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Einstein-Podolsky-Rosen Paradox

The Einstein-Podolsky-Rosen Paradox is a gedanken experiment designed to show that

quantum mechanics is an incomplete description of reality.  The authors were uncomfortable with

the quantum mechanical notion that we can only know certain properties of an atom (e.g., only one

of the spin components, not all three).  The gedanken experiment attempts to prove that the

unknown properties are really there (they are elements of reality in the authors’ words).

The experimental situation is depicted below (this version of the EPR experiment is due to

David Bohm).  A spin 0 source decays into two spin 1/2 particles, which by conservation of

angular momentum must have opposite spin projections and by conservation of momentum must

head in opposite directions.  Observers A and B are on opposite sides of the source and each has a

Stern-Gerlach apparatus to measure the spin projection of the particle headed in its direction.

Whenever one observer measures spin up along a given direction, then the other observer

measures spin down along that same direction.  The quantum state of the two particle system can

be written as

ψ = + − − − +[ ]1
2 1 2 1 2 ,

where the subscripts label the particles and the relative minus sign ensures that this is a spin-0

state.  Because of the correlation between the measurements, if observer A measures spin up along

a given direction, for example   Sz = +h / 2 , then we can predict with 100% certainty what the result

of observer B’s measurement will be (  Sz = −h / 2 ), without performing the measurement or

disturbing particle 2 in any way.  EPR contend that if we can predict a measurement result with

100% certainty, then that result must be a “real” property of the particle -- it must be an element of

reality.  Since the particles are widely separated, this element of reality must be independent of

what observer A does, and hence must have existed all along.  Observer A could have chosen to

measure Sx or Sy, which by the same reasoning means that Sx and Sy for particle 2 must also be
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elements of reality.  Quantum mechanics maintains that we can only know one spin component at a

time for a single particle. Since it thus does not describe all the elements of reality of the particle,

quantum mechanics must be an incomplete description of physical reality.

If EPR are correct, then the elements of reality, which are often called hidden variables or

instructions sets, are really there but for some reason we cannot know all of them at once.  Thus

one can imagine that there are different types of particles with different instructions sets that

determine the results of measurements.  One can also imagine that the populations or probabilities

of these different sets can be properly adjusted in a hidden variable theory to produce results

consistent with quantum mechanics.  Since quantum mechanics and a hidden variable theory

cannot be distinguished by experiment, the question of which is correct is then left to the realm of

metaphysics.  For many years, this was what many physicists believed.

In 1964, John Bell showed that there are specific measurements that can be made to

distinguish between a hidden variable theory and quantum mechanics.  By considering

measurements that observers A and B make along three different directions (all in a plane as shown

above), he derived an inequality that could be tested by experiment.  He derived a very general

relation, but we will deal with a specific one here to make life easy.

Consider three directions in a plane as shown, each 120° from any of the other two.  Each

observer makes measurements of the spin projection along one of these three directions, chosen

randomly.  Any single result can only be + or -, and we calculate the probability that the results

from a correlated pair (i.e., one decay from the source) are the same (++ or --) or opposite

(+– or –+), where +-, for example, means observer A recorded a + and observer B recorder a -.

We know that when both observers measure along the same direction, then only a +- or a -+ is

possible.  To reproduce this aspect of the data, a hidden variable theory would need 8 instruction

sets as shown in the table.  We don’t yet know what the probabilities are for cases where the

observers do not measure along the same directions, so we do not assign any populations (or

weights or probabilities) to the different instruction sets.  Presumably we can adjust these as

needed to make sure that the hidden variable theory agrees with the actual (or quantum mechanical

results).

Now use the instruction sets to calculate the probability that the results are the same

(Psame = P++ + P--) and the probability that the results are opposite (Popp = P+- + P-+), considering

all possible measurements.  There are 9 different combinations of measurement directions for the

pair of observers.  If we consider particles of type 1, then for each of these 9 possibilities, the

results will be opposite (+-).  The results can never be the same.  The same argument holds for

type 8 particles.  For type 2 particles, there will be 4 possibilities of recording the same results and
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5 possibilities for recording opposite results.  We thus arrive at the following probabilities for the

different particle types:
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Now average over all the possible particle types to find the probabilities of recording the same or

opposite results in all the measurements.  The probability of any particular particle type, for

example type 1, is simply N1 / Ni∑  (recall we will adjust the actual values later as needed).  Thus

the averaged probabilities are:
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where the inequalities follow simply because the sum of all the probabilities for the particular

particle types must sum to one.  In summary, we can adjust the populations all we want but that

will always produce probabilities of the same or opposite measurements that are bound by the

above inequalities.  That is what is meant by a Bell inequality.

Instruction Sets (Hidden Variables)

Population Particle 1 Particle 2

N1 ( ˆ , ˆ , ˆ )a b c+ + + ( ˆ , ˆ , ˆ )a b c− − −
N2 (ˆ , ˆ , ˆ )a b c+ + − ( ˆ , ˆ , ˆ )a b c− − +
N3 (ˆ , ˆ , ˆ )a b c+ − + ( ˆ , ˆ , ˆ )a b c− + −
N4 (ˆ , ˆ , ˆ )a b c+ − − ( ˆ , ˆ , ˆ )a b c− + +
N5 (ˆ , ˆ , ˆ )a b c− + + ( ˆ , ˆ , ˆ )a b c+ − −
N6 (ˆ , ˆ , ˆ )a b c− + − ( ˆ , ˆ , ˆ )a b c+ − +
N7 (ˆ , ˆ , ˆ )a b c− − + ( ˆ , ˆ , ˆ )a b c+ + −
N8 (ˆ , ˆ , ˆ )a b c− − − ( ˆ , ˆ , ˆ )a b c+ + +
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What does quantum mechanics predict for these probabilities?  For this simple system of 2

spin 1/2 particles, we can easily calculate them.  Assume that observer A records a “+” along some

direction (of the three) and define that direction as the z-axis (no law against that).  Then we know

that the quantum state of particle 2 is − .  The probability that observer B records a “+” along a

direction at some angle θ with respect to the z-axis is

  
Psame n

ie= + − = + + −


− =−2
2

2

2 2 2
cos sin sin

θ θ θφ ,

where + n is the eigenstate for spin up along the direction of measurement.  The same result will

be obtained if you assume A records a “-” and ask for the probability that B records a “-” also.  The

probability that observer B records a “-” along this direction, when A records a “+” , (hence

opposite results) is
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Since the angle θ will be 0° in 1/3 of the measurements and 120° in 2/3 of the measurements, the

average probabilities will be
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These predictions of quantum mechanics are inconsistent with the inequalities derived from hidden

variable theories.  Since these probabilities can be measured, we can do experiments to test

whether hidden variable theories are possible.  The results agree with quantum mechanics and

hence exclude the possibility of hidden variable theories.

The EPR paradox also raises issues regarding collapse of the quantum state and how a

measurement by A can instantaneously alter the quantum state at B.  However, there is no

information transmitted instantaneously and so no violation of relativity.  What observer B

measures is not affected by any measurements that A makes.  They only notice that when they get

together and compare results that some of the measurements (along the same axes) are correlated.
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Schrödinger Cat Paradox

The Schrödinger cat paradox is a gedanken experiment designed by Schrödinger to

illustrate some of the problems of quantum measurement, particularly in the extension of quantum

mechanics to classical systems.  The experimental apparatus consists of a radioactive atom, a

Geiger counter, a hammer, a bottle of cyanide gas, a cat, and a box.  The atom has a 50%

probability of decaying in one hour.  The components are put together such that if the atom decays,

it triggers the counter, which causes the hammer to break the bottle and release the poisonous gas,

killing the cat.  Thus, after one hour there is 50% probability that the cat is dead.

We can describe the quantum state of the atom as

ψ ψ ψatom undecayed decayed= +[ ]1
2

.

The apparatus has been designed such that there is a one-to-one correspondence between the

undecayed atomic state and the live-cat state and between the decayed atomic state and the dead-cat

state.  Though the cat is macroscopic, it is made up of microscopic particles and so should be

describable by a quantum state (albeit a complicated one).  Thus we expect that the quantum state

of the cat after one hour is

ψ ψ ψcat alive dead= +[ ]1
2

.

Both quantum calculations and classical reasoning would predict 50/50 probabilities of observing

an alive or dead cat when we open the box.  However, quantum mechanics would lead us to

believe that the cat was neither dead nor alive before we opened the box, but rather was in a

superposition of states and the quantum state only becomes the single alive or dead state when we

open the box and make the measurement by observing the cat.  But our classical experiences

clearly run counter to this.  We would say that the cat really was dead or alive, we just did not

know it yet.  (Imagine that the cat is wearing a cyanide sensitive watch -- the time will tell us when

the cat was killed if it is dead!)

The main issues raised by this thought experiment are (1) Can we describe macroscopic

states quantum mechanically? and (2) What causes the collapse of the wave function?

The Copenhagen or standard interpretation of quantum mechanics championed by Bohr and

Heisenberg maintains that there is a boundary between the classical and quantum worlds.  We

describe microscopic systems (the atom) with quantum states and macroscopic systems (the cat, or
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even the Geiger counter) with classical rules.  The measurement apparatus causes the quantum state

to collapse and yield the single classical or meter result.  Where to draw this line is not clear and

will depend on the problem.  Others have argued that the human consciousness is responsible for

collapsing the wave function, while some have argued that there is no collapse, just bifurcation into

alternate, independent universes.  Since most of these points of view are untestable, it is often left

as a philosophical debate.

More recent discussions and experiments have focused on the issue of using quantum

mechanics to describe macroscopic systems.  By studying mesoscopic systems that are small

enough to control precisely, yet large enough to have macroscopically distinguishable states, one

can probe the region between the quantum and the classical worlds.  In recent experiments in

quantum optics, it has been shown that the relative phase between two parts of a superposition

state becomes randomized very quickly, yielding a mixture state, which is not distinguishable from

a classical probability mixture.  It has been shown that this coherence decay proceeds more quickly

as the size of the system (and hence its complexity) becomes larger.  It may not be long before we

conclude that the wave function collapse is not distinct from ordinary Schrödinger time evolution,

but rather just a consequence of the decoherence of large multi-component states.


