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Abstract In this paper we consider a nonlinear heat equation describing thawing
and freezing of permafrost soils with the time varying surface boundary condition.
We compare two schemes for time discretization: a conservative fully implicit one
and a non-conservative sequential approach which uses the so called apparent heat
capacity. We show that the differences between the schemes can be significant if
the time step is large and when the inputs to the problem change abruptly. We also
show that a simple variant of sequential scheme with arithmetic average and an
extra iteration does not give consistency but gives better agreement with the implicit
approach.

1 Introduction

In this paper we discuss two time-stepping schemes denoted by (IMP) and (SEQ)
for a model of thawing/freezing of soils in permafrost regions (e.g., in the Arctic);
we follow the physical models and scenarios known from geophysical literature
[4, 17, 12]. In particular, we are interested in realistic scenarios when the soils respond
to the daily, seasonal, and long-term variation of the temperature at the ground
surface, and these variations depend on the atmospheric temperature and other
physical parameters [2]. We use our earlier work on conservative spatial discretization
combined with implicit time stepping (IMP) described in [1, 10, 16]. In this paper we
also consider a different non-conservative time stepping scheme (SEQ) which is easy
to implement and is quite popular in the geophysical literature. We compare these
two algorithms (IMP) and (SEQ) and discuss their pros and cons for the scenarios
involving highly variable boundary conditions.
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Specifically, we consider a doubly nonlinear heat equation posed in a soil region
Ω ⊂ R𝑑 solved for the enthalpy 𝑤, temperature 𝑢, and liquid fraction 𝜒

𝜕𝑡 (𝑤) − ∇ · (𝑘 (𝑢)∇𝑢) = 0, 𝑥 ∈ Ω, 𝑡 > 0. (1a)
𝑤 = 𝛼(𝑢) = 𝐶 (𝑢) + 𝐿𝜂𝜒(𝑢), (1b)

where the constitutive empirical relationships for the heat enthalpy 𝛼(𝑢), its capacity
portion 𝐶 (𝑢), liquid fraction 𝜒(𝑢), and heat conductivity 𝑘 (𝑢), respectively, will be
given below. Also, 𝐿, 𝜂 are positive parameters denoting the latent heat and porosity.
The model is completed with the time-dependent Dirichlet boundary conditions on
the Dirichlet portion Γ𝐷 of the boundary 𝜕Ω, and with Neumann conditions on its
complement, and initial conditions

𝑢 |Γ𝐷 = 𝑢𝐷; 𝑘∇𝑢 · 𝜈 |𝜕Ω\Γ𝐷 = 𝑔𝑁 ; 𝑡 > 0, (1c)
𝑢(𝑥, 0) = 𝑢𝑖𝑛𝑖𝑡 (𝑥), 𝑥 ∈ Ω. (1d)

The primary difficulty is the double nonlinearity of the model and the lack of
smoothness of 𝐶 (𝑢), 𝜒(𝑢) and 𝑘 (𝑢) at 𝑢 = 0. (Other difficulties arise when the soil
is heterogeneous [16]). In general, 𝐶 (·) is continuous monotone strictly increasing
and Lipschitz on R and differentiable except at 𝑢 = 0. Also, 𝜒(𝑢) is a continuous
monotone nondecreasing Lipschitz function with values in [0, 1] and is smooth
except at 𝑢 = 0 with a large gradient as 𝑢 → 0− . These properties make 𝛼(𝑢)
a monotone increasing piecewise smooth function, with an inverse 𝛼−1 featuring
similar properties. In turn, 𝑘 (𝑢) is bounded, uniformly positive and continuous.

In consequence, the model (1) has to be understood in terms of distributions, and
its weak solutions to (1) feature a free boundary 𝑆 = {(𝑥, 𝑡) : 𝑢(𝑥, 𝑡) = 0}. Generally,
the solutions to (1) are smoother than those to Stefan problem [14] where 𝜒 may be
discontinuous or multivalued at 𝑢 = 0; see the simulations in the supplement to [10].

Remark 1 In some applications focused literature [4] 𝜒(·) is considered discontinu-
ous or multi-valued similarly to Stefan problem, and 𝛼(·) and 𝑘 (·) follow suit. The
(IMP) scheme works well with these as we show in [1], but the consideration of
(SEQ) raises questions; a discussion of these is left for future work.

The numerical schemes for (1) present challenges well documented in our work
[1, 10, 16] on conservative discretizations involving spatial discretization with low-
est order mixed finite elements on rectangular grid implemented as CCFD (cell-
centered finite differences), combined with fully implicit approaches using 𝑤 or 𝑢
as the primary unknowns. The mentioned conservation properties are essential in
heterogeneous soils [16] as well as when the thermal model is extended to be a part
of coupled thermal-flow (TpH) model presented in [8] or thermal-flow-mechanical
model (TpHM) in [17, 15].

However, the fully implicit approach is complicated, because an explicit closed
form of 𝛼(𝑢) and of 𝛼−1 (𝑢) may not be available or might be computationally
expensive to evaluate. These difficulties are likely the reason why the schemes
reported in most of the applications literature including [12, 2] apply the chain rule
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to write 𝜕𝑡𝑤 = 𝑐𝑎𝑝𝑝 (𝑢)𝜕𝑡𝑢, with the “apparent heat capacity” 𝑐𝑎𝑝𝑝 (𝑢) so that

𝑐𝑎𝑝𝑝 (𝑢) =
𝑑𝛼

𝑑𝑢
=

𝑑𝐶

𝑑𝑢
+ 𝐿𝜂

𝑑𝜒

𝑑𝑢
, 𝑢 ≠ 0; 𝛼(𝑢) =

∫ 𝑢

0
𝑐𝑎𝑝𝑝 (𝑣)𝑑𝑣. (2)

The issue is that 𝑐𝑎𝑝𝑝 is discontinuous at 𝑢 = 0; it also features a sharp gradient
as 𝑢 → 0−; see Figure 1. The associated numerical difficulties have not been well
studied in the applications literature with a notable exception of [4] who write
𝜕𝑡𝑤 = 𝑑𝐶

𝑑𝑢
𝜕𝑡𝑢 + 𝐿𝜂𝜕𝑡 𝜒 and treat 𝜕𝑡 𝜒 implicitly. However, perhaps partly due to

their non-conservative choice of spatial discretization (nodal finite elements), the
results in [4] still feature some oscillations seemingly related to the mass lumping
combined with the use of 𝑑𝐶

𝑑𝑢
and the associated lack of maximum principle. In turn,

the presentation of the numerical schemes in other applications papers is either absent
or is somewhat obscured by the use of field-specific vocabulary and notation specific
to each paper and their objectives, and is missing details on the discretization; only
[4] presents results corresponding to more than one scheme.

It is the purpose of this paper to compare the implicit (IMP) and the sequential
scheme (SEQ) with 𝑐𝑎𝑝𝑝 on simple examples for which we demonstrate the simi-
larity and differences and advantages and disadvantages, while we keep the spatial
discretization conservative.

Outline. In Section 2 we provide details of the model (1) and its numerical
discretization. In Section 3 we compare the implicit and sequential schemes. In
Section 4 we conclude and present future and current work.

2 Details of Model (1) and Numerical Discretization

We now make precise the data 𝛼(·), 𝑘 (·) in (1), which completes the presentation of
the model. We also define the numerical schemes. In Section 2.4 we also define an
algorithm to determine the surface boundary conditions depending on the terrain.

2.1 Constitutive Data

We define 𝜒(·) first. We adopt the choice from [17], and refer to [11] for a compre-
hensive list of other 𝜒(·) called SFC. Given some 𝑏 > 0, we set

𝜒(𝑢) = 1, 𝑢 ≥ 0, and 𝜒(𝑢) = 𝑒𝑏𝑢, 𝑢 < 0. (3)

Next we use thermal soil data from [4, 2, 1, 10, 16] and use volumetric SI units; see
[8] for a detailed comparison and a discussion of assumptions and physical units.

We assume the soil porosity 𝜂 = 0.32 is fixed and let 𝐿 ≈ 3.3 × 108 so 𝜂𝐿 ≈ 108.
The volume fractions of rock and water components are denoted by 𝜈𝑟 = 1 − 𝜂 and
𝜂 = 𝜂(1 − 𝜒𝑙 + 𝜒𝑙) = 𝜈𝑖 + 𝜈𝑙 where 𝜈𝑖 = 𝜂(1 − 𝜒𝑙) is the frozen volume fraction,
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Fig. 1 Plot of 𝛼(𝑢) , 𝑐𝑎𝑝𝑝 (𝑢) = 𝑑𝛼
𝑑𝑢

(left axis, scaled by 102) and 𝑘 (𝑢) (right axis, scaled by
10−2) from Section 2.1.

and 𝜈𝑢 = 𝜂𝜒𝑙 is the unfrozen volume fraction. We apply arithmetic weighting to the
heat capacities building from the thermal properties of rock, ice, and water [2, 4, 10]
with 𝐶 (𝑢) =

∫ 𝑢

0 𝑐(𝑣)𝑑𝑣, where 𝑐 𝑓 = 𝜂𝑐𝑖 + (1 − 𝜂)𝑐𝑟 , 𝑐𝑢 = 𝜂𝑐𝑙 + (1 − 𝜂)𝑐𝑟 and

𝑐(𝑢) = 𝑐 𝑓 + 𝜒(𝑢) (𝑐𝑢 − 𝑐 𝑓 ); 𝑐𝑙 = 4.19 × 106, 𝑐𝑖 = 1.94 × 106, 𝑐𝑟 = 2.36 × 106,

The heat conductivities are weighted similarly

𝑘 (𝑢) = 𝑘𝑟 𝜈𝑟 + 𝑘𝑙𝜈𝑙 (𝑢) + 𝑘𝑖𝜈𝑖 (𝑢); 𝑘𝑙 = 0.58, 𝑘𝑖 = 2.30, 𝑘𝑟 = 1.95.

Next we multiply (1) by 106

𝐿𝜂
, rescale 𝑐𝑝 =

𝑐𝑝
𝜂𝐿

, and set the time unit 1 to correspond
to 106 [sec] ≈ 11.57 [day] which fits the characteristic time of freezing/thawing.
(We keep the same notation 𝑡). We also set �̃� 𝑝 = 106 𝑘𝑝

𝜂𝐿
for every 𝑝 = 𝑟, 𝑖, 𝑙. We

have now 𝑐 𝑓 = 2.21 × 10−2; 𝑐𝑢 = 2.94 × 10−2, �̃� 𝑓 = 2.06 × 10−2, �̃�𝑢 = 1.51 × 10−2,

𝛼(𝑢)
𝜂𝐿

= (𝑐𝑢 − 𝑐 𝑓 )
∫ 𝑢

𝑜

𝜒(𝑣)𝑑𝑣 + 𝑐 𝑓 𝑢 + 𝜒(𝑢); 𝑘 (𝑢)106

𝐿𝜂
= �̃� 𝑓 + ( �̃�𝑢 − �̃� 𝑓 )𝜒(𝑢). (4)

We illustrate in Figure 1: 𝜒(𝑢), 𝑘 (𝑢), 𝛼(𝑢) are continuous, but 𝛼(𝑢) is not differ-
entiable at 𝑢 = 0, and features a large gradient as 𝑢 → 0− with a discontinuous
𝑐𝑎𝑝𝑝 (𝑢). In turn, 𝑘 (𝑢) is nonnegative and bounded.

2.2 Fully Implicit Conservative Scheme (IMP) for (1)

We consider a rectangular grid covering Ω, with midpoints (𝑥 𝑗 )𝐽𝑗=1, with uniform
spacing with parameter ℎ for simplicity. We note the region need not be rectangular,
and the numbering 𝑗 = 1, . . . 𝐽 need not be of consecutive cells. We also use fully
implicit backward Euler scheme at 𝑡1, 𝑡2 . . . 𝑡𝑛, . . ., with time step 𝜏 considered
uniform for simplicity of presentation, 𝑡0 = 0 and 𝑡𝑛+1 = 𝑡𝑛 + 𝜏. We approximate the
solutions 𝑢(𝑥 𝑗 , 𝑡

𝑛) ≈ 𝑈𝑛
𝑗
, and similarly 𝑊𝑛

𝑗
≈ 𝑤(𝑥 𝑗 , 𝑡

𝑛),Υ𝑛
𝑗
≈ 𝜒(𝑥 𝑗 , 𝑡

𝑛). These are
collected in 𝑈𝑛 = (𝑈𝑛

𝑗
) 𝑗 , 𝑊𝑛 = (𝑊𝑛

𝑗
) 𝑗 , Υ𝑛 = (Υ𝑛

𝑗
) 𝑗 .
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The fully implicit formulation reads: at every time step 𝑡𝑛, solve

1
𝜏
(𝑊𝑛 −𝑊𝑛−1) + 𝐴(𝑈𝑛)𝑈𝑛 = 𝐺𝑛; (5)

𝑊𝑛
𝑗 = 𝛼(𝑈𝑛

𝑗 ), Υ𝑛
𝑗 = 𝜒(𝑈𝑛

𝑗 ), 𝑗 = 1, . . . 𝐽.

Here 𝐴(𝑈) is a symmetric positive definite matrix and 𝐴(𝑈)𝑈 approximates
−∇ · 𝑘 (𝑢)∇𝑢 with the boundary condition (1c) included in the term 𝐺𝑛; see [1, 16]
for details. We also note that the mass matrix in (5) is the rescaled identity matrix
which is formally absorbed under 𝐴. For 𝑛 = 0 we discretize (1d).

The system (1) is nonlinear semi-smooth and must be solved by iteration, e.g.,
by semi-smooth Newton using either 𝑊 or 𝑈 as a primary unknown. We refer to
[16] for a discussion of advantages and disadvantages, and to [9] for analysis of a
more general model involving non-equilibria and hysteresis. In particular, resolving
𝑊𝑛

𝑗
= 𝛼(𝑈𝑛

𝑗
) or 𝑈𝑛

𝑗
= 𝛼−1 (𝑊𝑛

𝑗
) requires an explicit formula for 𝛼(𝑢) or its inverse,

or a local nonlinear solver. This may be computationally expensive.

Remark 2 Obtaining closed form algebraic formulas for 𝛼−1 (𝑤) and even for 𝛼(𝑢)
may be unfeasible, e.g., if 𝜒(𝑢) is given by 𝑒−𝑏𝑢

2 [3], or if there are further nonlin-
earities, e.g., when 𝑐𝑙 = 𝑐𝑙 (𝑢) [7, 2]. Further difficulties arise when the soil is not
fully saturated and when the model accounts for the presence of air.

These difficulties motivate an alternative approach to (IMP) based on (2).

2.3 Sequential Formulation (SEQ) with 𝒄𝒂𝒑𝒑 in (2)

To use (2), we define the diagonal matrix 𝐶𝑎𝑝𝑝 (𝑈) with 𝐶𝑎𝑝𝑝, 𝑗 𝑗 (𝑈) = 𝑐𝑎𝑝𝑝 (𝑈 𝑗 )
and replace (5) with a nonlinear problem solved by iteration 𝑚 = 1, . . . 𝑀

1
𝜏
𝐶𝑎𝑝𝑝 (𝑈∗) (𝑈𝑛,𝑚 −𝑈𝑛−1) + 𝐴(𝑈𝑛,𝑚−1)𝑈𝑛,𝑚 = 𝐺𝑛. (6)

To choose 𝑈∗, we can set 𝑈∗ = 𝑈𝑛−1 so that (6) is linear. Alternatively we can use
𝑈∗ = 𝑈𝑛,𝑚−1 and iterate𝑚 = 1, 2, . . . 𝑀 , with𝑈𝑛,0 = 𝑈𝑛−1. The choice of arithmetic
average 𝑈∗ = 𝑈𝑛,𝑚−1+𝑈𝑛−1

2 with 𝑀 = 2 works well as a predictor-corrector.

Remark 3 Integrating
∫ 𝑡𝑛

𝑡𝑛−1 𝜕𝑡𝑤(·, 𝑠)𝑑𝑠 ≈ 𝑊𝑛 − 𝑊𝑛−1 explains why (5) is conser-
vative, but also reveals that (6) is inconsistent and not conservative. This follows
because there is no 𝑈∗ so that 𝑊𝑛 −𝑊𝑛−1 equals 𝑐𝑎𝑝𝑝 (𝑈∗) (𝑈𝑛 − 𝑈𝑛−1), and no
specific choice of 𝑈∗ can make the solutions to (6) consistent with (5).
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2.4 Surface Boundary Condition

In our simulations we need to define 𝑢𝐷 (𝑥, 𝑡), 𝑥 ∈ Γ𝐷 , 𝑡 > 0 in (1c). Specifically,
we require the knowledge of the surface temperature 𝑢𝑆 (𝑥, 𝑡) = 𝑢𝐷 (𝑥, 𝑡) |Γ𝑠 where
Γ𝑠 ⊂ 𝜕Ω represents the surface of the soil.

To this aim we follow closely [2] who postulate that at every point 𝑥, 𝑡,
𝑇𝑠𝑜 (𝑥, 𝑡) [◦K] = 𝑢𝑆 (𝑥, 𝑡) [◦C] + 273.15 depends on the atmospheric temperature
𝑇𝑎 (𝑥, 𝑡) [◦K] and on a variety of physical conditions including the air pressure
and the temperature dew point, the surface albedo 𝛼(𝑥, 𝑡), and other parameters
𝑋1, 𝑋2, . . . 𝑋9 which we derive from the formulas in [2], and other physical data
in [5, 6]. Given a fixed 𝛼,𝑇𝑎, we find the surface temperature 𝑇𝑠𝑜 as the root to

𝑓 (𝛼,𝑇𝑎, 𝑇𝑠𝑜) = (1 − 𝛼)𝑋1 + 𝑋2 (1 − 𝑒−𝑋
𝑇𝑎

2016
3 )𝑇𝑎4 + 𝑋4𝑇𝑠𝑜

4

+ 1

1+𝑋5
(𝑇𝑎−𝑇𝑠𝑜 )

𝑇𝑎

[𝑋6 (𝑇𝑎 − 𝑇𝑠𝑜) + 𝑋7] + 𝑋8 (𝑇𝑠𝑜 − 𝑋9) = 0, (7)

where 𝑋1 = 1361, 𝑋2 = 6.12×10−8, 𝑋3 = 3.72, 𝑋4 = −5.10×10−8, 𝑋5 = 39.24, 𝑋6 =

48.97, 𝑋7 = 16095.745, 𝑋8 = −1.02, 𝑋9 = 272.
The function 𝑓 (𝛼,𝑇𝑎, 𝑇𝑠𝑜) is quite complicated and on a first glance it is not clear

whether it is even well defined, and if it has a root. Figure 2 shows its plot for three
choices of albedo parameter 𝛼 corresponding to the snow covered land, vegetation
covered land, and water covered land, respectively. Next we collect atmospheric data
for𝑇𝑎 (𝑥, 𝑡) from [13]; for this paper we choose the data for October 2023 in Gulkana,
Alaska. Then, for each 𝑇𝑎 (𝑥, 𝑡), 𝛼(𝑥, 𝑡) we find the corresponding 𝑇𝑠𝑜 (𝑥, 𝑡) as the
root of (7). In practice, we find 𝑇𝑠𝑜 (𝑥, 𝑡) by interpolating a look-up table calculated
off-line for a collection of {𝑇𝑎, 𝛼}.

Fig. 2 Illustration of Section 2.4, with all temperature given in [◦C]. Left: plot of 𝑓 (𝛼, 𝑇𝑎 , 𝑇𝑠𝑜 )
given by (7) for 𝑇𝑎 = 0 (circles) and 𝑇𝑎 = −11 (squares) and three choices of albedo, over a range
of 𝑇𝑠𝑜, with the roots for each 𝛼 and 𝑇𝑎 marked with red circles and squares. Right: a scatter plot
of 𝑇𝑠𝑜 corresponding to the three choices of albedo for a range of input air temperature 𝑇𝑎 values
found from [13]. It appears that 𝑇𝑠𝑜 for snow is close to 𝑇𝑎 , but that for water and vegetation is
about 4 [◦C] larger than 𝑇𝑎 .
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3 Simulation Results

Now we illustrate the difference between 𝑈 𝐼𝑀𝑃 and 𝑈𝑆𝐸𝑄 when these respond to
the varying surface boundary conditions.

3.1 Computational Results for 1D

Our first example in 𝑑=1 shows that the𝑈𝑆𝐸𝑄,Υ𝑆𝐸𝑄 are close to𝑈 𝐼𝑀𝑃 ,Υ𝐼𝑀𝑃 even
if the boundary condition is rough; the closeness improves as the time step 𝜏 ↓. We
use Newton’s method for the IMP scheme (5) with absolute tolerance 10−8, and the
simple iteration with 𝑀 = 2 and 𝑈∗ = 𝑈𝑛+𝑈𝑛−1

2 in the SEQ scheme (6).
Let Ω = (0, 1), 𝐽 = 50, and 𝑇 = 3 (about 33 [days]), and consider

(ROUGH) 𝑢𝑖𝑛𝑖𝑡 (𝑥) = −5, 𝑢(0, 𝑡) = 4 𝑢(1, 𝑡) = −5. (8a)

(SMOOTH) 𝑢𝑖𝑛𝑖𝑡 (𝑥) = −5, 𝑢(0, 𝑡) =
{
−5 + 4𝑡, 𝑡 ≤ 1;
4, 1 < 𝑡;

𝑢(1, 𝑡) = −5, (8b)

where 𝑢𝐷 (𝑡) in (8a) and (8b) feature a discontinuity at 𝑡 = 0 and 𝑡 = 1, respectively.
We simulate the problem with (IMP) and (SEQ) schemes and plot the solutions in
Figure 3. We also study Δ𝑈 |𝑡 = | |𝑈 𝐼𝑀𝑃 (·, 𝑡) −𝑈𝑆𝐸𝑄 (·, 𝑡) | |∞.

For (8a) we see that the Δ𝑈 |𝑡 is small when 𝜏 is small and 𝑀 = 2. Specifically,
Δ𝑈 |𝑡=1=0.74,0.35,0.06 for 𝑀 = 2, and Δ𝑈 |𝑡=1=1.12,0.62,0.33 for 𝑀 = 1, and
𝜏 = 0., 0.2, 0.1, respectively. For (8a) we see negligible Δ𝑈 |𝑡=1 but a considerable
size of Δ𝑈 |𝑡>1,𝑀=1 even when 𝜏 = 0.5.

3.2 Computational Results for 2D and Surface Boundary Conditions

In our next example we simulate the case when the top boundary 𝑢𝑆 (𝑥, 𝑡) depends
on the topography of the surface. We consider Ω = (0, 1)2 and use homogeneous
Neumann boundary conditions everywhere except at the top of the domain so that
Γ𝐷 = Γ𝑆 = (0, 1) × {1}. The grid over Ω is 50 × 40, and the time step is 1 [day].

We study the (IMP) and (SEQ) schemes when the boundary conditions depend
on the location due to the topography of the domain as in Section 2.4. In particular,
we assume that Γ𝑤𝑎𝑡𝑒𝑟 = Γ𝑆 ∩ {𝑥 : 𝑥 > 0.5} is in a marshy region covered by water
with the albedo 𝛼 = 0.08. The other half Γ𝑠𝑛𝑜𝑤 = Γ𝑆 ∩ {𝑥 : 𝑥 < 0.5} is covered
by the snow with the albedo equal 𝛼 = 0.9. We also assume that the atmospheric
temperature changes over 𝑡 ∈ (0, 31) [day] from −12 to 0. Based on Section 2.4
we hypothesize that 𝑢𝑆 (𝑥, 𝑡) changes from −12 to 0 on Γ𝑠𝑛𝑜𝑤, and from −8 to 4 for
Γ𝑤𝑎𝑡𝑒𝑟 . We assume also that 𝑢𝑖𝑛𝑖𝑡 (𝑥) = −12.
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Rough boundary conditions with (8a); different 𝑀 and 𝜏

Smoother boundary conditions with (8b) at 𝑡 = 1, 2, 3, large 𝜏 and different 𝑀

Fig. 3 Results of Section 3.1: in the top two rows we plot 𝑈,Υ |𝑡=1 for (8a) with 𝑀 = 2, 1. In
bottom two rows we use (8b) and plot 𝑈,Υ |𝑡=1,2,3 for large 𝜏 = 0.5.

We apply the (IMP) and (SEQ) schemes and find that both are robust. The
solutions are plotted in Figure 4. Newton’s scheme for (IMP) converges robustly, and
requires at most 4 iterations with relative and absolute tolerance set up as 10−6 and
10−12, respectively. The difference between the solutions to (IMP) and (SEQ) is not
large as seen from the plots. In fact we find Δ𝑈 |𝑡=31 = 0.23.

4 Summary

In this paper we compare two time-stepping schemes: an implicit scheme (IMP)
and (SEQ) based on chain rule. We find that both schemes are robust, and with
small enough time step, the (SEQ) with arithmetic average produces results close to
those for (IMP). The difference between (IMP) and (SEQ) can be significant if the
boundary conditions change abruptly, such as when using realistic surface boundary
conditions.

More work is needed, in particular, to study the sensitivity of the solutions to the
surface boundary equation, and to consider (SEQ) when 𝜒 is discontinuous.
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Solutions to (IMP) scheme

Solution to (SEQ) scheme

Fig. 4 Illustration of simulation from Section 3.2 with the (IMP) and (SEQ) schemes with surface
boundary conditions. We show contour plots of 𝑈,Υ (left and right, respectively) at time 𝑡 = 14
and 𝑡 = 31 days. The temperature is higher and water fraction is larger in the right portion of Ω due
to the top boundary condition on Γ𝑤𝑎𝑡𝑒𝑟 higher than on Γ𝑠𝑛𝑜𝑤.
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