weakly stable if (ii)
k
h2 ≤ α holds.
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Remark 7. The result of Proposition 5.3 is weaker than that of the previous state-
ments because of non-monotonicity of the kernels involved. In practice, however,
we do not see a significant problem. If we let Ψ(t) behave like t−1/2 close to the

origin, then k
ψ0

= gΨ(k) = O(
√
k), and the assumption (i) holds. Thus (ii) is not

needed in practice.

Proof. We can quickly derive difference equations for the amplification factors gn
using the same von-Neumann framework as in what led to (86). First, we define,
for convenience,

ψ∗
m := ψm

k

h2
(2− z − z̄) = ψm

λ

h
2(1− cosθ), m = 0, 1, . . . .(115)

We note that all ψ∗
m ∈ R and are in fact nonnegative by Remark 3. Also, for a

fixed θ, they are decreasing as long as m ≤ m∗ and increasing for m > m∗.
For our analysis, we first set D = 0. Using (113) for n = 1, we obtain for g1 that

(1 + τ0 + ψ∗
0)(v1 − v0) + v0γ

∗ = 0.(116)

In order to estimate |g1|, we proceed similarly as in (88), except that we replace
τ0 by τ0 + ψ∗

0 . Then, as long as (83) holds, we have that, for any θ, |g1| ≤ 1.
Next, for n > 1, we take similar steps to the ones leading to (94) in the proof of
Proposition 5.1, except that τm is replaced in each instance by τm + ψ∗

m:

(117) (1 + τ0 + ψ∗
0)|gn| ≤ |1 + τ0 + ψ∗

0 − τ1 − ψ∗
1 − γ∗||gn−1|

+

n−2∑

m=1

|gm|(|τn−m − τn−m−1|+ |ψ∗
n−m − ψ∗

n−m−1|) + |g0|(τn−1 + ψ∗
n−1).

If n < m∗, we proceed in the same manner as in the remainder of the proof of
Proposition 5.1 since we can telescope and cancel τm + ψ∗

m by the monotonicity of
ψm. Therefore, for n < m∗, we can then easily obtain strong stability, i.e., |gn| ≤ 1.

However, if n > m∗, the estimates differ from those following (94) or (109) since
ψ∗
m is not monotone, and therefore the sign of ψ∗

n−m−ψ∗
n−m−1 changes at m = m∗,

making the telescoping and cancellation of all the terms impossible. Nevertheless,
we can still get weak stability by writing out the terms carefully.

We define Gn−1 := maxm=0,...n−1 |gm| and recall the basic steps that were used
to get (110) to see

(118) (1 + τ0 + ψ∗
o)|gn| ≤ Gn−1 {|1− γ∗|

+ (τ0 − τ1)− (τn−1 − τn−2)− (τn−2 − τn−3)− . . .− (τ2 − τ1) + τn−1

+ |ψ∗
0 − ψ∗

1 |+ |ψ∗
n−1 − ψ∗

n−2|+ |ψ∗
n−2 − ψ∗

n−3|+ . . .+ |ψ∗
2 − ψ∗

1 |+ |ψ∗
n−1|

}
.

Note that, by (68a)–(68c), we have ψ∗
m∗

− ψ∗
m∗−1 ≤ 0, but ψ∗

m∗+1 − ψ∗
m∗

≥ 0.
Therefore, the summation of the absolute values on the right hand side of (118),

after rearranging the terms, can be rewritten as

(119) |ψ∗
0 − ψ∗

1 |+ |ψ∗
1 − ψ∗

2 |+ . . .+ |ψ∗
m∗−1 − ψ∗

m∗

|+ |ψ∗
m∗

− ψ∗
m∗+1|

+ . . .+ |ψ∗
n−3 − ψ∗

n−2|+ |ψ∗
n−2 − ψ∗

n−1|+ |ψ∗
n−1|

= ψ∗
0 − ψ∗

1 + ψ∗
1 − ψ∗

2 + . . .+ ψ∗
m∗−1 − ψ∗

m∗

+ ψ∗
m∗+1 − ψ∗

m∗

+ . . .

+ ψ∗
n−2 − ψ∗

n−3 + ψ∗
n−1 − ψ∗

n−2 + ψ∗
n−1

= 2ψ∗
n−1 − 2ψ∗

m∗

+ ψ∗
0 .

Then, we obtain from (118) that

(1 + τ0 + ψ∗
o)|gn| ≤ Gn−1

{
|1− γ∗|+ τ0 + ψ∗

0 + 2(ψ∗
n − ψ∗

m∗

)
}
.
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We will prove a similar bound as in (111), with a bit more work and extra assump-
tions need for the last term (ψ∗

n − ψ∗
m∗

) in the above inequality, which we discuss
below.

There are two avenues to deal with this term. The first i) assumes (reasonable)
bound on the growth of Ψ at the origin and leads to “ultra-weak” stability (114).
The second ii) restricts the time step k and gives the usual weak stability (75).

To pursue i), we notice by (115) that the ratio
ψ∗

n−ψ
∗

m∗

1+τ0+ψ∗

0

can be bounded by
ψ∗

n−ψ
∗

m∗

ψ∗

0

=
ψn−ψm∗

ψ0
. Now, we take advantage of (56) and see that for n > m∗ it is

reasonable to estimate, since Ψ′ is at least bounded by some D∗ for t > t∗,

0 ≤ ψn − ψm∗
= k(Ψn −Ψm∗

) = k(k(n−m∗))
Ψn −Ψm∗

k(n−m∗)
≤ kTD∗.

Next, we estimate the ratio

ψn − ψm∗

ψ0
≤ k

ψ0
TD∗.

Thus, as long as gΨ(k) =
k
ψ0

→ 0 as k → 0, we have the ultra-weak stability (114).

The second approach ii) is simply to assume k
h2 ≤ α for some constant α. This is

similar to time step restrictions imposed for explicit diffusion schemes. While this
choice of time step can be prohibitively expensive, stability analysis is very simple
by noticing

ψ∗
n − ψ∗

m∗

1 + τ0 + ψ∗
0

≤ ψ∗
n − ψ∗

m∗

≤ 4αkmax
t≥t∗

Ψ(t) = O(k),

and thus the weak stability is established.
The proof of Proposition 5.3 can be completed after we redo the calculation

including D 6= 0. �

Now, combining the results and elements of the proof of Propositions 5.1, 5.2,
and 5.3, we obtain the following theorem.

Theorem 5.1. The following upwind-memory scheme for (51)

(120) (uj,n − uj,n−1) +

n∑

m=1

(uj,m − uj,m−1)τn−m

+
n∑

m=1

k

h
((uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)) ξn−m

+

n∑

m=1

k

h2
(2(uj,m − uj,m−1)− (uj−1,m − uj−1,m−1)− (uj+1,m − uj+1,m−1))ψn−m

+ λv(uj,n−1 − uj−1,n−1) +D
λ

h
(2uj,n − uj−1,n − uj+1,n) = 0.

is weakly stable (or ultra-weakly stable) under the assumptions of Propositions 5.1,
5.2, and 5.3.

5.8. Stability analysis using MOL. We recall that von-Neumann analysis ap-
plies to homogeneous pure Cauchy problems on unbounded domains or to initial
boundary value problems problems with periodic boundary conditions. The prob-
lem (51) we study in this paper is defined in practice on bounded domains with
practical (other than periodic) boundary conditions. Thus in this section we con-
sider the MOL approach as an alternative to von-Neumann stability analysis; it
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allows to understand stability and error propagation for inhomogeneous problems;
this also helps to understand how the errors, e.g., truncation errors, may propagate
in time. While we do not address the case of general boundary conditions, we set
the framework for future extensions.

A general case of MOL applied to (51) is with (69) in which un ∈ V , and (69)
is an equation (or a system) on an infinite dimensional Hilbert space V , and where
V is selected appropriately for the given boundary value problem, and C(k) is an
abstract linear operator on V . This setup was used for self-adjoint problems, e.g.,
in [18] and allows to study semi-discrete error estimates and stability. Since our
problem (51) is not self-adjoint due to the presence of v 6= 0,Ξ 6= 0, the techniques
and set-up of [18] do not apply.

We pursue MOL analysis therefore only for a fully discrete version, i.e., for (69)
is where uj,n ∈ R, j = 1, . . . J , un = (u1,n, u2,n, . . . , uJ,n)

T ∈ R
J , C(k) ∈ R

J×J .
Still, some of the calculations below are similar to those in [18] even though the
latter uses a rectangular rule and requires boundedness of the kernels, and requires
that the spatial operators involved are self-adjoint. On the other hand, [18] allow
for the study in a general Hilbert space V while we only deal with the case V = R

J .
Our MOL analysis is only performed for the (simple) case of periodic boundary

conditions. For a non-self-adjoint problem, realistic boundary conditions imposed
in (51) of Dirichlet and/or Neumann type render C(k) to be nonnormal (see, e.g.,
[8]) and make any spectral analysis of C(k) very complicated. Since the focus of
this paper is on the influence of memory terms rather than on handling boundary
conditions, we assume for simplicity only periodic boundary conditions. This makes
the analysis of C(k) similar to that of amplification factors g in von-Neumann
analysis, and allows us to skip many details. Our MOL setup can be perhaps
extended in future to handle nonperiodic boundary conditions.

For now, we assume that Ξ ≡ 0 and Ψ ≡ 0. We first rewrite (97) in matrix-vector
form, to be satisfied by vector un as follows:

(un − un−1) + λvAun−1 +
Dk

h2
Adun +

n∑

m=1

(um − um−1)τn−m = 0,(121)

where

A :=




1 −1
−1 1

−1 1
. . .

. . .

−1 1
−1 1




(122)

is the upwind difference operator matrix. It is well known [[8], 10.2, 10.4] that
A can be written as a sum of a scaled (circulant) matrix appropriate for centered
difference and a scaled (symmetric nonnegative definite) diffusion matrix

Ad :=




2 −1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 −1 2




.(123)
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Also, it is known that A and Ad have the same orthogonal sets of eigenvectors,
thus, in particular, that both are normal. We also recall that the eigenvalues of
A and Ad are, respectively, 1 − z = 1 − e−iθ (see (85)) and 2(1 − cos(θ)), where
0 ≤ θ ≤ 2π runs through a discrete set of equidistant J angles.

5.8.1. Assume first that D = 0. For MOL stability analysis, we consider the
inhomogeneous version of (121) and include kfn on its right hand side to account
for the anticipated collection of truncation errors that may arise as in (70) modifying
(69). After rearranging terms, we get a vector equation of structure analogous to
(93):

(1+τ0)un = (1+τ0)un−1−λvAun−1−τ1un−1−
n−2∑

m=1

um(τn−m−τn−m−1)+u0τn−1+kfn.

Set

C :=
1

1 + τ0
((1 + τ0)I− λvA)) = I− λv

1 + τ0
A

and

kf̄n :=
1

1 + τ0
(kfn − τ1un−1 −

n−2∑

m=1

um(τn−m − τn−m−1) + u0τn−1).(124)

Then, we get

un = Cun−1 + kf̄n.(125)

Iterating on (125), we obtain

un = Cnu0 + k

n−1∑

m=0

Cn−m+1f̄m.(126)

Since A is normal, C is normal as well. Thus, the analysis of stability, i.e., of
bounds on Cn is equivalent to finding the bounds the eigenvalues of C. In practice,
similar book-keeping is needed as that we used to prove bounds on amplification
factors Gn pursued in Section 5.4.

If k is chosen to satisfy the CFL condition, for each eigenvalue λ(C) = 1 −
vλ

1+τ0
(1− z) of C with z = e−iθ, we have by Lemma 5.1 that |λ(C)| ≤ 1 and hence

‖Cn‖ ≤ 1. Therefore, we obtain

‖un‖ ≤ ‖u0‖ + k

n−1∑

j=0

‖f̄j‖.(127)

Note that ‖f̄j‖, j = 0, . . . , n − 1, include the telescoping entries involving um, so
that (127) does not complete the stability proof. However, one could proceed by
induction similarly as was done in the proof of Proposition 5.1 to obtain strong
stability for the homogeneous case, i.e., ‖un‖ ≤ ‖u0‖. We skip the details because
they do not bring any new information.

For the inhomogeneous case, we proceed similarly as in [18] and obtain weak
stability via a calculation that can be later applied immediately to the cases with
Ξ 6= 0,Ψ 6= 0.

To this aim, we prove the following auxiliary Lemma.
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Lemma 5.3. Let un satisfy (127) and

k‖f̄n‖ ≤ k‖fn‖ +
n−1∑

m=0

αn−1−m‖um‖(128)

for some given nonnegative sequence (αm)n−1
m=0 whose sum for any n is bounded by

some constant α∗. Then, there is a constant CT which depends only on ktn and on
(αm)m such that

‖un‖ ≤ CT (‖u0‖ +

n∑

m=0

‖fm‖).

Proof. By (127), we get

‖un‖ ≤ ‖u0‖ + k

n−1∑

j=0

‖fj‖ + k

n−1∑

j=0

j−1∑

m=0

αj−1−m‖um‖.(129)

We switch the order of summation in the last sum of (129) to obtain

n−1∑

j=0

j−1∑

m=0

αj−1−m‖um‖ =

n−1∑

m=0

‖um‖
n∑

j=m+1

αj−1−m.

Then, since αjk are all nonnegative and their sum is bounded, we can estimate from
(129)

‖un‖ ≤ ‖u0‖ + k

n−1∑

j=0

‖fj‖ + kα∗
n−1∑

m=0

‖um‖.(130)

Applying discrete Gronwall’s Lemma as in [[18], Lemma preceding Theorem 1], we
conclude that

‖un‖ ≤ CT

(
k

n−1∑

m=0

‖fm‖ + ‖u0‖
)
,(131)

where the constant CT depends only on T = nk and α∗. �

Now, we can use Lemma 5.3 with

αn−1−m = |τn−m − τn−m−1|, m = 1, . . . n− 2, αn−1 = τn−1, α1 = τ1.(132)

We see that these coefficients are nonnegative and that their sum is bounded by∑n
m=0 τm =

∫ tn
0

Υ(s)ds which by Remark 1 is bounded. Thus, we obtain (131),
i.e., weak stability.

5.8.2. The analysis above is easily extended to the case D 6= 0. In this case, by
setting

B := (1 + τ0)I+
Dk

h2
Ad,

G := I(1 + τ0)− λvA),

C := B−1G,

we can see that (125) still holds and we have to prove that ‖C‖ ≤ 1 like in the
previous case. We notice that B and G have the same (full) set of eigenvectors, thus
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the eigenvalues of C are the ratio of those for G and B. In order to find conditions
upon which ‖C‖ ≤ 1, we analyze the magnitude of the eigenvalues

|1 + τ0 − λv(1 − z)|
|1 + τ0 +

Dk
h2 2(1− cos(φ))|

.

Since the denominator is real and bounded from below by 1+τ0, Lemma 5.1 implies
that the CFL condition (83) is sufficient for the above expression to be bounded by
1, and hence for stability.

The arguments used to demonstrate ‖C‖ ≤ 1 are similar to those in von-Neumann
Ansatz.

5.8.3. The MOL analysis for the cases Υ 6= 0,Ξ 6= 0,Ψ 6= 0, which gives weak
stability as long as (83) holds, is somewhat more involved, but eventually follows
from Lemma 5.3.

We formulate the scheme (113) in the MOL framework as follows:

(un − un−1) + λvAun−1 +
Dk

h2
Adun

+

n∑

m=1

τn−m(um−um−1)+

n∑

m=1

λξn−mA(um−um−1)+

n∑

m=1

k

h2
ψn−mAd(um−um−1) = 0.

We can rewrite the above equation to see

(133)

(
(1 + τ0)I+

k

h2
(D + ψ0)Ad + λξ0A

)
un

=

(
(1 + τ0)I+

k

h2
ψ0Ad − λ(v − ξ0)A

)
un−1 + kf̃n

with

kf̃n := kfn − (τ1I+
k

h2
ψ1Ad + λξ1A)un−1

−
n−2∑

m=1

(
(τn−m − τn−m−1)I+

k

h2
(ψn−m − ψn−m−1)Ad + λ(ξn−m − ξn−m−1)A

)
um

+ (τn−1I+
k

h2
ψn−1Ad + λξn−1A)u0.

To put this in the form (125), we set

B := (1 + τ0)I+
k

h2
(D + ψ0)Ad + λξ0A

G := (1 + τ0)I+
k

h2
ψ0Ad − λ(v − ξ0)A

C := B−1G.
and

f̄n := B−1fn.

If we assume ξ0 = 0, it is easy to prove that ‖C‖ ≤ 1 l in a manner similar to
what was done in Section 5.8.2. However, we need also to consider the norms of
B−1Gm, where Gm are the matrices appearing in the definition of f̃n such that

kf̃n := kfn − Gn−1un−1 −
n−2∑

m=1

Gmum + G0u0.
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However, these norms are not bounded by 1 but rather by 1 +CΞk, where CΞ is a
constant depending on Ξ. This can be seen in a similar way to the estimate (111).We
proceed next to estimate the terms ‖f̄n‖ in a similar manner to Lemma 5.3, with
αm including appropriate components involving CΞ, τp, ξp, ψp for appropriate p, in
analogy with (132). Analysis for ξ0 6= 0 will not be presented.

We summarize the results in the following theorem, which extends Theorem 5.1
to the nonhomogeneous case.

Theorem 5.2. Supposed that the same assumptions of Theorem 5.1 and an ad-
ditional assumption (54) are satisfied. Then, the solutions to the upwind memory
scheme (120), when extended to the inhomogeneous case, satisfy the weak stability
bound

‖un‖ ≤ C

(
k

n∑

m=0

‖fm‖ + ‖u0‖
)
,(134)

where C is some constant only depending on Υ,Ξ,Ψ, and the final time T .

6. Numerical Results

In this section, we present some numerical results to validate our upscaled solute
transport model (17) in 2d space. For simulations of the micro-model, we used the
first-order Godunov and cell-centered finite difference (CCFD) method combined
with backward Euler discretization in time, see [3, 4]. These techniques are well
known to be first order accurate in time and space. Our implementation in MAT-
LAB is similar to that described in [2, 16]. On the other hand, we implemented
CCFD and a Locally Conservative Eulerian-Lagrangian Method (LCELM)[6, 5, 7]
to discretize the systems (10) and (12), and the effective solute transport equation
(17).

It is well known that advection-dominated PDEs present serious numerical diffi-
culties due to the moving steep fronts present in the solutions of advection-diffusion
transport PDEs or shock discontinuities in the solutions of pure hyperbolic PDEs.
In response to this, a variety of numerical techniques have been introduced, with
many classified as Eulerian-Lagrangian methods, in which an Eulerian finite differ-
ence or finite element treatment of diffusion is combined with a Lagrangian treat-
ment of convection. LCELM is one that was especially designed to achieve local
mass conservation. However, with the extra memory terms in our upscaled model,
we observed from our simulation results that LCELM and CCFD yield almost iden-
tical results. Therefore, we neither describe the algorithms of LCELM nor present
the results from LCELM here.

Assume that Ω̃ = (0, Lx) × (0, Ly). We introduce the grid for the CCFD for

which we partition Ω̃ into a uniform rectangular cells as follows: Let Nx > 0 and
Ny > 0 be integers and ∆x = Lx/Nx and ∆y = Ly/Ny. Let xi = i∆x and
yj = j∆y, i = 0, · · · , Nx, j = 0, · · · , Ny and define the cells to be the rectangles
Kij = (xi−1, xi) × (yj−1, yj), i = 1, · · · , Nx, j = 1, · · · , Ny with the centers zi,j =
(xi−1 + 0.5∆x, yj−1 + 0.5∆y). For the temporal discretization, we use k to denote
the time step, so tn = nk, n = 1, · · · , Nt.

We want to compute an approximate solution uni,j ≈ u(zi,j , t
n), i = 0, · · · , Nx, j =

0, · · · , Ny at each discrete time step tn, n = 1, · · · , Nt.



MULTISCALE FLOW AND TRANSPORT 33

For the spatial discretization, the diffusion terms, both primary and secondary,
are approximated using the standard 5 point finite difference formula:

∇ · (D∇u) |(zi,j,tn)≈
1

∆x

(
Di+1/2,j

uni+1,j − uni,j
∆x

−Di−1/2,j

uni,j − uni−1,j

∆x

)

+
1

∆y

(
Di,j+1/2

uni,j+1 − uni,j
∆y

−Di,j−1/2

uni,j − uni,j−1

∆y

)
,

where the diffusion coefficients, Di±1/2,j and Di,j±1/2, at the cell interfaces are
given by the harmonic average of the adjacent cell-center diffusion coefficients. For
example,
(135)

Di−1/2,j =

[
1

2

(
1

Di−1,j
+

1

Di,j

)]−1

, Di,j−1/2 =

[
1

2

(
1

Di,j−1
+

1

Di,j

)]−1

.

On the other hand, the advection terms are approximated using the upwind
scheme and treated explicitly.

Now, we will describe how to approximate the memory (convolution) terms.
Each convolution term in the upscaled model (17) is of the form

(G ∗ Lut)(x, t) =
∫ t

0

G(t− s)Lut(x, s) ds,x ∈ Ω̃, t ∈ I = (0, T ],

where G = Υ,Ξ, or Ψ and L is one of the identity, diffusion, or advection operators.
We use an appropriately modified version of the product integration rule (61) for
each convolution term:

(136) (G ∗ Lut)(zi,j , tn) ≈
n∑

m=1

Lhumi,j − Lhum−1
i,j

m
gn−m,

where Lh is a discrete operator corresponding to L and g = τ, ξ, or ψ. More
specifically, if L is a diffusion operator, Lh is the standard 5-point finite difference
scheme and if L is an advection operator, Lh is the upwind finite difference scheme.

For our simulations, we used a rectangular domain Ω of size 40×10 cm2. Let the
generic cell Ω0 be a square of size l× l, and Ω0s, centered inside Ω0, be a square of
size (l− δ)× (l− δ). Therefore, the fast flow part Ω0f has uniform thickness around
Ω0s. An example computational domain with 8 by 2 matrix blocks is depicted in
Fig 2.

The fast flow region, Ωf , and the slow flow region, Ωs, have the same porosity
of φf = φs = 0.42. Here, we consider three different regimes of flow and transport
depending on the ratio Kratio = Kf/Ks: Kratio = 6, 300, 1800. We assume that
the permeability Kf is isotropic and Kf = 9.647 cm/min. We also assume that the
medium is initially fully concentrated with the solute, ı.e. u∗(x, 0) = 1, x ∈ Ω and
clear fluid is pumped vf · n = −vl = −3.4 · 10−4 [cm/min] along the left boundary

Figure 2. Computational domain Ω with 8 by 2 matrix blocks.
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Domain [cm2 ×min] Ω = [0, 40]× [0, 10] [0, T]=[0, 1800]
Generic cell [cm2] l = 2.5, 5.0 δ = 0.2
Porosity [-] φf = 0.42 φs = 0.42
Permeability [cm/min] Kf = 9.647 Ks = Kf/Kratio

Diffusivity [cm2/min] dm = 3.4 · 10−4

Dispersivity [cm] dt = 0.15 dl = 1.5
Table 1. Simulation parameters

and vf · n = vr = 3.4 · 10−4 [cm/min] along the right boundary of the medium.
Our simulation parameters are summarized in Table 1.

In our simulation, we approximate the effective permeability K∗ with simple
formula used by Arbogast [1], which is averaging the microscopic permeability
harmonically in the direction of flow and arithmetically in the transverse direction.
In our problem, the effective permeability can be approximated by K∗ = δ

l · Kf .
The effective diffusion/dispersion tensor is computed in the same way, i.e. D∗ =
δ
l · D(v∗). Due to the boundary conditions for vf , our effective flow problem

(9) becomes an 1-D problem which yields v∗ = (vl, 0) = (3.4 · 10−4, 0). Then,
v∗ = (vlK

∗/(K∗ + θsKs), 0) and v∗
i = (vlKs/(K

∗ + θsKs), 0) follow from (8) and
(9).

First, in order to validate our upscaled model, we compare breakthrough curves
produced by the microscopic model (1) and (2) and the ones produced by our
upscaled model (9) and (17). The breakthrough curves are measured at the outlet
(right side) of the medium with 8×2 blocks (l = 5.0) and 16×4 blocks (l = 2.5). The
upscaled model was solved as described earlier in this section and the microscopic
model was solved by the cell-centered finite difference (CCFD) method.

Figure 3 depicts the comparison of breakthrough curves between the microscopic
and upscaled models for various flow regimes on both linear scale (left column) and
log-log scale (right column) when the domain has 8 by 2 matrix blocks. We observe
that the breakthrough curves of the microscopic simulations using CCFD (blue
solid lines) show a good match with that of the upscaled model (red dashed lines)
throughout the whole range of Kratio values. Moreover, breakthrough curves from
different permeability heterogeneity display different tailing behaviors. No signif-
icant tailing occurs in the low contrast case (Kratio = 6). In the high contrast
case (Kratio = 1800), the tailing is long-term and diffusion driven, while the inter-
mediate contrast case (Kratio = 300) shows a flatter early part of tails which are
primarily advective.These phenomena coincide with the observation made in lab
experiments [21].

We also did the same comparison study when the domain has 16 by 4 blocks
and the results are shown in Figure 4. We observe a better match between the two
models when there are more matrix blocks. On the other hand, the tails in the
intermediate and high contrast cases look qualitatively different from the previous
case of 8 by 2 blocks.

Next, we compare the solution (concentration profile) of the microscopic model
(left column) and the upscaled model (right column) at time T = 500 for the
domain with 8 by 2 matrix blocks in Figure 5. The heterogeneous structure of Ω
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Figure 3. Breakthrough curves from the microscopic and up-
scaled models on linear (left column) and log-log scale (right col-
umn) when the domain has 8 by 2 matrix blocks. The low, interme-
diate, and high contrast cases (Kratio = 6, 300, 1800, respectively)
from top to bottom.

is apparent from the behavior of the microscopic model solution, which has a large
concentration gradient on the matrix boundaries.

For a better comparison of the two models, Figure 6 illustrates cross-sections of
the microscopic and upscaled models along the lines y = 2.5 (along the center of
matrix blocks) and y = 5 (along the fracture) for the 8 by 2 matrix block case and

along the lines y = 1.25 and y = 2.5 for the 16 by 4 matrix block case.

In order to examine the quantitative significance of each memory term in different
regimes of flow and transport, we compare three different models; the traditional
double porosity model, the model which includes the secondary diffusion term,

∇·
(
Ψ ∗ ∇∂u∗

∂t

)
, along with the double porosity term, T 00 ∗ ∂u∗

∂t , and the full model

which includes all memory terms. In Figure 7, we depict the result for various
permeability heterogeneity, Kratio = 6, 300, 1800. Across the whole range of Kratio
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Figure 4. Breakthrough curves from the microscopic and up-
scaled models on linear (left column) and log-log scale (right col-
umn) when the domain has 16 by 4 matrix blocks. The low, in-
termediate, and high contrast cases (Kratio = 6, 300, 1800, respec-
tively) are given from top to bottom.

values, the secondary diffusion term is almost negligible. On the other hand, while
the secondary advection term, Ξ ∗ ∇∂c∗

∂t , is insignificant for the intermediate and
high contrast cases (Kratio = 300, 1800), it plays an important role for the low
contrast case (Kratio = 6). Therefore, the traditional double-porosity model yields
fairly good results for the intermediate and high contrast cases. However, in the
low contrast cases, we need more memory terms to capture the dynamic in the
breakthrough curves.
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