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Abstract

A simple and explicit technique for the numerical solution of the two-particle, time-
dependent Schrödinger equation is assembled and tested. The technique can handle
interparticle potentials that are arbitrary functions of the coordinates of each parti-
cle, arbitrary initial and boundary conditions, and multi-dimensional equations. Plots
and animations are given here and on the World Wide Web of the scattering of two
wavepackets in one dimension.

1 Introduction

Rather than showing the time dependence of two particles interacting with each other,
quantum mechanics textbooks often present a time-independent view of a single particle
interacting with an external potential. In part, this makes the physics clearer, and in part,
this reflects the difficulty of solving the time-independent two-particle Schrödinger equation
for the motion of wavepackets. In the classic quantum mechanics text by Schiff [1], examples
of realistic quantum scattering, such as that in Fig. 1, are produced by computer simulations
of wave packets colliding with square potential barriers and wells. Generations of students
have carried memories of these images (or of the film loops containing these frames [2]) as
to what realistic quantum scattering looks like.

While Fig. 1 is a good visualization of a quantum scattering processes, we wish to
extend simulations of realistic quantum interactions to include particle–particle scattering
when both particles are represented by wavepackets. Although more complicated, this,
presumably, is closer to nature and may illustrate some physics not usually found in quantum
mechanics textbooks. In addition, our extension goes beyond the treatment found in most
computational physics texts which concentrate on one-particle wavepackets [3, 4, 5], or
highly restricted forms of two-particle wavepackets [6].
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Figure 1: A time sequence of a Gaussian wavepacket scattering from a square barrier as
taken from the textbook by Schiff. The mean energy equals the barrier height.

The simulations of the time-dependent Schrödinger equation shown by Schiff were based
on the 1967 finite-difference algorithms developed by Goldberg et al. [2]. Those simulations,
while revealing, had problems with stability and probability conservation. A decade later,
Cakmak and Askar [7] solved the stability problem by using a better approximation for the
time derivative. After yet another decade, Visscher [8] solved the probability conservation
problem by solving for the real and imaginary parts of the wave function at slightly different
(“staggered”) times.

In this paper we combine the advances of the last 20 years and extend them to the
numerical solution of the two particle—in contrast to the one particle—time-dependent
Schrödinger equation. Other than being independent of spin, no assumptions are made re-
garding the functional form of the interaction or initial conditions, and, in particular, there
is no requirement of separation into relative and center-of-mass variables[6]. The method is
simple, explicit, robust, easy to modify, memory preserving, and may have research applica-
tions. However, high precision does require small time and space steps, and, consequently,
long running times. A similar approach for the time-dependent one-particle Schrödinger
equation in a two-dimensional space has also been studied [5].

2 Two-Particle Schrödinger Equation

We solve the two-particle time-dependent Schrödinger equation

i
∂

∂t
ψ(x1, x2, t) = Hψ(x1, x2, t), (1)
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Figure 2: Six frames from an animation of the two-particle density ρ(x1, x2, t) as a function
of the position of particle 1 with mass m and of the position of particle 2 with mass 10m.
This same collision is described in Fig. 3 by showing separate plots of the more common
single-particle densities ρ(x1, t) and ρ(x2, t). In both figures there is a repulsive interaction
between the particles and the mean kinetic energy equals twice the barrier height. The
numbers in the left hand corners are the times in units of 100∆t. Note that each plot ends
at the walls of the containing box, and that particle 1 “bounces off” a wall between times
36 and 86 (more evident in Fig. 3).

H = − 1
2m1

∂2

∂x2
1

− 1
2m2

∂2

∂x2
2

+ V (x1, x2). (2)

where, for simplicity, we assume a one-dimensional space and set h̄ = 1. Here H is the
Hamiltonian operator and mi and xi are the mass and position of particle i = 1, 2. Knowl-
edge of the two-particle wave function ψ(x1, x2, t) permits the calculation of the probability
density for particle 1 being at x1 and particle 2 being at x2 at time t:

ρ(x1, x2, t) = |ψ(x1, x2, t)|2 . (3)

The fact that particles 1 and 2 must be located someplace in space leads to the normalization
constraint on the wave function:

∫ +∞

−∞

∫ +∞

−∞
dx1 dx2 |ψ(x1, x2, t)|2 = 1. (4)

The description of a single particle within a multi-particle system by a single-particle
wave function is an approximation unless the system is uncorrelated (in which case the total
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wave function can be written in product form). However, it is possible to deduce meaningful
one-particle densities from the two-particle density by integrating over the other particle:

ρ1(xi, t) =
∫ +∞

−∞
dxj ρ(x1, x2, t), (i 6= j = 1, 2). (5)

Here we use a subscript on the single-particle density ρi to distinguish it from the two-
particle density ρ. Of course, the true solution is ψ(x1, x2, t), but we find it hard to see the
physics in a three-variable complex function, and so, often, view ρ1(x1, t) and ρ2(x2, t) as
two separate wavepackets colliding.

If particles 1 and 2 are identical, then their total wave function should be symmetric
or antisymmetric under interchange of the particles. We impose this condition on our
numerical solution ψ(x1, x2), by forming the combinations

ψ
′
(x1, x2) =

1√
2

[ψ(x1, x2)± ψ(x2, x1)] ⇒ (6)

2ρ(x1, x2) = |ψ(x1, x2)|2 + |ψ(x2, x1)|2 ± 2Re [ψ∗(x1, x2)ψ(x2, x1)] . (7)

The cross term in (7) places an additional correlation into the wavepackets.

3 Numerical Method

We solve the two-particle Schrödinger equation (1) via a finite difference method that con-
verts the partial differential equation into a set of simultaneous, algebraic equations. First,
we evaluate the dependent variable ψ on a grid of discrete values for the independent vari-
ables [2]:

ψ(x1, x2, t) = ψ(x1 = l∆x1, x2 = m∆x2, t = n∆t) ≡ ψn
l,m, (8)

where l, m, and n are integers. The space part of the algorithm is based on Taylor expansions
of ψ(x1, x2, t) in both the x1 and x2 variables up to O(∆x4); for example,

∂2ψ

∂x2
1

' ψ(x1 + ∆x1, x2)− 2ψ(x1, x2) + ψ(x1 −∆x1, x2)
∆x2

1

+O(∆x2
1). (9)

In discrete notation, the RHS of the Schrödinger equation (1) now becomes:

Hψ = −ψl+1,m − 2ψl,m + ψl−1,m

2m1∆x2
1

− ψl,m+1 − 2ψl,m + ψl,m−1

2m2∆x2
2

+ Vlmψl,m. (10)

Next, we express the time derivative in (1) in terms of finite time differences by taking the
formal solution to the time-dependent Schrödinger equation and making a forward-difference
approximation for time evolution operator:

ψn+1
l,m = e−i∆tHψn

l,m ' (1− i∆tH)ψn
l,m. (11)

Although simple, this approximation scheme is unstable since the term multiplying ψ has
eigenvalue (1− iE∆t) and modulus

√
1 + E2∆t2, and this means the modulus of the wave
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function increases with each time step [3]. The improvement introduced by Askar and
Cakmak [7] is a central difference algorithm also based on the formal solution (11):

ψn+1
l,m − ψn−1

l,m =
(
e−i∆tH − ei∆tH

)
ψn

l,m ' −2i∆tHψn
l,m, (12)

⇒ ψn+1
l,m ' ψn−1

l,m − 2i

[{
(

1
m1

+
1

m2
)4λ + ∆xVl,m

}
ψn

l,m (13)

−λ

{
1

m1
(ψn

l+l,m + ψn
l−1,m) +

1
m2

(ψn
l,m+1 + ψn

l,m−1)
}]

,

where we have assumed ∆x1 = ∆x2 and formed the ratio λ = ∆t/∆x2.

Equation (13) is an explicit solution in which the wave function at only two past time
values must be stored simultaneously in memory to determine all future times by continued
iteration. In contrast, an implicit solution determines the wave function for all future times
in just one step, yet this one step requires the solution of simultaneous algebraic equations
involving all space and time values. Accordingly, an implicit solution requires the inversion
of exceedingly large matrices.

While the explicit method (13) produces a solution which is stable and second-order
accurate in time, in practice, it does not conserve probability well. Visscher[8] has deduced
an improvement which takes advantage of the extra degree of freedom provided by the
complexity of the wave function to preserve probability better. If we separate the wave
function into real and imaginary parts,

ψn+1
l,m = un+1

l,m + i vn+1
l,m , (14)

the algorithm (13) separates into the pair of coupled equations:

un+1
l,m = un−1

l,m + 2
[{

(
1

m1
+

1
m2

)4λ + ∆tVl,m

}
vn
l,m (15)

−λ

{
1

m1
(vn

l+1,m + vn
l−1,m) +

1
m2

(vn
l,m+1 + vn

l,m−1)
}]

,

vn+1
l,m = vn−1

l,m − 2
[{

(
1

m1
+

1
m2

)4λ + ∆tVl,m

}
un

l,m (16)

−λ

{
1

m1
(un

l+1,m + un
l−1,m)

1
m2

(un
l,m+1 + un

l,m−1)
}]

.

Visscher’s advance evaluates the real and imaginary parts of the wave function at slightly
different (staggered) times,

[un
l,m, vn

l,m] = [Re ψ(x, t), Imψ(x, t +
1
2
∆t)], (17)

and uses a definition for probability density that differs for integer and half-integer time
steps,

ρ(x, t) = |Reψ(x, t)|2 + Imψ(x, t +
∆t

2
) Imψ(x, t− ∆t

2
), (18)

ρ(x, t +
∆t

2
) = Reψ(x, t + ∆t)Re ψ(x, t) +

∣∣∣∣Im ψ(x, t +
∆t

2
)
∣∣∣∣
2

. (19)

These definitions reduce to the standard one for infinitesimal ∆t, and provide an algebraic
cancellation of errors so that probability is conserved.
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Parameter Value
∆x 0.001
∆t 2.5× 10−7

k1 +157
k2 −157
σ 0.05
x0

1 467 (0.33× 1401 steps)
x0

2 934 (0.667× 1401 steps)
N1 = N2 1399
L 1.401 (1401 space steps)
T 0.005 (20, 000 time steps)
V0 −100, 000
α 0.062

Table 1: Table 1, Parameters for the antisymmetrized, m–m collision with an attractive
square well potential.

4 Simulations

We assume that the particle–particle potential is central and depends only on the relative
distance between particles 1 and 2 (the method can handle any x1 and x2 functional de-
pendences). We have investigated a “soft” potential with a Gaussian dependence, and a
“hard” one with a square-well dependence, both with range α and depth V0:

V (x1, x2) =

{
V0 exp[− |x1−x2|2

2α2 ] (Gaussian)
V0 θ(α− |x1 − x2|) (Square)

. (20)

4.1 Initial and Boundary Conditions

We model a scattering experiment in which particle 1, initially at x0
1 with momentum k1,

collides with particle 2, initially far away at x0
2 with momentum k2, by assuming a product

of independent wavepackets for particles 1 and 2:

ψ(x1, x2, t = 0) = eik1x1 exp[−(x1 − x0
1)

2

4σ2
]× eik2x2 exp[−(x2 − x0

2)
2

4σ2
]. (21)

Because of these Gaussian factors, ψ is not an eigenstate of the particle i momentum
operators −i∂/∂xi, but instead contains a spread of momenta about the mean, initial
momenta k1 and k2. If the wavepacket is made very broad (σ → ∞), we would obtain
momentum eigenstates. Note, that while the Schrödinger equation may separate into one
equation in the relative coordinate x and another in the center-of-mass coordinate X, the
initial condition (21), or more general ones, cannot be written as a product of separate
functions of x and X. Accordingly, a solution of the partial differential equation in two
variables is required [6].

We start the staggered-time algorithm with the real part the wave function (21) at t = 0
and the imaginary part at t = ∆t/2. The initial imaginary part follows by assuming that
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m−10m,  Repulsive  Vsquare
KE = 2 V

1 18 22

26 36 40

86 15055

Figure 3: A time sequence of two Gaussian single-particle wavepackets scattering from each
other under the influence of a square barrier. The mean kinetic energy equals twice the
barrier height. The dashed curve describes particle 1 of mass m and the solid curve particle
2 of mass 10m. The number in the upper left-hand corner of each frame is the time in units
of 100∆t, and the edges of the frames correspond to the walls of the box. Note, at time
55 the wavepacket for mass m is seen to be interacting with the wall, as indicated by the
interference ripples between incident and reflected waves, and at time 150 the wavepacket
for mass 10m is interacting with the wall (by this time mass m has already had multiple
wall interactions).
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∆t/2 is small enough, and σ large enough, for the initial time dependence of the wavepacket
to be that of the plane wave parts:

Imψ(x1, x2, t =
∆t

2
) ' sin

[
k1x1 + k2x2 −

(
k2

1

2m1
+

k2
2

2m2

)
∆t

2

]

× exp−
[
(x1 − x0

1)
2 + (x2 − x0

2)
2

2σ2

]
. (22)

In a scattering experiment, the projectile enters from infinity and the scattered particles
are observed at infinity. We model that by solving our partial differential equation within
a box of side L (ideally) much larger than both the range of the potential and the width of
the initial wavepacket. This leads to the boundary conditions

ψ(0, x2, t) = ψ(x1, 0, t) = ψ(L, x2, t) = ψ(x1, L, t) = 0. (23)

The largeness of the box minimizes the effects of the boundary conditions during the collision
of the wavepackets, although at large times there will be interesting, yet artificial, collisions
with the box.

Some typical parameters used in our tests are given in Table 1 (the code with sample
files are available on the on Web [9]). Our space step size ∆x = 0.001 is 1/1400th of
the size of the box L, and 1/70th of the size (

√
2σ ' 0.07) of the wavepacket. Our time

step ∆t = 2.5 × 10−7 is 1/20000th of the total time T , and 1/2000th of a typical time
for the wavepacket [2π/(k2

1/2m1) ' 5 × 10−4]. In all cases, the potential and wavepacket
parameters are chosen to be similar to those used in the one-particle studies by Goldberg
et al.. The time and space step sizes were determined by trial and error until values were
found which provided stability and precision (too large a ∆x leads to spurious ripples
during interactions). In general, stability is obtained by making ∆t small enough [8], with
simultaneous changes in ∆t and ∆x made to keep λ = ∆t/∆x2 constant. Total probability,
as determined by a double Simpson’s-rule integration of (4), is typically conserved to 13
decimal places, impressively close to machine precision. In contrast, the mean energy, for
which we do not use a definition optimized to staggered times, is conserved only to 3 places.

4.2 Barrier-Like Collisions

We solve our problem in the center-of-momentum system by taking k2 = −k1 (particle
1 moving to larger x values and particle 2 to smaller x). Our first simulations and Web
animations [9, 10] emulate the one-particle collisions with barriers and wells studied by
Goldberg et al. and presented by Schiff. We make particle 2 ten times heavier than particle
1, so that particle 2’s initial wavepacket moves at 1/10th the speed of particle 1’s, and so
looks like a barrier. Although we shall describe several scattering events, the animations
available on the Web speak for themselves, and we recommend their viewing.

In Fig. 2 we show six frames from an animation of the two-particle density ρ(x1, x2, t)
as a simultaneous function of the particle positions x1 and x2. In Fig. 3 we show, for
this same collision, the single-particle densities ρ1(x = x1, t) and ρ2(x = x2, t) extracted
from ρ(x1, x2, t) by integrating out the dependence on the other particle via (5). Since the
mean energy equals twice the maximum height of the potential barrier, we expect complete
penetration of the packets, and indeed, at time 18 we see that the wavepackets have large
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m−10m, Attractive Vsquare
KE = − V/2

1 18 26

28 30 32

40 55 72

Figure 4: Same as Fig. 3 except now the potential is attractive with the mean energy equal
to half the depth.

overlap, with the repulsive interaction “squeezing” particle 2 (it gets narrower and taller).
During times 22–40 we see part of wavepacket 1 reflecting off wavepacket 2 and then moving
back to smaller x (the left). From times 26–55 we also see that a major part of wavepacket
1 gets “trapped” inside of wavepacket 2 and then leaks out rather slowly.

We see that for times 1–26, the x2 position of the peak of ρ(x1, x2, t) in Fig. 2 changes
very little with time, which is to be expected since particle 2 is heavy. In contrast, the
x1 dependence in ρ(x1, x2, t) gets broader with time, develops into two peaks at time 26,
separates into two distinct parts by time 36, and then, at time 86 after reflecting off the
walls, returns to particle 2’s position. We also notice in both these figures that at time 40
and thereafter, particle 2 (our “barrier” ) fissions into reflected and transmitted waves.

As this comparison of Figures 2 and 3 demonstrates, it seems easier to understand the
physics by superimposing two single-particle densities (thereby discarding information on
correlations) than by examining the two-particle density. Accordingly, the figures we show
hence, and the majority of the animations on the Web, are of single-particle densities.

Fig. 3 is similar to the behavior present in Schiff’s one-particle simulation, Fig. 1, but
without ripples during the collision. Those ripples are caused by interference between
scattered and incident wave, and even though we have a square barrier potential acting
between the particles, neither particle “feels” the discontinuity of the sharp potential edge
at any one time. However, there are ripples when our wavepackets hit the walls, as seen at
times 55 and 150.

At early times in Fig. 3, as well as in other animations, we can see very small wavepack-
ets moving in opposite directions to the larger wavepackets for each particle. These are
numerical artifacts. While wavepackets with reversed values of k are valid solutions of the
Schrödinger equation, they should be elminated by the initial conditions. For example, if
exp(ikx) is a valid solution, then so is exp(−ikx), yet it is hard to get rid of it completely
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m−m, Repulsive Vsquare
KE = +V/4

1 26 50

70 90 120

150 174

Figure 5: Same as Fig. 4, except now for a repulsive m–m collision in which the mean
energy equals one quarter of the barrier’s height.

m−10m,  Attractive  Vsquare
KE = −2 V

 
 

150

18 26

40 30 78

82 125 

Figure 6: Same as Fig. 4, except now for an attractive m–m collision in which the mean
energy equals one quarter of the well’s depth.
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Antisymmetrized  m−m,  Attractive  Vsquare
KE = − V/4

1 46 60

66 78 94

110 150 180

Figure 7: Same as Fig. 4, except now for an attractive m–m collision in which the mean
energy equals one quarter of the well’s depth, and for which the wavefunction has been
antisymmetrized.

[11].

Something new in Fig. 3, that is not in Schiff, is the delayed fission of the heavier par-
ticle’s wavepacket after time 40 into transmitted and reflected waves (it occurred earlier
for the lighter particle). In addition, at time 86 we see that the reflected and transmit-
ted parts of the wavepacket of particle 1 have reconstituted themselves into a single but
broadened wavepacket, and that at time 150 it is again being reflected from the left wall.
(Although it may be somewhat confusing to keep looking at the interaction after reflections
from the artificial bounding box, we display it in order to show some of the interesting
physics uncovered.)

In Fig. 4 we see another m–10m collision. This time there is an attractive interaction
between the particles and again the mean energy equals half the well depth. Even though
the kinetic energy is low, the interaction is attractive and so particle 1 passes through
particle 2. However, some of wavepacket 1 is reflected back to the left after the collision,
and, as we see at time 55, the wavepacket for the heavy particle 2 fissions as a consequence
of its attraction to the two parts of wavepacket 1.

Although we do not show them here, on the Web we also display movies of collisions
corresponding to a Gaussian potential acting between the particles. These are much softer
collisions and have behaviors similar to classical particles bouncing off each other, with
squeezing and broadening of the wavepackets, but little breakup or capture.

4.3 m–m Collisions

In Fig. 5 we show nine frames from the movie of a repulsive m–m collision in which the
mean kinetic energy equals one quarter of the barrier height. The initial packets are seen to
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Symmetrized  m−m,  Attractive  Vsquare
KE = −V/4

1 46 60

66 78 94

110 150 180

Figure 8: Same as Fig. 4, except now for an attractive m–m collision in which the mean en-
ergy equals one quarter of the depth, and for which the wavefunction has been symmetrized.

slow down as they approach each other, with their mutual repulsion narrowing and raising
the packets up until the time (50) when they begin to bounce back. The wavepackets at still
later times are seen to retain their shape, with a progressive broadening until they collide
with the walls and break up. As shown on the Web, when the mean energy is raised there
will be both transmitted and reflected wave, already seen in Fig. 3 for an m–10m collision.

In Fig. 6 we show nine frames from the movie of an attractive m–m collision in which
the mean energy equals one quarter of the well depth. The initial packets now speed up
as they approach each other, and at time 60 the centers have already passed through each
other. After that, a transmitted and reflected wave for each packet is seen to develop (times
66–78). Although this may be just an artifact of having two particles of equal mass, from
times 110–180 we see that each packet appears to capture or “pick up” a part of the other
packet and move off with it.

In Fig. 7 we repeat the collision of Fig. 6, only now for a wave function that has been
antisymmetrized according to (7). The anitsymmetrization is seen to introduce an effective
repulsion into what is otherwise an attraction (compare the two figures for times 60–66).
Again, some capture of the other wavepacket is noted from times 94 on, only now the internal
captured wavepacket retains its Gaussian-like shape, apparently the result of decreased
interference.

Finally, in Fig. 7 we repeat the collisions of Figures 6 and 7, only now for a wave function
that has been symmetrized according to (7). The symmetrization is seen to introduce an
effective added attraction (compare the three figures for time 60 which shows the greatest
penetration for the symmetrized case). While there is still capture of the other wavepacket,
the movie gives the clear impression that the wavepackets interchange with each other as a
consequence of the symmetrization.
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5 Summary and Conclusions

We have assembled and tested a general technique for the numerical solution of the two-
particle, time-dependent Schrödinger equation. Because the technique is general, applica-
tion to two or three dimensions and for other potentials and initial conditions should be
straightforward. For example, further studies may want to investigate initial conditions
corresponding to bound particles interacting with a surface, or the formation of a molecule
near a surface.

The Goldberg-Schiff’s image (Fig. 1) of a wavepacket interacting with a potential barrier
is still a valuable model for understanding the physics occuring during a particle’s collision.
Here we have extended the level of realism to what a collision between two particles looks
like. In doing so with a simple square-well potential between the two particles, we have dis-
covered that fission of the initial single-particle wavepackets into transmitted and reflected
waves occurs quite often, and that the transmitted packet of one particle often moves off
with the reflected packet of the other as if they were bound. While somewhat of a challenge
to understand fully, we have also provided animations of the behavior of the two-particle
density during collisions. We have placed the animations, source codes, and movie-making
instructions on the Web with the hope that future students will also carry some of these
images of the quantum world with them.
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7 List of Captions

Figure 1 A time sequence of a Gaussian wavepacket scattering from a square barrier as
taken from the textbook by Schiff. The mean energy equals the barrier height.

Figure 2 Six frames from an animation of the two-particle density ρ(x1, x2, t) as a function
of the position of particle 1 with mass m and of the position of particle 2 with mass 10m.
This same collision is described in Fig. 3 by showing separate plots of the more common
single-particle densities ρ(x1, t) and ρ(x2, t). In both figures there is a repulsive interaction
between the particles and the mean kinetic energy equals twice the barrier height. The
numbers in the left hand corners are the times in units of 100∆t. Note that each plot ends
at the walls of the containing box, and that particle 1 “bounces off” a wall between times
36 and 86 (more evident in Fig. 3).

Figure 3 A time sequence of two Gaussian single-particle wavepackets scattering from each
other under the influence of a square barrier. The mean kinetic energy equals twice the
barrier height. The dashed curve describes particle 1 of mass m and the solid curve particle
2 of mass 10m. The number in the upper left-hand corner of each frame is the time in units
of 100∆t, and the edges of the frames correspond to the walls of the box. Note, at time
55 the wavepacket for mass m is seen to be interacting with the wall, as indicated by the
interference ripples between incident and reflected waves, and at time 150 the wavepacket
for mass 10m is interacting with the wall (by this time mass m has already had multiple
wall interactions).

Figure 4 Same as Fig. 3 except now the potential is attractive with the mean energy equal
to half the depth.

Figure 5 Same as Fig. 4, except now for a repulsive m–m collision in which the mean
energy equals one quarter of the barrier’s height.

Figure 6 Same as Fig. 4, except now for an attractive m–m collision in which the mean
energy equals one quarter of the well’s depth.

Figure 7 Same as Fig. 4, except now for an attractive m–m collision in which the mean
energy equals one quarter of the well’s depth, and for which the wavefunction has been
antisymmetrized.

Figure 8 Same as Fig. 4, except now for an attractive m–m collision in which the mean en-
ergy equals one quarter of the depth, and for which the wavefunction has been symmetrized.
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