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Pseudoparabolic equations in periodic media are homogenized to obtain upscaled limits by
asymptotic expansions and two-scale convergence. The limit is characterized and convergence
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1. Introduction

Pseudoparabolic equations arise in a range of applications from radiation with
time delay [1], degenerate double-diffusion and heat-conduction models [2, 3] and
resolution of ill-posed problems [4] through recently developed applications in level
set methods [5] and models of lightning propagation [6]. They were first analyzed
in [7–9]; see [10] for an extensive review and bibliography. Here we are interested
in a degenerate pseudoparabolic equation arising from modeling dynamic capillary
pressure in unsaturated flow; specifically, we study the case of flow in heterogeneous
media in which the coefficients are periodic on a fine scale.

The classical Richards equation for flow through a partially-saturated porous
medium with porosity φ(x) and permeability K(x) takes the form

φ(x)
∂u(t, x)
∂t

+∇ ·K(x)
kw(u(t, x))

µw
∇ (Pc(u(t, x))− ρGD(x)) = 0, (1)

where u denotes saturation, and gravitational effects depend on depth D(x) and
(constant) density ρ. Here kw(u), Pc(u) denote relative permeability and capillary
pressure relationships, respectively. This standard model follows from Darcy’s law
extended to multiphase flow and conservation of mass [11, 12] with the assumption
that atmospheric pressure of air is constant. The model has been analyzed in [13–
15] and elsewhere.

The experimental determination of the pressure-saturation relationship p =
−Pc(u) is based on the assumption that this is an instantaneous process, although
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2 M. Peszyńska et al.

in reality it requires substantial time to approach an equilibrium before measure-
ments can be taken. This led to the introduction of dynamic capillary pressure [16]
in which Pc(u) is replaced by Pc,dyn(u) ≡ Pc(u)− τ ∂u∂t with τ > 0. Other dynamic
models had been introduced earlier [17, 18]; see [19–22] for supporting experimen-
tal evidence. A similar model was derived in [23] by homogenization from standard
two-phase models with special interface conditions.

The dynamic capillary pressure model of [16] leads to the nonlinear pseu-
doparabolic equation

φ(x)
∂u(t, x)
∂t

+∇ ·K(x)
kw(u(t, x))

µw
∇ (Pc(u(t, x))− ρGD(x))

−∇ ·K(x)
kw(u(t, x))

µw
∇τ(x)

∂u(t, x)
∂t

= 0 . (2)

When written in terms of pressure u 7→ −Pc(u) (see Section 4) and linearized about
a known solution u0, with κ(x) ≡ K(x)kw(u0)

µw
, φ replaced by φ∂u∂p |u0 and τ by τ

φ ,
the equation (2) takes the form

φ(x)
∂u(t, x)
∂t

−∇ · κ(x)∇
(
u(t, x) + τ(x)φ(x)

∂u(t, x)
∂t

)
= ∇ · κ(x)ρGD(x). (3)

If the convective term is dropped, i.e., set D(x) = 0, we obtain

φ(x)
∂u(t, x)
∂t

−∇ · κ(x)∇
(
u(t, x) + τ(x)φ(x)

∂u(t, x)
∂t

)
= 0. (4)

In realistic porous media there is substantial variation of φ(x) and K(x), as well
as the nonlinear relationships kw(·), Pc(·), τ(·) in (2). Consequently the coefficients
in linearized models (3) and (4) vary similarly. In this paper we derive homogenized
models for (2) and (4), and in particular for the special case of binary media in
which φ(x),K(x), τ(x) and consequently κ(x) oscillate between two respective con-
stant values. See [24, 25] for further discussion of heterogeneous dynamic capillary
pressure models, references and numerical results.

The multiscale analysis is aided by the structure of the pseudoparabolic system

φ(x)
∂u(t, x)
∂t

+
1

τ(x)
(
u(t, x)− v(t, x)

)
= 0, (5a)

−∇ ·
(
κ(x)∇v(t, x)

)
+

1
τ(x)

(
v(t, x)− u(t, x)

)
= 0, x ∈ Ω. (5b)

This system is equivalent to a single equation: if we eliminate v we obtain the
pseudoparabolic equation (4) for the variable u(t, x); v satisfies a similar equation.
It is supplemented with corresponding boundary and initial conditions. Here we
take homogeneous Dirichlet boundary conditions

v(t, s) = 0, a.e. s ∈ ∂Ω, (5c)

and the initial condition

φ(x)u(0, x) = φ(x)u∗(x), a.e. x ∈ Ω. (5d)



December 3, 2008 13:59 Applicable Analysis APA

Applicable Analysis 3

The well-posedness of the system (5) follows from very general assumptions on the
coefficients and initial function. The following suffices for our purposes here.

Theorem 1.1 : Assume that functions φ(·), κ(·), τ(·) ∈ L∞(Ω) are given, each
with a strictly positive lower bound, and let u∗(·) ∈ L2(Ω). Then there is a unique
pair u(·) ∈ H1((0, T );L2(Ω)) and v(·) ∈ L2((0, T );H1

0 (Ω)) such that u(0, ·) = u∗(·)
and

∫
Ω

(
φ(x)

∂u(t, x)
∂t

ϕ(x) +
1

τ(x)
(
u(t, x)− v(t, x)

)(
ϕ(x)− ψ(x)

)
+ κ(x)∇v(t, x) · ∇ψ(x)

)
dx = 0 (6)

for all ϕ(·) ∈ L2(Ω) and ψ(·) ∈ H1
0 (Ω).

Corresponding results hold under much more general conditions of non-negativity
of the coefficients. See [10, 26–29]. The initial value u∗ need be chosen only with
φ(·)1/2u∗(·) ∈ L2(Ω). Also, the a-priori estimates show explicitly that u − v → 0
as τ → 0.

Our objective is to homogenize the system (5) and thereby the corresponding
pseudoparabolic equation (4) when the coefficients depend (periodically) on a small
parameter ε. The precise description of coefficients will follow below. Bensous-
san, Lions and Papanicolaou [30] briefly investigated the homogenization of pseu-
doparabolic equations as an example for which the limiting problem is of a different
type, and perhaps non-local, not even a partial differential equation. (See Chapter
II, Section 3.9, pp. 318, 338.) We shall see below that this occurs when certain
variables are eliminated or hidden. The limited regularity and estimates for solu-
tions of the corresponding pseudoparabolic equation (4) makes the homogenization
more delicate. Only in special cases is there a purely upscaled limit.

In Section 2 we obtain the formal asymptotic expansion of the solution for the
linear equation (4) in the classical case and find the dependence of the limit on
φ and τ . The analysis and homogenization of the linear system (5) by two-scale
convergence is developed in Section 3 for ε-periodic binary coefficients and includes
cases of τ → 0 with parabolic or first-order kinetic systems as limits. Finally,
Section 4 contains the asymptotic expansion for a nonlinear highly-heterogeneous
case arising from Richards’ equation with dynamic capillary pressure.

2. Asymptotic Expansion

First we introduce periodic coefficients into the pseudoparabolic system (5) and
use formal asymptotic expansions to obtain the limiting problem as the period
scale ε > 0 tends to zero. Let Y denote the unit cube in R

N , let there be given
the Y -periodic functions φ(y), τ(y), κ(y) and then define φε(x) = φ(xε ), τ ε(x) =
τ(xε ), κε(x) = κ(xε ). The three functions φε, τ ε, κε are the respective ε-periodic
coefficients in (5), so the corresponding solution uε, vε to (5) depends on ε. We
write these as formal asymptotic expansions

uε(t, x) =
∞∑
p=0

εpup(t, x, y), vε(t, x) =
∞∑
p=0

εpvp(t, x, y), y =
x

ε
, (7)

with each up(t, x, ·), vp(t, x, ·) being Y -periodic.
Substitute (7) into (5) and collect terms by powers εp for p ≥ −2. Note that
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the gradient ∇ = ∇x + 1
ε∇y is used in calculations where y = x/ε. The ordinary

differential equation (5a) gives (at p = 0)

φ(y)
∂u0(t, x, y)

∂t
+

1
τ(y)

(u0(t, x, y)− v0(t, x, y)) = 0 .

The initial condition will always be assumed to be independent of the local variable,
y ∈ Y .

The procedure for the elliptic equation (5b) is standard [30–32]. Equating to zero
the coefficient of ε−2 in the expansion of (5b) gives

−∇y · κ(y)∇yv0(t, x, y) = 0, y ∈ Y.

With the Y -periodic boundary conditions on v0, we conclude that ∇yv0(t, x, y) = 0,
and so v0 = v0(t, x) is independent of y ∈ Y . From the combined coefficients of ε−1

in the expansion of (5b) we obtain

−∇y · κ(y)(∇yv1(t, x, y) +∇xv0(t, x))−∇x · κ(y)∇yv0(t, x) = 0.

The last term is null, so the function v1(t, x, y) is the solution of an elliptic periodic
boundary-value problem on Y , and we can represent it in terms of Y -periodic
solutions ωj(y) of the cell problem (see (17))

−∇y · κ(y) (∇yωj + ej) = 0, j = 1 . . . N.

This representation v1(t, x, y) =
∑N

j=1 ωj(y) ∂
∂xj

v0(t, x) (up to a function of x) will
be used to compute the effective tensor κ∗ below. Finally, collecting terms with ε0

in the expansion of (5b) gives

−∇y · κ(y)(∇yv2 +∇xv1)

−∇x · κ(y)(∇xv0(t, x) +∇yv1(t, x, y)) +
1

τ(y)
(v0(t, x)− u0(t, x, y)) = 0.

Integrate this equation over Y . The first term vanishes due to Y - periodicity of
each vr, and the second becomes the effective elliptic contribution with the tensor
κ∗. The third term gets averaged to yield the second equation of the system

φ(y)
∂u0(t, x, y)

∂t
+

1
τ(y)

(u0(t, x, y)− v0(t, x)) = 0, (8a)

−∇ · κ∗∇v0(t, x) +
∫
Y

1
τ(y)

(v0(t, x)− u0(t, x, y))dy = 0, (8b)

the first being copied from above. The effective tensor κ∗ is obtained in this calcu-
lation as κ∗ij =

∫
Y κ(y)(∇yωi(y) + ei) · (∇yωj(y) + ej) dy.

Only if the product φ(·) τ(·) is constant do we get u0(t, x, y) = u0(t, x) indepen-
dent of y ∈ Y , and in that case we can eliminate v0 from the system to obtain the
upscaled pseudoparabolic equation

φ∗
∂u0(t, x)

∂t
−∇ · κ∗∇u0(t, x)−∇ · κ∗∇φ∗τ∗∂u0(t, x)

∂t
= 0 . (9)
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The homogenized porosity is the average φ∗ =
∫
Y φ(y) dy and the homogenized

time-delay is the harmonic average τ∗ =
(∫

Y
1

τ(y)dy
)−1

. In the general situation,
u0 depends also on the local variable y ∈ Y , and then the limit system (8) is
partially upscaled, a combination of the local equations (8a) and the upscaled (8b).
We will make similar but much more interesting calculations below when φ(·) and
τ(·) are piecewise constant.

3. The Pseudoparabolic System

Next we extend the models to include binary media of classical or highly-
heterogeneous type, and then we obtain the homogenized limit problems by two-
scale convergence.

3.1. The Heterogeneous Micro-models

We use a binary medium to emphasize the dependence of singularities on geometry.
Let the unit cube Y be given in open disjoint complementary parts, Y1 and Y2, so
Y1 ∩ Y2 = ∅ and Y is the interior of Y1 ∪ Y2. We denote by χj(y) the characteristic
function of Yj for j = 1, 2, extended Y -periodically to all of RN . Thus, χ1(y) +
χ

2(y) = 1 for a.e. y in R
N . It is assumed that the sets {y ∈ R

N : χj (y) = 1} for
j = 1, 2, have smooth boundary, but we do not require these sets to be connected.
The corresponding ε-periodic characteristic functions are defined by

χε
j (x) ≡ χj

(x
ε

)
, x ∈ RN , j = 1, 2,

and these naturally partition the global domain Ω into two sub-domains, Ωε
1 and

Ωε
2 by Ωε

j ≡
{
x ∈ Ω : χεj(x) = 1

}
, j = 1, 2. We use the characteristic functions as

multipliers to denote the zero-extension of various functions. Let Γ ≡ ∂Y1∩∂Y2∩Y
be the part of the interface between Y1 and Y2 that is interior to the local cell Y .
Then Γε ≡ ∂Ωε

1 ∩ ∂Ωε
2 ∩ Ω represents the corresponding interface between Ωε

1 and
Ωε

2 that is interior to Ω. We denote by γj the boundary trace of functions on Yj to
Γ and by γεj the boundary trace of functions on Ωε

j to Γε. (See [33], [29].)

3.1.1. The Classical Case

Let the strictly positive lower-bounded functions φj(·, ·), κj(·, ·), τj(·, ·) ∈
L∞(Ω;C(Yj)) be given, and define Y -periodic functions in L∞(Ω;L2

#(Y )) by

φ(x, y) ≡ φj(x, y), κ(x, y) ≡ κj(x, y), τ(x, y) ≡ τj(x, y),

y ∈ Yj , j = 1, 2, x ∈ Ω.

The subscript # denotes the subspace of Y -periodic functions in any function
space. Corresponding functions on Ωε

j are defined by

φεj (x) ≡ φj

(
x,
x

ε

)
, κεj (x) ≡ κj

(
x,
x

ε

)
, τ εj (x) ≡ τj

(
x,
x

ε

)
,

x ∈ Ωε
j , j = 1, 2,
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and the coefficients for the pseudoparabolic system (5) are given by

φε(x) ≡ χε1(x)φε1(x) + χε2(x)φε2(x), (10a)

κε(x) ≡ χε1(x)κε1(x) + χε2(x)κε2(x), (10b)

τ ε(x) ≡ χε1(x)τ ε1 (x) + χε2(x)τ ε2 (x). (10c)

These are ε-periodic on the fine scale. Theorem 1.1 gives a unique solution of the
ε-problem: uε(·) ∈ H1((0, T );L2(Ω)) and vε(·) ∈ L2((0, T );H1

0 (Ω)) satisfy

∫
Ω

(
φε(x)

∂uε(t, x)
∂t

ϕ(x) +
1

τ ε(x)
(
uε(t, x)− vε(t, x)

)(
ϕ(x)− ψ(x)

)
+ κε(x)∇vε(t, x) · ∇ψ(x)

)
dx = 0 (11)

for all ϕ(·) ∈ L2(Ω) and ψ(·) ∈ H1
0 (Ω), together with the initial condition uε(0, ·) =

u∗(·) . The initial value u∗ is independent of ε.
If the coefficients κεj are continuous on Ωε

j , the strong form of (11) is the trans-
mission problem

φε(x)
∂uε(t, x)

∂t
+

1
τ ε(x)

(
uε(t, x)− vε(t, x)

)
= 0, x ∈ Ω, (12a)

−∇ ·
(
κε1(x)∇vε(t, x)

)
+

1
τ ε1 (x)

(
vε(t, x)− uε(t, x)

)
= 0, x ∈ Ωε

1, (12b)

−∇ ·
(
κε2(x)∇vε(t, x)

)
+

1
τ ε2 (x)

(
vε(t, x)− uε(t, x)

)
= 0, x ∈ Ωε

2, (12c)

γε1v
ε(t, s) = γε2v

ε(t, s), (12d)

κε1(s)∇vε(t, s) · ν = κε2(s)∇vε(t, s) · ν, s ∈ Γε, (12e)

where ν denotes the unit outward normal on ∂Ωε
1. We have homogeneous Dirichlet

boundary conditions

vε(t, s) = 0 a.e. s ∈ ∂Ω, (12f)

and the initial condition uε(0, x) = u∗(x), a.e. x ∈ Ω. This is the exact micro-
model. If κε is continuous on Γε, there are no interface conditions and (12) reduces to
the single system (5) over Ω. Even then, the fine-scale dependence on the coefficients
and geometry make it numerically intractable for realistically small values of ε > 0.

3.1.2. The Highly-Heterogeneous Case

In the highly-heterogeneous case, the permeability is scaled by ε2 in the second
region Ωε

2, so the flux is given by −ε2κε2(x)∇vε in Ωε
2:

κε(x) ≡ χε1(x)κε1(x) + ε2χε2(x)κε2(x). (13)
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Then the system (11) becomes

φε(x)
∂uε(t, x)

∂t
+

1
τ ε(x)

(
uε(t, x)− vε(t, x)

)
= 0, x ∈ Ω, (14a)

−∇ ·
(
κε1(x)∇vε(t, x)

)
+

1
τ ε1 (x)

(
vε(t, x)− uε(t, x)

)
= 0, x ∈ Ωε

1, (14b)

−∇ ·
(
ε2κε2(x)∇vε(t, x)

)
+

1
τ ε2 (x)

(
vε(t, x)− uε(t, x)

)
= 0, x ∈ Ωε

2, (14c)

γε1v
ε(t, s) = γε2v

ε(t, s), (14d)

κε1(s)∇vε(t, s) · ν = ε2κε2(s)∇vε(t, s) · ν, s ∈ Γε. (14e)

The ε-problem for the model developed by Arbogast, Douglas, and Hornung [34]
is recovered by letting τ ε → 0.

3.2. Homogenization of the Classical Case

3.2.1. The Two-scale Limit

Let the coefficients in (5) be given by (10). Denote the gradient in the y-variable
by ∇y, and use the symbol “ 2→” to denote two-scale convergence [35].

Lemma 3.1: For each ε > 0, let uε(·), vε(·) denote the unique solution to the
pseudoparabolic ε-problem (11). These satisfy the estimates

‖uε‖L2((0,T )×Ω) + ‖vε‖L2((0,T );H1
0 (Ω)) ≤ C,

so there exist

(i) a function U in L2
(
(0, T )× Ω;L2

#(Y )
)
,

(ii) a function v in L2
(
(0, T );H1

0 (Ω)
)
,

(ii) a function V in L2
(
(0, T )× Ω;H1

#(Y )/R
)
,

and a subsequence, hereafter denoted by uε, vε, which two-scale converges as fol-
lows:

uε
2→ U(t, x, y), (15a)

vε
2→ v(t, x), (15b)

∇vε 2→ ∇v(t, x) +∇yV (t, x, y). (15c)

This suggests use of the corresponding test functions

ϕ̃(x) = Φ(x, x/ε), ψ̃(x) = ψ(x) + εΨ(x, x/ε),
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where ψ ∈ H1
0 (Ω), Φ,Ψ ∈ C∞0

(
Ω;C∞# (Y )

)
. Setting these in (11), we obtain

∫
Ω

(
φε(x)

∂uε(t, x)
∂t

Φ(x, x/ε)

+
1

τ ε(x)
(
uε(t, x)− vε(t, x)

)(
Φ(x, x/ε)− (ψ(x) + εΨ(x, x/ε))

)
+ κε(x)∇vε(t, x) · ∇(ψ(x) + εΨ(x, x/ε))

)
dx = 0.

Take the limit as ε→ 0 to obtain the two-scale limit system

∫
Ω

∫
Y

(
φ(x, y)

∂U(t, x, y)
∂t

Φ(x, y)

+
1

τ(x, y)
(
U(t, x, y)− v(t, x)

)(
Φ(x, y)− ψ(x)

)
+ κ(x, y)

(
∇v(t, x) +∇yV (t, x, y)

)
·
(
∇ψ(x) +∇yΨ(x, y)

))
dy dx = 0. (16)

for all Φ, ψ, Ψ as above, and U(0, x, y) = u∗(x). From the uniqueness of the
solution of the initial-value-problem for (16), it follows that the original sequence
uε, vε two-scale converges as above.

In order to eliminate the function V (t, x, y) from this system, we use the periodic
cell problem: for each k = 1, 2, . . . , N , define ωk by

ωk ∈ L2(Ω;H1
#(Y )) :∫

Y
κ(x, y)

(
∇yωk(x, y) + ek

)
· ∇yΨ(x, y) dy = 0 for all Ψ ∈ L2(Ω;H1

#(Y )). (17)

(Let’s ask that
∫
Y ωk(x, y) dy = 0 to fix the constant.) Then we have the repre-

sentation V (t, x, y) =
∑N

i=1
∂v(t,x)
∂xi

ωi(x, y). Specify similar test functions Ψ(x, y) =∑N
j=1

∂ψ(x)
∂xj

ωj(x, y) above to obtain

Theorem 3.2 : The limits U, v in Lemma 3.1 are the solution of the partially
homogenized pseudoparabolic system

U ∈ H1
(
(0, T );L2

(
Ω;L2

#(Y )
))
, v ∈ L2

(
(0, T );H1

0 (Ω)
)

:∫
Ω

∫
Y

(
φ(x, y)

∂U(t, x, y)
∂t

Φ(x, y)

+
1

τ(x, y)
(
U(t, x, y)− v(t, x)

)(
Φ(x, y)− ψ(x)

))
dy dx

+
∫

Ω

( N∑
i,j=1

κ∗ij(x)
∂v(x)
∂xi

∂ψ(x)
∂xj

)
dx = 0,

for all Φ ∈ L2
(
Ω;L2

#(Y )
)
, ψ ∈ H1

0 (Ω), (18)
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and U(0, x, y) = u∗(x), where the effective coefficients are given by

κ∗ij(x) =
∫
Y
κ(x, y)(∇yωi(x, y) + ei) · (∇yωj(x, y) + ej) dy.

3.2.2. Summary

The strong formulation of the system (18) is

φ(x, y)
∂U(t, x, y)

∂t
+

1
τ(x, y)

(
U(t, x, y)− v(t, x)

)
= 0, y ∈ Y, (19a)∫

Y

1
τ(x, y)

(
v(t, x)− U(t, x, y)

)
dy −∇ · κ∗∇v(t, x) = 0. (19b)

This extends (8) from ε-periodic coefficients to those which depend also on the
slow variable, x ∈ Ω.

Consider the case of a binary medium in which each of φj , τj ∈ L∞(Ω) is
independent of y ∈ Yj . Then the same is true of

U(t, x, y) ≡

{
U1(t, x), y ∈ Y1 ,

U2(t, x), y ∈ Y2 ,

and we have the homogenized binary system

|Y1|φ1(x)
∂U1(t, x)

∂t
+

|Y1|
τ1(x)

(
U1(t, x)− v(t, x)

)
= 0 , (20a)

|Y2|φ2(x)
∂U2(t, x)

∂t
+

|Y2|
τ2(x)

(
U2(t, x)− v(t, x)

)
= 0 , (20b)

|Y1|
τ1(x)

(
v(t, x)− U1(t, x)

)
+

|Y2|
τ2(x)

(
v(t, x)− U2(t, x)

)
−∇ · κ∗∇v(t, x) = 0 . (20c)

This is the binary medium analogue of (9).

3.3. Homogenization of the Highly-heterogeneous Case

3.3.1. The Two-scale Limit

Here the permeability is given by (13), so we obtain weaker a-priori estimates
and correspondingly weaker convergence results.

Lemma 3.3: For each ε > 0, let uε(·), vε(·) denote the unique solution to the
pseudoparabolic ε-problem (11). These satisfy the estimates

‖uε‖L2((0,T )×Ω) + ‖vε‖L2((0,T )×Ω)

+ ‖vε‖L2((0,T );H1(Ωε
1))

+ ‖εvε‖L2((0,T );H1(Ωε
2))
≤ C,

so there exist
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(i) a function U in L2
(
(0, T )× Ω;L2

#(Y )
)
,

(ii) a function v1 in L2
(
(0, T );H1

0 (Ω)
)
,

(iii) a pair of functions Vj in L2
(
(0, T )× Ω;H1

#(Yj)/R
)
, j = 1, 2,

and a subsequence, hereafter denoted by uε, vε, which two-scale converges as fol-
lows:

uε(t, x) 2→ U(t, x, y), (21a)

χε
1v
ε 2→ χ1(y)v1(t, x), (21b)

χε
1∇vε

2→ χ1(y)[∇v1(t, x) +∇yV1(t, x, y)], (21c)

χε
2v
ε 2→ χ2(y)V2(t, x, y), (21d)

ε χε2∇vε
2→ χ2(y)∇yV2(t, x, y). (21e)

The function V2 satisfies γ2(V2(t, x, y) = v1(x), y ∈ Γ. (See [36].) These suggest
use of the corresponding test functions

ϕ(x) = Φ(x, x/ε), ψ(x) =

{
ψ1(x) + εΨ1(x, x/ε) : x ∈ Ωε

1,

Ψ2(x, x/ε) + εΨ1(x, x/ε) : x ∈ Ωε
2,

where ψ1 ∈ H1
0 (Ω), Φ,Ψ1 ∈ C∞0

(
Ω;C∞# (Y )

)
and Ψ2 ∈ C∞0

(
Ω;C∞# (Y2)

)
with

γ2Ψ2(x, ·) = ψ1(x) on Γ. Setting these in (11) yields

∫
Ω

(
φε
∂uε(t, x)

∂t
Φ(x, x/ε)

+
χε1(x)
τ ε1 (x)

(
uε(t, x)− vε(t, x)

)(
Φ(x, x/ε)− (ψ1(x) + εΨ1(x, x/ε))

)
+
χε2(x)
τ ε2 (x)

(
uε(t, x)− vε(t, x)

)(
Φ(x, x/ε)− (Ψ2(x, x/ε) + εΨ1(x, x/ε))

)
+ χε1(x)κε1(x)∇vε(t, x) · ∇(ψ1(x) + εΨ1(x, x/ε))

+ χε2(x)κε2(x)ε∇vε(t, x) · ε∇(Ψ2(x, x/ε) + εΨ1(x, x/ε))
)
dx = 0.

Take the limit as ε→ 0 to obtain the two-scale limit system

∫
Ω

∫
Y

(
φ(x, y)

∂U(t, x, y)
∂t

Φ(x, y)

+
χ1(y)
τ1(x, y)

(
U(t, x, y)− v1(t, x)

)(
Φ(x, y)− ψ1(x)

)
+

χ2(y)
τ2(x, y)

(
U(t, x, y)− V2(t, x)

)(
Φ(x, y)−Ψ2(x, y)

)
+ χ1(y)κ1(x, y)

(
∇v1(t, x) +∇yV1(t, x, y)

)
·
(
∇ψ1(x) +∇yΨ1(x, y)

)
+ χ2(y)κ2(x, y)∇yV2(t, x, y) · ∇yΨ2(x, y)

)
dy dx = 0, (22)

for all Φ, ψ1, Ψ1, Ψ2 as above, and U(0, x, y) = u∗(x). The uniqueness of the
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solution to the corresponding initial-value problem shows the original sequence
converges to it.

As before, we can represent each V1(t, x, ·) by a cell problem: define ωk(x, y) by

ωk ∈ L2(Ω;H1
#(Y1)) :

∫
Y1

κ1(x, y)
(
∇yωk(x, y) + ek

)
· ∇yΨ1(x, y) dy = 0

for all Ψ1 ∈ L2(Ω;H1
#(Y1)),

∫
Y1

ωk(x, y) dy = 0. (23)

Then we have V1(t, x, y) =
∑N

i=1
∂v1(t,x)
∂xi

ωi(x, y), and we specify the test functions

Ψ1(x, y) =
∑N

j=1
∂ψ1(x)
∂xj

ωj(x, y) above to obtain

Theorem 3.4 : The limits U, v1, V2 in Lemma 3.3 are the solution of the partially
homogenized pseudoparabolic system

U ∈ H1
(
(0, T );L2

(
Ω;L2

#(Y )
))
, v1 ∈ L2

(
(0, T );H1

0 (Ω)
)
,

V2 ∈ L2
(
(0, T )× Ω;H1

#(Y2)
)

with γV2|Γ = v1 :∫
Ω

∫
Y

(
φ(x, y)

∂U(t, x, y)
∂t

Φ(x, y) +
χ1(y)
τ1(x, y)

(
U(t, x, y)− v1(t, x)

)(
Φ(x, y)− ψ1(x)

)
+

χ2(y)
τ2(x, y)

(
U(t, x, y)− V2(t, x, y)

)(
Φ(x, y)−Ψ2(x, y)

))
dy dx

+
∫

Ω

( N∑
i,j=1

κ∗ij(x)
∂v1(t, x)
∂xi

∂ψ1(x)
∂xj

)
dx+

∫
Ω

∫
Y2

κ2(x, y)∇yV2(t, x, y)·∇yΨ2(x, y) dy dx = 0,

for all Φ ∈ L2
(
Ω;L2

#(Y )
)
, ψ1 ∈ H1

0 (Ω),

Ψ2 ∈ L2
(
Ω;H1

#(Y2)
)

with γΨ2|Γ = ψ1, (24)

and U(0, x, y) = u∗(x), where the effective coefficients are given by

κ∗ij(x) =
∫
Y1

κ1(x, y)(∇yωi(x, y) + ei) · (∇yωj(x, y) + ej) dy.

Next we separate the components of the system. First write the part over Y2

φ2(x, y)
∂U(t, x, y)

∂t
+

1
τ2(x, y)

(
U(t, x, y)− V2(t, x, y)

)
= 0 and

1
τ2(x, y)

(
V2(t, x, y)− U(t, x, y)

)
−∇y · κ2(x, y)∇yV2(t, x, y) = 0, y ∈ Y2,

γV2(t, x, y) = v1(t, x), y ∈ Γ,
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12 M. Peszyńska et al.

and then substitute these back into (24) and use Stokes’ theorem on Y2 to get

∫
Ω

∫
Y1

(
φ1(x, y)

∂U(t, x, y)
∂t

Φ(x, y)

+
1

τ1(x, y)
(
U(t, x, y)− v1(t, x)

)(
Φ(x, y)− ψ1(x)

))
dy dx

+
∫

Ω

( N∑
i,j=1

κ∗ij(x)
∂v1(t, x)
∂xi

∂ψ1(x)
∂xj

)
dx+

∫
Ω

∫
Γ
κ2(x, y)∇yV2(t, x, y)·ν dSψ1(x) dx = 0.

3.3.2. Summary

The strong form of the partially homogenized system (24) is

φ1(x, y)
∂U(t, x, y)

∂t
+

1
τ1(x, y)

(
U(t, x, y)− v1(t, x)

)
= 0, y ∈ Y1,∫

Y1

1
τ1(x, y)

(
v1(t, x)− U(t, x, y)

)
dy −∇ · κ∗∇v1(t, x) (25a)

+
∫

Γ
κ2(x, y)∇yV2(t, x, y) · ν dS = 0,

and for each x ∈ Ω,

φ2(x, y)
∂U(t, x, y)

∂t
+

1
τ2(x, y)

(
U(t, x, y)− V2(t, x, y)

)
= 0,

1
τ2(x, y)

(
V2(t, x, y)− U(t, x, y)

)
−∇y · κ2(x, y)∇yV2(t, x, y) = 0, y ∈ Y2,

γV2(t, x, y) = v1(t, x), y ∈ Γ. (25b)

Note the coupling in the system: the function v1 from (25a) is input to (25b), and
the total flux from (25b) is the distributed source in (25a).

Suppose now that φ1 and τ1 are independent of y ∈ Y1, and therefore so also is
u(t, x) ≡ U(t, x, y), y ∈ Y1. Then (25a) is homogenized:

φ1(x)
∂u(t, x)
∂t

+
1

τ1(x)
(
u(t, x)− v1(t, x)

)
= 0 ,

1
τ1(x)

(
v1(t, x)− u(t, x)

)
− 1
|Y1|

∇ · κ∗∇v1(t, x) (26a)

+
1
|Y1|

∫
Γ
κ2(x, y)∇yV2(t, x, y) · ν dS = 0,
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and for each x ∈ Ω,

φ2(x, y)
∂U(t, x, y)

∂t
+

1
τ2(x, y)

(
U(t, x, y)− V2(t, x, y)

)
= 0 ,

1
τ2(x, y)

(
V2(t, x, y)− U(t, x, y)

)
−∇y · κ2(x, y)∇yV2(t, x, y) = 0, y ∈ Y2,

γV2(t, x, y) = v1(t, x), y ∈ Γ. (26b)

Note that (26a) is the upscaled fissured medium system, and (26b) is the local
fissured medium system at each x ∈ Ω.

3.4. Vanishing time delay

Suppose that τ ε1 = o(ε) in the classical system (12). Then ‖uε−vε‖L2(Y1) = o(ε1/2),
so in the limit we obtain U(t, x, y)|Y1 = v(t, x). Choose test functions Φ(x, y) =
ψ(x) + εΨ(x, y) in the weak form, with the equations added, and take the limit to
get the homogenized mixed parabolic-pseudoparabolic system (compare (20))

φ∗1(x)
∂v(t, x)
∂t

−∇ · κ∗∇v(t, x) +
∫
Y2

1
τ2(x, y)

(
v(t, x)− U(t, x, y)

)
dy = 0, (27a)

φ2(x, y)
∂U(t, x, y)

∂t
+

1
τ2(x, y)

(
U(t, x, y)− v(t, x)

)
= 0, y ∈ Y2, (27b)

with effective porosity φ∗1(x) =
∫
Y1
φ1(x, y)dy. Then (27a) is a parabolic equation

with a memory term determined by (27b). See Peszyńska [37] for results and ad-
ditional references to memory functionals in parabolic equations; also see [31] for
first-order kinetic models.

Suppose that τ ε1 = o(ε) in the highly-heterogeneous system (14). Then
U(t, x, y)|Y1 = v1(t, x) and instead of the system (25a) we obtain the homogenized
parabolic equation

φ∗1(x)
∂v1(t, x)

∂t
−∇ · κ∗∇v1(t, x) +

∫
Γ
κ2(x, y)∇yV2(x, y) · ν dS = 0. (28a)

Suppose that τ ε2 = o(ε) in (14). Then U(t, x, y)|Y2 = V2(t, x, y) and instead of the
system (25b) we obtain the local parabolic equations

φ2(x, y)
∂V2(t, x, y)

∂t
−∇y · κ2(x, y)∇yV2(t, x, y) = 0, y ∈ Y2, (28b)

γV2(x, y) = v1(x), y ∈ Γ. (28c)

If both vanish in the limit, then we recover the Arbogast-Douglas-Hornung [34]
double-porosity model (28) of a fractured porous medium.
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4. Partially-saturated Flow with Dynamic Capillary Pressure

4.1. Microscopic Equations

Let us consider the unsaturated flow in a highly-heterogeneous medium Ω with
the ε-periodic structure of Section 3. Here Y2 is the matrix block and Y1 is the
surrounding fracture domain. Each of the subdomains Ωε

i is characterized by a
rock permeability tensor Ki, a porosity φi, the relative permeability kiw(ui), and
the capillary pressure function P ic(u

i). Here ui denotes the saturation in Ωε
i . The

fluid has constant viscosity µ and density ρ. It has been observed that the dynamic
effects in capillary pressure equilibrium are much more significant in media with low
conductivity than those with high conductivity, so we assume that the unsaturated
flow can be locally described by the original Richards equation (1) in the fracture
domain Ωε

1 and by the pseudoparabolic Richards equation (2) in the porous matrix
Ωε

2:

φ1∂u
1

∂t
+∇ · 1

µ
K1k1

w(u1)∇
(
P 1
c (u1)− ρGD(x)

)
= 0, x ∈ Ωε

1, (29a)

φ2∂u
2

∂t
+ ε2∇ · 1

µ
K2k2

w(u2)∇
(
P 2
c (u2)− τ

∂u2

∂t
− ρGD(x)

)
= 0, x ∈ Ωε

2. (29b)

Hereafter for simplicity we set depth D(x) = x3. Introduce pi = −P ic(ui), ui =
αi(pi), κi(pi) = 1

µK
ikiw(ui), so αi(·) is inverse to −P ic(·), and equations (29a) and

(29b) can be rewritten as

φ1∂α
1(p1)
∂t

−∇ · κ1(p1)
(
∇p1 + ρGe3

)
= 0, x ∈ Ωε

1, (30a)

φ2∂α
2(p2)
∂t

− ε2∇ · κ2(p2)
(
∇p2 + τ∇∂α

2(p2)
∂t

+ ρGe3

)
= 0, x ∈ Ωε

2, (30b)

and are subject to the interface conditions

p1 = p2 + τ
∂α2(p2)
∂t

, x ∈ Γε, (30c)

κ1(p1)
(
∇p1 + ρGe3

)
· ν

= ε2κ2(p2)
(
∇p2 + τ∇∂α

2(p2)
∂t

+ ρGe3

)
· ν, x ∈ Γε, (30d)

where ν is the unit normal on Γε out of Ωε
2, and the initial conditions are

pi(x, 0) = pi∗(x), x ∈ Ωε
i , i = 1, 2. (30e)

4.2. Asymptotic Expansions

We shall expand the solution in powers of ε in the form

pi(t, x) = pi0(t, x, y) + εpi1(t, x, y) + ε2pi2(t, x, y) + · · · , i = 1, 2, (31)
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where pik are Y -periodic in y ∈ Yi for k = 0, 1, 2, · · · . Following methods of [38, 39],
we develop various nonlinear quantities θ(p) in powers of ε by

θ(pi) = θ(pi0) + θ′(pi0)(pi − pi0) + θ′′(pi0)(pi − pi0)2/2 + · · ·

= θ(pi0) + θ′(pi0)(εpi1 + ε2pi2 + · · · ) + θ′′(pi0)(εpi1 + ε2pi2 + · · · )2/2 + · · ·

= θ(pi0) + εθ′(pi0)pi1 + ε2(θ′(pi0)pi2 + θ′′(pi0)(pi1)2/2) + · · ·

= θ(pi0) + εθ̂i1 + ε2θ̂i2 + · · · , for appropriate θ̂i1, θ̂
i
2, · · · , i = 1, 2.

Now, we substitute (31) into the microscopic model and expand the gradient ac-
cording to the relation ∇ = ∇x + 1

ε∇y. Then, we collect terms by powers of ε.
From (30a) we obtain three equations for the combined ε−2, ε−1, and ε0 terms
when x ∈ Ω, y ∈ Y1:

∇y ·
(
κ1(p1

0)∇yp
1
0

)
= 0, (32a)

∇y ·
(
κ1(p1

0)(∇xp
1
0 +∇yp

1
1 + ρGe3) + κ̂1

1∇yp
1
0

)
(32b)

+∇x ·
(
κ1(p1

0)∇yp
1
0

)
= 0,

φ1∂α
1(p1

0)
∂t

−∇x ·
(
κ1(p1

0)(∇xp
1
0 +∇yp

1
1 + ρGe3) + κ̂1

1∇yp
1
0

)
−∇y ·

(
κ1(p1

0)(∇xp
1
1 +∇yp

1
2) (32c)

+κ̂1
1(∇xp

1
0 +∇yp

1
1 + ρGe3) + κ̂1

2∇yp
1
0

)
= 0.

First, equations for ε0 from (30b) and (30c) are for x ∈ Ω

φ2∂α
2(p2

0)
∂t

−∇y · κ2(p2
0)∇y

(
p2
0 + τ

∂α2(p2
0)

∂t

)
= 0, y ∈ Y2, (33a)

p2
0 + τ

∂α2(p2
0)

∂t
= p1

0, y ∈ Γ. (33b)

The ε−1, ε0 and ε1 equations of (30d) for x ∈ Ω, y ∈ Γ are

κ1(p1
0)∇yp

1
0 · ν = 0, (34a)(

κ1(p1
0)(∇xp

1
0 +∇yp

1
1 + ρGe3) + κ̂1

1∇yp
1
0

)
· ν = 0, (34b)(

κ1(p1
0)(∇xp

1
1 +∇yp

1
2) + κ̂1

1(∇xp
1
0 +∇yp

1
1 + ρGe3) + κ̂1

2∇yp
1
0

)
· ν (34c)

= κ2(p2
0)∇y

(
p2
0 + τ

∂α2(p2
0)

∂t

)
· ν.

Equations (32a) and (34a) form an elliptic system for p1
0 in terms of y. Since its

solution is independent of y, it follows that p1
0 = p1

0(t, x), so all terms with ∇yp
1
0

vanish.
The equations (32b) and (34b) form a linear elliptic system in y whose solution

p1
1 can be represented in terms of p1

0. Define ωj(y) for j = 1, 2, 3 as the Y -periodic
solution of the cell problem (compare (23))

∇2
yωj = 0 for y ∈ Y1, (35a)

∇yωj · ν = −ej · ν = −νj for y ∈ Γ. (35b)
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Then from equation (32b) we obtain the representation

p1
1(x, y, t) =

3∑
j=1

ωj(y)
(
∂p1

0

∂xj
(x, t) + ρGδ3j

)
. (36)

Now, we locally average (32c) by integrating it over Y1 to remove the y-variable
and get

|Y1|φ1∂α
1(p1

0)
∂t

−
∫
Y1

∇x · κ1(p1
0)(∇xp

1
0 +∇yp

1
1 + ρGe3) dy

=
∫
Y1

∇y ·
(
κ1(p1

0)(∇xp
1
1 +∇yp

1
2) + κ̂1

1(∇xp
1
0 +∇yp

1
1 + ρGe3)

)
dy. (37)

Apply the divergence theorem to the second integral above, use (34c), make a
second application of the divergence theorem, and use (33a) to obtain∫

Y1

∇y ·
(
κ1(p1

0)(∇xp
1
1 +∇yp

1
2) + κ̂1

1(∇xp
1
0 +∇yp

1
1 + ρGe3)

)
dy

=
∫
∂Y1

(
κ1(p1

0)(∇xp
1
1 +∇yp

1
2) + κ̂1

1(∇xp
1
0 +∇yp

1
1 + ρGe3)

)
· ν dS

= −
∫
∂Y2

κ2(p2
0)∇y

(
p2
0 + τ

∂α2(p2
0)

∂t

)
· ν dS

= −
∫
Y2

∇y · κ2(p2
0)∇y

(
p2
0 + τ

∂α2(p2
0)

∂t

)
dy

= −
∫
Y2

φ2∂α
2(p2

0)
∂t

dy.

The first integral in (37) is evaluated using (36). Its integrand becomes (with
implied summation)

∇x · κ1(p1
0)(∇xp

1
0 +∇yp

1
1 + ρGe3)

=
∂

∂xk

[
κ1(p1

0)
(
∂p1

0

∂xk
+
∂ωj
∂yk

(
∂p1

0

∂xj
+ ρGδ3j

)
+ ρGδ3k

)]
=

∂

∂xk

[
κ1(p1

0)
(
∂ωj
∂yk

+ δjk

) (
∂p1

0

∂xj
+ ρGδ3j

)]
.

Define the effective fracture permeability tensor K∗ = {K∗
jk} and the macroscopic

fracture porosity φ∗ by

K∗
jk = K1

∫
Y1

(
∂ωj
∂yk

+ δjk

)
dy, φ∗ = |Y1|φ1.

We also define

κ∗(p) =
1
µ
K∗k1

w(α1(p)).
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Then, the equation for p1
0 is

φ∗
∂α1(p1

0)
∂t

−∇x · κ∗(p1
0)(∇xp

1
0 + ρGe3) = −

∫
Y2

φ2∂α
2(p2

0)
∂t

dy .

4.3. Summary

The complete system of flow equations for p1
0(x, t), p2

0(x, y, t) is given by

φ∗
∂α1(p1

0)
∂t

+
∫
Y2

φ2∂α
2(p2

0)
∂t

dy (38a)

−∇x · κ∗(p1
0)(∇xp

1
0 + ρGe3) = 0, x ∈ Ω,

φ2∂α
2(p2

0)
∂t

−∇y · κ2(p2
0)∇y

(
p2
0 + τ

∂α2(p2
0)

∂t

)
= 0, y ∈ Y2, (38b)

p2
0 + τ

∂α2(p2
0)

∂t
= p1

0, y ∈ Γ, (38c)

p1
0(x, 0) = p1

init(x), p2
0(x, y, 0) = p2

init(x), y ∈ Y2. (38d)

This is the double-porosity model consisting of the upscaled equation (38a) together
with the distributed family of local boundary-value problems (38b), (38c) for x ∈ Ω.
It is a nonlinear analogue of the system (28a), (26b).
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