
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

Fortran Programmer’s Guide

Part No.: 802-5664-10
Revision A, December 1996

SunSoft, Inc.

Fortran 77 4.2
Fortran 90 1.2

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, Solaris, SunSoft, Sun WorkShop, Sun Performance WorkShop and Sun Performance
Library are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

f90 IS DERIVED FROM CRAY CF90™, A PRODUCT OF CRAY RESEARCH, INC.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

Contents iii

Contents

Preface . xiii

1. Introduction . 1

Standards Conformance . 1

Features of the Fortran Compilers . 2

Related Sun Documentation . 3

2. Fortran Input/Output . 5

Accessing Files From Fortran 77 Programs 5

Accessing Named Files . 5

Opening Files Without a Name. 7

Preconnected Units . 7

Opening Files Without an OPEN Statement 8

Passing File Names to Programs. 9

VAX / VMS Logical File Names (f77 Only) 12

Direct I/O. 13

Internal Files . 15

iv Fortran Programmer’s Guide

 Tape I/O . 17

Using TOPEN Routines . 17

Fortran Formatted I/O for Tape . 17

Fortran Unformatted I/O for Tape . 17

Tape File Representation . 18

End-of-File . 18

Using Multifile Tapes . 19

Fortran 90 I/O Considerations . 19

3. Program Development . 21

Facilitating Program Builds With the make Utility 21

The makefile . 21

make Command . 23

Macros . 23

Overriding of Macro Values . 24

Suffix Rules in make . 25

More Information . 25

Version Tracking and Control With SCCS 26

Controlling Files With SCCS . 26

Checking Files Out and In . 28

More Information . 29

4. Libraries . 31

Understanding Libraries . 31

Advantages of Libraries . 32

Linker Debugging Options . 32

Contents v

Generating a Load Map . 32

Listing Other Information . 33

Consistent Compiling and Linking . 34

Library Search Paths and Order . 35

Search Order for Standard Library Paths. 35

Library Search Path and Order — Static Linking 36

Library Search Path and Order — Dynamic Linking 37

Creating Static Libraries . 39

Tradeoffs . 39

 Creation of a Simple Static Library . 40

Creating Dynamic Libraries. 44

Tradeoffs . 44

Position-Independent Code and –pic 45

Binding Options . 45

Naming Conventions . 46

A Simple Dynamic Library . 46

Libraries Provided with Sun Fortran Compilers. 48

Shippable Libraries . 50

5. Program Analysis and Debugging . 51

Global Program Checking (f77 Only) . 51

GPC Overview . 52

How to Invoke Global Program Checking 53

Some Examples of -Xlist and Global Program Checking . 55

Suboptions for Global Checking Across Routines 59

vi Fortran Programmer’s Guide

–Xlist Suboption Reference . 61

Some Examples Using Suboptions . 65

Special Compiler Options . 67

Subscript Bounds (–C) . 67

Undeclared Variable Types (–u) . 67

Version Checking (–V) . 68

Interactive Debugging With dbx and The WorkShop 68

Debugging Optimized Programs . 69

Viewing Compiler Listing Diagnostics. 69

6. Floating-Point Arithmetic . 71

Introduction . 71

IEEE Floating-Point Arithmetic. 72

Handling Exceptions . 74

Trapping a Floating-Point Exception–f77 vs f90 74

IEEE Routines . 74

Flags and ieee_flags() . 75

IEEE Extreme Value Functions . 79

Exception Handlers and ieee_handler() 80

Retrospective Summary . 86

SPARC: Nonstandard Arithmetic . 86

–ftrap= mode Compiler Options. 87

Floating-Point Exceptions–f77 vs f90 88

Debugging IEEE Exceptions . 88

Further Numerical Adventures . 91

Contents vii

Simple Underflow. 92

Continuing With the Wrong Answer . 92

Excessive Underflow (SPARC Only) . 93

Porting from Scientific Mainframes . 94

7. Porting. 95

Time Functions . 95

Formats. 98

Carriage-Control . 98

Working With Files . 99

Data Representation . 100

Hollerith Data . 100

Nonstandard Coding Practices . 103

Uninitialized Variables. 104

Aliasing Across Calls . 104

Obscure Optimizations . 104

Troubleshooting. 107

Results Are Close, but Not Close Enough 107

Program Fails without Warning . 108

8. Performance Profiling . 109

The time Command. 109

Multiprocessor Interpretation of time Output. 110

The gprof Profiling Command . 110

Overhead Considerations . 114

Missing Profile Libraries . 114

viii Fortran Programmer’s Guide

The tcov Profiling Command. 115

“Old Style” tcov Coverage Analysis. 115

“New Style” Enhanced tcov Analysis 117

I/O Profiling . 118

9. Performance and Optimization . 121

Choice of Compiler Options . 122

Performance Option Reference . 123

Other Performance Strategies . 128

• Use Optimized Libraries . 128

• Eliminate Performance Inhibitors . 129

Further Reading . 131

10. Parallelization . 133

Introduction . 133

Speedups—What to Expect . 134

Steps to Parallelizing a Program . 135

Data Dependency Issues . 136

Parallel Options and Directives Summary 138

Notes on Compiler Options. 139

Specifying the Number of Processors. 140

Stacks, Stack Sizes, and Parallelization 140

Automatic Parallelization . 142

Loop Parallelization . 142

Definitions: Array, Scalar, and Pure Scalar 142

Automatic Parallelization Criteria . 143

Contents ix

Automatic Parallelization With Reduction Operations 145

Explicit Parallelization . 149

Parallelizable Loops . 149

Sun-Style Parallelization Directives (f77 only) 151

Cray-Style Parallelization Directives . 167

Debugging Parallelized Programs . 169

11. C-Fortran Interface . 175

Compatibility Issues . 175

Function or Subroutine . 176

Data Type Compatibility . 177

Case Sensitivity . 179

Underscore in Names of Routines . 179

Argument-Passing by Reference or Value 180

Argument Order . 180

Array Indexing and Order . 181

File Descriptors and stdio . 182

File Permissions . 183

Libraries and Linking With the f77 or f90 Command 183

Passing Data Arguments by Reference. 184

Passing Data Arguments by Value . 190

Functions that Return a Value . 191

Labeled COMMON . 195

Sharing I/O Between Fortran and C. 195

Alternate Returns . 196

x Fortran Programmer’s Guide

Index . 197

xi

Tables

Table 2-1 csh /sh Redirection and Piping on the command-line 12

Table 4-1 Major Libraries Provided With the Compilers 48

Table 6-1 ieee_flags Argument Meanings . 76

Table 6-2 Functions for Using IEEE Values . 79

Table 7-1 Sun Fortran Time Functions. 96

Table 7-2 Summary: VMS Fortran System Routines 96

Table 7-3 Maximum Characters in Data Types . 101

Table 9-1 Some Effective Performance Options . 123

Table 10-1 Parallelization Options for f77 . 138

Table 10-2 Parallelization Options for f90 . 139

Table 10-3 Parallel Directives for f77 . 139

Table 10-4 Parallel Directives for f90 . 139

Table 10-5 Recognized Reduction Operations (f77) 146

Table 10-6 DOALL Qualifiers . 154

Table 10-7 Explicit Parallelization Problems . 163

Table 10-8 Overview of Alternate Directive Syntax 167

xii Fortran Programmer’s Guide

Table 10-9 DOALL Qualifiers (Cray Style) . 168

Table 10-10 DOALL Cray Scheduling . 169

Table 11-1 Data Sizes and Alignments—Pass by Reference (f77 vs. cc) 177

Table 11-2 Data Sizes and Alignment—Pass by Reference (f90 vs. cc)
(SPARC only) . 178

Table 11-3 Comparing Fortran and C I/O . 182

xiii

Preface

This guide combines the essential information programmers need to develop
efficient applications using the two Sun™ Fortran compilers, f77 (Fortran 77
Release 4.2) and f90 (Fortran 90 Release 1.2). It deals primarily with issues
relating to input/output, program development, use and creation of software
libraries, program analysis and debugging, numerical accuracy, porting,
performance, optimization, parallelization, and the C/Fortran interface.

Discussion of the compiler command-line options and their use can be found
in the companion book, Sun Fortran User’s Guide.

Note – This guide covers the Sun Fortran 77 and Fortran 90 compilers. The text
uses "f77 /f90 " and "Fortran" to indicate information that is common to both
compilers.

Audience
This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran language and wish to learn how to use the
Sun Fortran compilers effectively. Familiarity with the Solaris™ operating
system or UNIX® in general is also assumed.

xiv Fortran Programmer’s Guide

Organization of This Guide
This guide is organized into the following chapters and appendixes:

• Chapter 1, "Introduction," briefly describes the features of the compilers.
• Chapter 2, "Fortran Input/Output," discusses how to use I/O efficiently.
• Chapter 3, "Program Development," demonstrates how program

management tools like SCCS, make, and Teamware can be helpful.
• Chapter 4, "Libraries," explains use and creation of software libraries.
• Chapter 5, "Program Analysis and Debugging," describes use of dbx and

other analysis tools.
• Chapter 6, "Floating Point Arithmetic," introduces important issues

regarding numerical computation accuracy.
• Chapter 7, "Porting," considers porting programs to Sun compilers.
• Chapter 8, "Performance Profiling," describes techniques for performance

measurement.
• Chapter 9, "Performance and Optimization," indicates ways to improve

execution performance of Fortran programs.
• Chapter 10, "Parallelization," explains the multiprocessing features of the

compilers.
• Chapter 11, "C-Fortran Interface," describes how C and Fortran routines can

call each other and pass data.

Multiplatform Release
The Sun Fortran documentation covers the release of the Fortran compilers on
a number of operating systems and hardware platforms:

Fortran 77 4.2 is released for:

• Solaris 2.x operating system on:
• architectures based on the SPARC™ microprocessor
• x86-based architectures, where x86 refers to the Intel® implementation of

one of the following: Intel 80386™, Intel 80486™, Pentium™, or the
equivalent

• PowerPC™ architecture compliant with the Common Hardware Reference
Platform (CHRP) and the PowerPC Reference Platform (PReP)
specifications

Fortran 90 1.2 is released for:

• Solaris 2.x operating system on SPARC architectures only.

xv

The Fortran documentation describes the Sun compilers on all the above
operating systems and platforms. Issues unique to one or more platforms is
identified as “(SPARC)”, “(Intel)”, “(PowerPC)”.

Conventions in Text
This manual uses the following conventions to display information.

• Code listings and examples appear in boxes:

• The plain Courier font shows prompts, coding, and generally anything
that is computer output.

• In dialogs, the boldface Courier font shows text you type in:

• Italics indicate general arguments or parameters that you replace with the
appropriate input. Italics also indicate emphasis.

• The small clear triangle ∆ shows a blank space where that is significant:

• Fortran 77 examples appear in tab format, while Fortran 90 examples appear
in free format. Examples common to both Fortran 77 and 90 use tab format
except where indicated.

• Uppercase characters are generally used to show Fortran keywords and
intrinsics (PRINT), and lowercase or mixed case is used for variables
(TbarX).

• The Sun Fortran compilers are referred to by their command names, either
f77 or f90 . "f77 /f90 " indicates information that is common to both the
Fortran 77 and Fortran 90 compilers.

WRITE(*, *) 'Hello world'

demo% echo hello
hello
demo%

∆∆36.001

xvi Fortran Programmer’s Guide

• References to online man pages appear with the topic name and section
number. For example, a reference to GETENV will appear as getenv (3F),
implying that the man command to access this page would be:

man -s 3F getenv

 1

Introduction 1

The Sun Fortran compilers, f77 and f90 , described in this book (and the
companion book Sun Fortran User’s Guide) are available under the Solaris 2.x
operating systems on the various hardware platforms that Solaris supports.
The compilers themselves conform to published Fortran language standards,
and provide many extended features, including multiprocessor parallelization,
sophisticated optimized code compilation, and mixed C/Fortran language
support.

Standards Conformance
• f77 conforms to the ANSI X3.9-1978 Fortran standard and the

corresponding International Standards Organization number is ISO 1539-
1980. NIST (formerly GSA and NBS) validates it at appropriate intervals.

• f77 conforms to the standards FIPS 69-1, BS 6832, and MIL-STD-1753.

• f90 conforms to the ANSI X3.198-1992 standard.

• Both compilers provide an IEEE standard 754-1985 floating-point package.

• On SPARC systems, both compilers provide support for the optimization-
exploiting features of SPARC V8, including the SuperSPARC™
implementation. These features are defined in the SPARC Architecture
Manual: Version 8.

 2 Fortran Programmer’s Guide

1

Features of the Fortran Compilers
Sun Fortran compilers provide the following features or extensions:

• Global program checking across routines for consistency of arguments,
commons, parameters, and the like. (f77)

• Support for multiprocessor systems, including automatic and explicit loop
parallelization, is integrated tightly with optimization. (SPARC only)

Note – Parallelization features of the Fortran compilers are only available with
the Sun Performance WorkShop.

• Many VAX/VMS Fortran 5.0 extensions, including (f77):
• NAMELIST
• DO WHILE
• Structures, records, unions, maps
• Variable format expressions
• Recursion
• Pointers
• Double-precision complex
• Quadruple-precision real (SPARC and PowerPC)
• Quadruple-precision complex (SPARC and PowerPC)

• Cray-style parallelization directives, with extensions on f90 .

• Global, peephole, and potential parallelization optimizations produce high
performance applications. Benchmarks show that optimized applications
can run significantly faster when compared to unoptimized code.

• Common calling conventions on Solaris systems permit routines written in
C, C++, or Pascal to be combined with Fortran programs.

Introduction 3

1

Related Sun Documentation
The following Sun manuals and guides provide additional information that
supplements this book:

• Fortran 77 4.2 Language Reference. Complete Fortran 77 reference.
• Fortran 90 Handbook. Complete Fortran 90 reference. (Available online with

AnswerBook only.)
• Fortran Library Reference. Detailed reference to the Sun Fortran 77 and

Fortran 90 runtime libraries.
• Fortran User’s Guide. Complete information on command–line options and

how to use the compilers.
• WorkShop: Command–Line Utilities. Information on using the dbx debugger.
• WorkShop: Beyond the Basics. Using the interactive debugger.
• Numerical Computation Guide. Details floating-point computation numerical

accuracy issues.
• Linker and Libraries Guide. Complete information on linking and libraries.
• Incremental Link Editor. Using the incremental linker.
• Performance Profiling Tools. A guide to the use of performance profiling tools.

 4 Fortran Programmer’s Guide

1

 5

Fortran Input/Output 2

This chapter discusses the input/output features provided by Sun Fortran
compilers. Many of the I/O features found in f77 are not available in this
release (1.2) of f90 ; this chapter primarily describes f77 features. f90 is
discussed at the end of the chapter.

Accessing Files From Fortran 77 Programs
Data is transferred between the program and devices or files through a Fortran
logical unit. Logical units are identified in an I/O statement by a logical unit
number, a nonnegative integer from 0 to the maximum 4-byte integer value
(2,147,483,647).

The character * may appear as a logical unit identifier. The asterisk stands for
standard input file when it appears in a READ statement; it stands for standard
output file when it appears in a WRITE or PRINT statement.

A Fortran logical unit can be associated with a specific, named file through the
OPEN statement. Also, certain “preconnected” units are automatically
associated with specific files at the start of program execution.

Accessing Named Files

The OPEN statement’s FILE= specifier establishes the association of a logical
unit to a named, physical file at runtime. This file may be pre-existing or
created by the program. See the Sun Fortran 77 Language Reference for a full
discussion of the OPEN statement.

 6 Fortran Programmer’s Guide

2

The FILE= specifier on an OPEN statement may specify a simple file name
(FILE= ' myfile.out ') or a file name preceded by an absolute or relative
directory path (FILE= ' ../Amber/Qproj/myfile.out '). Also, the specifier
may be a character constant, variable, or character expression.

Library routines GETARG(argnumber, charvalue) and GETENV(envar, charvalue)
can be used to bring command–line arguments and environment variables
respectively into the program as character variables that can be used as file
names in OPEN statements. (See man page entries for getarg (3F) and
getenv (3F) for details).

The following example (GetFilNam.f) shows one way to construct an
absolute path file name from a typed-in name. The program uses the library
routines GETENV, LNBLNK, and GETCWD to return the value of the $HOME
environment variable, find the last non-blank in the string, and determine the
current working directory:

CHARACTER F*128, FN*128, FULLNAME*128
PRINT*, 'ENTER FILE NAME:'
READ *, F
FN = FULLNAME(F)
PRINT *, 'PATH IS: ',FN
END

CHARACTER*128 FUNCTION FULLNAME(NAME)
CHARACTER NAME*(*), PREFIX*128

C This assumes C shell.
C Leave absolute path names unchanged.
C If name starts with '~/', replace tilde with home
C directory; otherwise prefix relative path name with
C path to current directory.

IF (NAME(1:1) .EQ. '/') THEN
FULLNAME = NAME

ELSE IF (NAME(1:2) .EQ. '~/') THEN
CALL GETENV('HOME', PREFIX)
FULLNAME = PREFIX(:LNBLNK(PREFIX)) //

& NAME(2:LNBLNK(NAME))
ELSE

CALL GETCWD(PREFIX)
FULLNAME = PREFIX(:LNBLNK(PREFIX)) //

& '/' // NAME(:LNBLNK(NAME))
ENDIF
RETURN
END

Fortran Input/Output 7

2

Compiling and running GetFilNam.f results in:

Opening Files Without a Name

The OPEN statement need not specify a name; the runtime system supplies a
file name according to several conventions.

Opened as Scratch

Specifying STATUS='SCRATCH' in the OPEN statement opens a file with a
name of the form tmp.F AAAxnnnnn — where nnnnn is replaced by the current
process ID, AAA is a string of three characters, and x is a letter; the AAA and x
make the file name unique. This file is deleted upon termination of the
program or execution of a CLOSE statement, unless STATUS='KEEP' is
specified in the CLOSE statement.

Already Open

If the file has already been opened by the program, you can use a subsequent
OPEN statement to change some of the file’s characteristics – specifically, BLANK
and FORM. In this case, you would specify only the file’s logical unit number
and the parameters to change.

Preconnected Units

Three unit numbers are automatically associated with specific standard I/O
files at the start of program execution. These preconnected units are standard
input, standard output, and standard error. For Fortran 77:

• Standard input is logical unit 5
• Standard output is logical unit 6

demo% pwd
/home/users/auser/subdir
demo% f77 -silent -o getfil GetFilNam.f
demo% getfil
anyfile
/home/users/auser/subdir/anyfile
demo%

 8 Fortran Programmer’s Guide

2

• Standard error is logical unit 0

With Fortran 90, an additional three unit numbers are also preconnected:

• Standard input is logical units 5 and 100
• Standard output is logical units 6 and 101
• Standard error is logical units 0 and 102

Typically, standard input receives input from the workstation keyboard;
standard output and standard error display output on the workstation screen.

In all other cases where a logical unit number but no FILE= name is specified
on an OPEN statement, a file is opened with a name of the form fort. n, where
n is the logical unit number.

Opening Files Without an OPEN Statement

Use of the OPEN statement is optional in those cases where default conventions
can be assumed. If the first operation on a logical unit is an I/O statement
other than OPEN, the file fort. n is referenced, where n is the logical unit
number (except for 0, 5, and 6, which have special meaning).

These files need not exist before program execution. If the first operation on the
file is not an OPEN or INQUIRE statement, they are created.

Example: If the WRITE in the code below is the first I/O statement issued on
unit 25, the file fort.25 is created:

demo% cat TestUnit.f
IU=25
WRITE(IU, '(I4)') IU
END

demo%

Fortran Input/Output 9

2

The preceding program preconnects the file fort.25 and writes a single
formatted record onto that file:

Passing File Names to Programs

The file system does not have any automatic facility to associate a logical unit
number in a Fortran program with a physical file.

However, there are several satisfactory ways to communicate file names to a
Fortran program.

Via Runtime Arguments and GETARG

The library routine getarg (3F) can be used to read the command-line
arguments at runtime into a character variable. The argument is interpreted as
a file name and used in the OPEN statement FILE= specifier:

demo% f77 -silent -o testunit TestUnit.f
demo% testunit
demo% cat fort.25
 25
demo%

demo% cat testarg.f
 CHARACTER outfile*40
C Get first arg as output file name for unit 51
 CALL getarg(1,outfile)
 OPEN(51,FILE=outfile)
 WRITE(51,*) 'Writing to file: ', outfile
 END
demo% f77 -silent -o tstarg testarg.f
demo% tstarg AnyFileName
demo% cat AnyFileName
 Writing to file: AnyFileName
demo%

 10 Fortran Programmer’s Guide

2

Via Environment Variables and GETENV

Similarly, the library routine getenv (3F) can be used to read the value of any
environment variable at runtime into a character variable that in turn is
interpreted as a file name:

Note that when using getarg or getenv , care should be taken regarding
leading or trailing blanks. Additional flexibility to accept relative path names
can be programmed along the lines of the FULLNAME function in the example
at the beginning of this chapter.

Logical Unit Preattachment Using IOINIT (f77 Only)

The library routine IOINIT can also be used with f77 to attach logical units to
specific files at runtime. IOINIT looks in the environment for names of a user-
specified form and then opens the corresponding logical unit for sequential
formatted I/O. Names must be of the general form PREFIXnn, where the
particular PREFIX is specified in the call to IOINIT , and nn is the logical unit
to be opened. Unit numbers less than 10 must include the leading 0. See the
Sun Fortran Library Reference, and the IOINIT (3F) man page. (The IOINIT
facility is not implemented for f90.)

Example: Associate physical files test.inp and test.out in the current
directory to logical units 1 and 2:

First, set the environment variables.

demo% cat testenv.f
 CHARACTER outfile*40
C Get $OUTFILE as output file name for unit 51
 CALL getenv('OUTFILE',outfile)
 OPEN(51,FILE=outfile)
 WRITE(51,*) 'Writing to file: ', outfile
 END
demo% f77 -silent -o tstenv testenv.f
demo% setenv OUTFILE EnvFileName
demo% tstenv
demo% cat EnvFileName
 Writing to file: EnvFileName
demo%

Fortran Input/Output 11

2

In sh:

In csh :

The program ini1.f reads 1 and writes 2:

With environment variables and ioinit , ini1.f reads ini1.inp and writes
to ini1.out :

IOINIT is adequate for most programs as written. However, it is written in
Fortran specifically to serve as an example for similar user-supplied routines.
Retrieve a copy from the following file, a part of the Fortran 77 package
installation: /opt/SUNWspro/SC4.2/src/ioinit.f

demo$ TST01=ini1.inp
demo$ TST02=ini1.out
demo$ export TST01 TST02

demo% setenv TST01 ini1.inp
demo% setenv TST02 ini1.out

demo% cat ini1.f
CHARACTER PRFX*8
LOGICAL CCTL, BZRO, APND, VRBOSE
DATA CCTL, BZRO, APND, PRFX, VRBOSE

& /.TRUE.,.FALSE.,.FALSE., 'TST',.FALSE. /
CALL IOINIT(CCTL, BZRO, APND, PRFX, VRBOSE)
READ(1, *) I, B, N
WRITE(2, *) I, B, N
END

demo%

demo% cat ini1.inp
 12 3.14159012 6
demo% f77 -silent -o tstinit ini1.f
demo% tstinit
demo% cat ini1.out
 12 3.14159 6
demo%

 12 Fortran Programmer’s Guide

2

Command-Line I/O Redirection and Piping

Another way to associate a physical file with a program’s logical unit number
is by redirecting or piping the preconnected standard I/O files. Redirection or
piping occurs on the runtime execution command.

In this way, a program that reads standard input (unit 5) and writes to
standard output (unit 6) or standard error (unit 0) can, by redirection (using <,
>, >>, >&, |, |&, 2>, 2>&1 on the command-line), read or write to any
other named file. This is shown in Table 2-1:

See the csh and sh man pages for details on redirection and piping on the
command-line.

VAX / VMS Logical File Names (f77 Only)

If you are porting from VMS FORTRAN to Fortran 77, the VMS-style logical
file names in the INCLUDE statement are mapped to UNIX path names. The
environment variable LOGICALNAMEMAPPING defines the mapping between
the logical names and the UNIX path name. If the environment variable
LOGICALNAMEMAPPING is set and the -xl or -xld compiler options are used,
the compiler interprets VMS logical file names on the INCLUDE statement.

Table 2-1 csh /sh Redirection and Piping on the command-line

Action Using csh Using sh

Standard input —
read from mydata

myprog < mydata myprog < mydata

Standard output —
write (overwrite)
myoutput

myprog > myoutput myprog > myoutput

Standard output —
write/append to
myoutput

myprog >> myoutput myprog >> myoutput

Pipe standard
output to input of
another program

myprog1 | myprog2 myprog1 | myprog2

Pipe standard
error and output
to another program

myprog1 |& myprog2 myprog1 2>&1 | myprog2

Fortran Input/Output 13

2

The compiler sets the environment variable to a string with the following
syntax:

Each lname is a logical name, and each path is the path name of a directory
(without a trailing /). All blanks are ignored when parsing this string. Any
trailing /list or /nolist is stripped from the file name in the INCLUDE
statement. Logical names in a file name are delimited by the first colon in the
VMS file name. The compiler converts file names of the form:

to:

Uppercase and lowercase are significant in logical names. If a logical name is
encountered on the INCLUDE statement that was not specified by
LOGICALNAMEMAPPING, the file name is used unchanged.

Direct I/O
Direct or random I/O allows you to access a file directly by record number.
Record numbers are assigned when a record is written. Unlike sequential I/O,
direct I/O records can be read and written in any order. However, in a direct
access file, all records must be the same fixed length. Direct access files are
declared with the ACCESS=’DIRECT’ specifier on the OPEN statement for the
file.

A logical record in a direct access file is a string of bytes of a length specified
by the OPEN statement’s RCL= specifier. READ and WRITE statements must not
specify logical records larger than the defined record size. (Record sizes are
specified in bytes.) Shorter records are allowed. Unformatted, direct writes
leave the unfilled part of the record undefined. Formatted, direct writes cause
the unfilled record to be padded with blanks.

" lname1=path1; lname2=path2; … "

lname1: file

path1/ file

 14 Fortran Programmer’s Guide

2

Direct access READ and WRITE statements have an extra argument, REC=n, to
specify the record number to be read or written.

Example: Direct access, unformatted:

This program opens a file for direct access, unformatted I/O, with a fixed
record length of 200 bytes, then reads the thirteenth record into X and Y.

Example: Direct access, formatted:

This program opens a file for direct access, formatted I/O, with a fixed record
length of 200 bytes. It then reads the thirteenth record and converts it to the
format(I10,F10.3) .

For formatted files, the size of the record written is determined by the FORMAT
statement. In the preceding example, the FORMAT statement defines a record of
20 characters or bytes. More than one record can be written by a single
formatted write if the amount of data on the list is larger than the record size
specified in the FORMAT statement. In such a case, each subsequent record is
given successive record numbers.

Example: Direct access, formatted, multiple record write:

The write to direct access unit 21 creates 10 records of 10 elements each (since
the format specifies 10 elements per record) these records are numbered 11
through 20.

OPEN(2, FILE='data.db', ACCESS='DIRECT', RECL=200,
& FORM='UNFORMATTED', ERR=90)

READ(2, REC=13, ERR=30) X, Y

OPEN(2, FILE='inven.db', ACCESS='DIRECT', RECL=200,
& FORM='FORMATTED', ERR=90)

READ(2, FMT='(I10,F10.3)', REC=13, ERR=30) A, B

OPEN(21, ACCESS='DIRECT', RECL=200, FORM='FORMATTED')
WRITE(21,'(10F10.3)',REC=11) (X(J),J=1,100)

Fortran Input/Output 15

2

Internal Files
An internal file is an object of type CHARACTER such as a variable, substring,
array, element of an array, or field of a structured record. Internal file READs
can be from a constant character string. I/O on internal files simulates
formatted READ and WRITE by transferring and converting data from one
character object to another data object. No physical I/O is actually performed.

When using internal files:

• The name of the character object receiving the data appears in place of the
unit number on a WRITE statement. On a READ statement, the name of the
character object source appears in place of the unit number.

• A constant, variable, or substring object constitutes a single record in the
file.

• With an array object, each array element corresponds to a record.

• f77 extends direct I/O to internal files. (The ANSI standard includes only
sequential formatted I/O on internal files.) This is like direct I/O on
external files, except that the number of records in the file cannot be
changed. In this case, a record is a single element of an array of character
strings (f77 only).

• Each sequential READ or WRITE starts at the beginning of an internal file.

Example: Sequential formatted read from an internal file (one record only):

demo% cat intern1.f
CHARACTER X*80
READ(*, '(A)') X
READ(X, '(I3,I4)') N1, N2 ! This codeline reads the internal file X
WRITE(*, *) N1, N2
END

demo% f77 -silent -o tstintern intern1.f
demo% tstintern
 12 99
 12 99
demo%

 16 Fortran Programmer’s Guide

2

Example: Sequential formatted read from an internal file (three records):

Example: Direct access read from an internal file (one record) (f77 only):

demo% cat intern2.f
CHARACTER LINE(4)*16 ! This is our “internal file”

* 12341234
DATA LINE(1) / ' 81 81 ' /
DATA LINE(2) / ' 82 82 ' /
DATA LINE(3) / ' 83 83 ' /
DATA LINE(4) / ' 84 84 ' /
READ(LINE,'(2I4)') I,J,K,L,M,N .
PRINT *, I, J, K, L, M, N
END

demo% f77 -silent intern2.f
demo% a.out
 81 81 82 82 83 83
demo%

demo% cat intern3.f
CHARACTER LINE(4)*16 ! This is our “internal file”

* 12341234
DATA LINE(1) / ' 81 81 ' /
DATA LINE(2) / ' 82 82 ' /
DATA LINE(3) / ' 83 83 ' /
DATA LINE(4) / ' 84 84 ' /
READ (LINE, FMT=20, REC=3) M, N

20 FORMAT(I4, I4)
PRINT *, M, N
END

demo% f77 -silent intern3.f
demo% a.out
 83 83
demo%

Fortran Input/Output 17

2

 Tape I/O
Most typical Fortran I/O is done to disk files. However, by associating a logical
unit number to a physically mounted tape drive via the OPEN statement, it is
possible to do I/O directly to tape.

It is more reliable and efficient to use the TOPEN() routines rather than Fortran
I/O statements to do I/O on magnetic tape.

Using TOPEN Routines

With the nonstandard tape I/O package (see TOPEN (3F)) you can transfer
blocks between the tape drive and buffers declared as Fortran character
variables. You can then use internal I/O to fill and empty these buffers. This
facility does not integrate with the rest of Fortran I/O and even has its own set
of tape logical units. Refer to the man pages for complete information.

Fortran Formatted I/O for Tape

The Fortran I/O statements provide facilities for transparent access to
formatted, sequential files on magnetic tape. (With f77 , the tape block size can
be optionally controlled by the OPEN statement FILEOPT parameter.) There is
no limit on formatted record size, and records may span tape blocks.

Fortran Unformatted I/O for Tape

Using the Fortran I/O statements to connect a magnetic tape for unformatted
access is less satisfactory. The implementation of unformatted records implies
that the size of a record (+ eight characters of overhead) cannot be bigger than
the buffer size.

As long as this restriction is complied with, the I/O system does not write
records that span physical tape blocks, writing short blocks when necessary.
This representation of unformatted records is preserved (even though it is
inappropriate for tapes) so that files can be freely copied between disk and
tapes.

Since the block-spanning restriction does not apply to tape reads, files can be
copied from tape to disk without any special considerations.

 18 Fortran Programmer’s Guide

2

Tape File Representation

A Fortran data file is represented on tape by a sequence of data records
followed by an endfile record. The data is grouped into blocks, with
maximum block size determined when the file is opened. The records are
represented in the same way as records in disk files — formatted records are
followed by newlines; unformatted records are preceded and followed by
character counts. In general, there is no relation between Fortran records and
tape blocks; that is, records can span blocks, which can contain parts of several
records.

The only exception is that Fortran does not write an unformatted record that
spans blocks; thus, the size of the largest unformatted record is eight characters
less than the block size.

The dd Conversion Utility

An end–of–file record in Fortran maps directly into a tape mark. In this respect,
Fortran files are the same as tape system files. But since the representation of
Fortran files on tape is the same as that used in the rest of UNIX, naive Fortran
programs cannot read 80-column card images on tape. If you have an existing
Fortran program and an existing data tape to read with it, translate the tape
using the dd(1) utility, which adds newlines and strips trailing blanks.

Example: Convert a tape on mt0 and pipe that to the executable ftnprg :

The getc Library Routine

As an alternative to dd , you can call the getc (3F) library routine to read
characters from the tape. You can then combine the characters into a character
variable and use internal I/O to transfer formatted data. See also TOPEN(3F).

End-of-File

The end–of–file condition is reached when an end–of–file record is encountered
during execution of a READ statement. The standard states that the file is
positioned after the end–of–file record. In real life, this means that the tape

demo% dd if=/dev/rmt0 ibs=20b cbs=80 conv=unblock | ftnprg

Fortran Input/Output 19

2

read head is poised at the beginning of the next file on the tape. Although it
seems as if you could read the next file on the tape, this is not strictly true, and
is not covered by the ANSI FORTRAN 77 Language Standard.

The standard also says that a BACKSPACE or REWIND statement can be used to
reposition the file. Consequently, after reaching end–of–file, you can backspace
over the end–of–file record and further manipulate the file, such as writing
more records at the end, rewind the file, and reread or rewrite it.

Using Multifile Tapes

The name used to open the tape file determines certain characteristics of the
connection, such as the recording density and whether the tape is
automatically rewound when opened and closed.

To access a file on a tape with multiple files, first use the mt(1) utility to
position the tape to the needed file. Then open the file as a no-rewind magnetic
tape such as /dev/nrmt0 . Referencing the tape with this name prevents it
from being repositioned when it is closed. By reading the file until end-of-file
and then reopening it, a program can access the next file on the tape. Any
program subsequently reference the same tape can access it where it was last
left, preferably at the beginning of a file, or past the end–of–file record.

However, if your program terminates prematurely, it may leave the tape
positioned anywhere.

Fortran 90 I/O Considerations
Fortran 90 1.2 and Fortran 77 4.2 use different I/O libraries. However, this
should be transparent to the user. Executables containing intermixed f77 and
f90 compilations can do I/O to the same unit from both the f77 and f90 parts
of the program.

This I/O compatibility requires that f77 4.2 programs be linked with f90 1.2
programs.

 20 Fortran Programmer’s Guide

2

 21

Program Development 3

This chapter briefly introduces two powerful program development tools,
make and SCCS, that can be used very successfully with Fortran programs.

Facilitating Program Builds With the make Utility
The make utility applies intelligence to the task of program compilation and
linking. Typically, a large application may exist as a set of source files and
INCLUDE files, which require linking with a number of libraries. Modifying
any one or more of the source files requires recompilation of that part of the
program and relinking. You can automate this process by specifying the
interdependencies between files that make up the application along with the
commands needed to recompile and relink each piece. With these specifications
in a file of directives, make insures that only the files that need recompiling are
recompiled and that relinking to build the executable uses the options and
libraries you want. The following discussion provides a simple example of
how to use make. For a summary, see make(1).

The makefile

A file called makefile tells make in a structured manner which source and
object files depend on other files, and defines the commands required to
compile and link them.

 22 Fortran Programmer’s Guide

3

For example, suppose you have a program of four source files and the
makefile :

Assume both pattern.f and computepts.f have an INCLUDE of
commonblock , and you wish to compile each.f file and link the three
relocatable files, along with a series of libraries, into a program called
pattern .

The makefile looks like this:

The first line of this makefile indicates that making pattern depends on
pattern.o, computepts.o , and startupcore.o . The next line and its
continuations give the command for making pattern from the relocatable.o
files and libraries.

Each entry in makefile is a rule expressing a target object’s dependencies and
the commands needed to make that object. The structure of a rule is:

target: dependencies-list
TAB build-commands

demo% ls
makefile
commonblock
computepts.f
pattern.f
startupcore.f
demo%

demo% cat makefile
pattern: pattern.o computepts.o startupcore.o

f77 pattern.o computepts.o startupcore.o –lcore77 \
–lcore –lsunwindow –lpixrect –o pattern

pattern.o: pattern.f commonblock
f77 –c –u pattern.f

computepts.o: computepts.f commonblock
f77 –c –u computepts.f

startupcore.o: startupcore.f
f77 –c –u startupcore.f

demo%

Program Development 23

3

• Dependencies—Each entry starts with a line that names the target file,
followed by all the files the target depends on.

• Commands—Each entry has one or more subsequent lines that specify the
Bourne shell commands that will build the target file for this entry. Each of
these command lines must be indented by a tab character.

make Command

The make command can be invoked with no arguments, simply:

The make utility looks for a file named makefile or Makefile in the current
directory and takes its instructions from that file.

The make utility:

• Reads makefile to determine all the target files it must process, the files
they depend on, and the commands needed to build them

• Finds the date and time each file was last changed

• If any target file is older than any of the files it depends on, make rebuilds
that target, using the commands from makefile for that target

Macros

The make utility’s macro facility allows simple parameterless string
substitutions. For example, the list of relocatable files that make up the target
program pattern can be expressed as a single macro string, making it easier
to change.

A macro string definition has the form:

NAME = string

Use of a macro string is indicated by

$(NAME)

which is replaced by make with the actual value of the macro string named.

demo% make

 24 Fortran Programmer’s Guide

3

This example adds a macro definition naming all the object files to the
beginning of makefile :

Now the macro can be used in both the list of dependencies as well as on the
f77 link command for target pattern in makefile :

For macro strings with single-letter names, the parentheses may be omitted.

Overriding of Macro Values

The initial values of make macros can be overridden with command-line
options to make. For example, with the following line to the top of makefile :

and the compile-line of computepts.f :

and the final link:

Now a simple make command without arguments uses the value of FFLAGS
set above. However, this can be overridden from the command line:

OBJ = pattern.o computepts.o startupcore.o

pattern: $(OBJ)
f77 $(OBJ) –lcore77 –lcore –lsunwindow \
–lpixrect –o pattern

FFLAGS=–u

f77 $(FFLAGS) –c computepts.f

f77 $(FFLAGS) $(OBJ) –lcore77 –lcore –lsunwindow \
 lpixrect –o pattern

demo% make "FFLAGS=–u –O"

Program Development 25

3

Here, the definition of the FFLAGS macro on the make command line overrides
the makefile initialization, and both the -O flag and the -u flag are passed to
f77 . Note that "FFLAGS=" can also be used on the command to reset the
macro so that it has no effect.

Suffix Rules in make

To make writing a makefile easier, make has its own default rules that it will
use depending on the suffix of a target file. Recognizing the .f suffix, make
uses the f77 compiler passing as arguments any flags specified by the FFLAGS
macro, the -c flag, and the name of the source file to be compiled.

The example below demonstrates this rule twice:

make uses default rules to compile computepts.f and startupcore.f .

Similarly, suffix rules for .f90 files also exist to invoke the f90 compiler

More Information

A number of good, commercially published books on using make as a program
development tool are currently available, including Managing Projects with
make, by Oram and Talbott, from O’Reilly & Associates.

OBJ = pattern.o computepts.o startupcore.o
FFLAGS=–u
pattern: $(OBJ)

f77 $(OBJ) –lcore77 –lcore –lsunwindow \
–lpixrect –o pattern

pattern.o: pattern.f commonblock
f77 $(FFLAGS) –c pattern.f

computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

 26 Fortran Programmer’s Guide

3

Version Tracking and Control With SCCS
SCCS stands for Source Code Control System. SCCS provides a way to:

• Keep track of the evolution of a source file—its change history
• Prevent a source file from being simultaneously changed by other

developers
• Keep track of the version number by providing version stamps

The basic three operations of SCCS are:

• Putting files under SCCS control
• Checking out a file for editing
• Checking in a file

This section shows you how to use SCCS to perform these tasks, using the
previous program as an example. Only basic SCCS is described and only three
SCCS commands are introduced: create , edit , and delget .

Controlling Files With SCCS

Putting files under SCCS control involves:

• Making the SCCS directory
• Inserting SCCS ID keywords into the files (this is optional)
• Creating the SCCS files

Making the SCCS Directory

To begin, you must create the SCCS subdirectory in the directory in which your
program is being developed. Use this command:

SCCS must be in uppercase.

demo% mkdir SCCS

Program Development 27

3

Inserting SCCS ID Keywords

Some developers put one or more SCCS ID keywords into each file, but that is
optional. These keywords are later identified with a version number each time
the files are checked in with an SCCS get or delget command. There are
three likely places to put these strings:

• Comment lines
• Parameter statements
• Initialized data

The advantage of using keywords is that the version information appears in
the source listing and compiled object program. If preceded by the string
@(#) , the keywords in the object file can be printed using the what command.

Included header files that contain only parameter and data definition
statements do not generate any initialized data, so the keywords for those files
usually are put in comments or in parameter statements. Some files, like ASCII
data files or makefile s, the SCCS information appears in comments.

SCCS keywords appear in the form %keyword% and are expanded into their
values by the SCCS get command. The most commonly used keywords are:

%Z% expands to the identifier string @(#) recognized by the what
command.

%M% expands to the name of the source file.

%I% expands to the version number of this SCCS maintained file.

%E% expands to the current date.

For example, we could identify the makefile with a make comment containing
these keywords:

The source files, startupcore.f , computepts.f , and pattern.f can be
identified by initialized data of the form:

%Z%%M% %I% %E%

CHARACTER*50 SCCSID
DATA SCCSID/"%Z%%M% %I% %E%\n"/

 28 Fortran Programmer’s Guide

3

When this file is processed by SCCS and then compiled and the object file
processed by the what command, the following will be displayed:

You can also create a PARAMETER named CTIME that is automatically updated
whenever the file is accessed with get .

INCLUDE files can be annotated with a Fortran comment containing the SCCS
stamp:

Creating SCCS Files

Now you can put these files under control of SCCS with the SCCS create
command:

Checking Files Out and In

Once your source code is under SCCS control, you use SCCS for two main
tasks: to check out a file so that you can edit it, and to check in a file you have
finished editing.

demo% f77 -c pattern.f
...
demo% what pattern
pattern:

pattern.f 1.2 96/06/10

CHARACTER*(*) CTIME
PARAMETER (CTIME="%E%")

C %Z%%M% %I% %E%

demo% sccs create makefile commonblock startupcore.f \
 computepts.f pattern.f
demo%

Program Development 29

3

Check out a file is with the sccs edit command. For example:

SCCS then makes a writable copy of computepts.f in the current directory,
and records your login name. Other users cannot check the file out while you
have it checked out, but they can find out who has checked it out.

Check in the modified file with the sccs delget command when you have
completed your editing. For example:

This command causes the SCCS system to do the following:

1. Make sure that you are the user who checked out the file by comparing
login names.

2. Prompt for a comment from you on the changes.

3. Make a record of what was changed in this editing session.

4. Delete the writable copy of computepts.f from the current directory.

5. Replace it by a read-only copy with the SCCS keywords expanded.

The sccs delget command is a composite of two simpler SCCS commands,
delta and get . The delta command performs the first three tasks in the list
above; the get command performs the last two tasks.

More Information

We recommend the book Applying RCS and SCCS, by Bolinger and Bronson,
from O’Reilly & Associates.

demo% sccs edit computepts.f

demo% sccs delget computepts.f

 30 Fortran Programmer’s Guide

3

 31

Libraries 4

This chapter describes how to use and create libraries of subprograms. Both
static and dynamic libraries are discussed.

Understanding Libraries
A software library is usually a set of subprograms that have been previously
compiled and organized into a single binary library file. Each member of the set
is called a library element or module. The linker searches the library files,
loading object modules referenced by the user program while building the
executable binary program. See ld (1) and the Sun Linker and Libraries Guide for
details.

There are two basic kinds of software libraries:

• Static library—A library in which modules are bound into the executable
file before execution. Static libraries are commonly named lib name.a . The
.a suffix refers to archive.

• Dynamic library—A library in which modules can be bound into the
executable program at runtime. Dynamic libraries are commonly named
lib name.so . The .so suffix refers to shared object.

Typical system libraries that have both static and dynamic versions are:
• Fortran libraries: libF77.a and libF77.so
• VMS Fortran libraries: libV77.a and libV77.so
• C libraries: libc.a and libc.so

 32 Fortran Programmer’s Guide

4

Advantages of Libraries

Library files provide an easy way for programs to share commonly used
subroutines. You need only name the library when linking the program, and
those library modules that resolve references in the program are linked and
merged into the executable file.

There are two advantages to the use of libraries:

• There is no need to have source code for the library routines that a program
calls.

• Only the needed modules are loaded.

Linker Debugging Options
Summary information about library usage and loading can be obtained by
passing additional options to the linker on the compile command line, either
by using the option syntax –Qoption ld linker_option or by setting the
environment variable LD_OPTIONS.

Using LD_OPTIONS environment variable:

is equivalent to:

Some linker options have their compiler command-line equivalents and can
appear directly on the f77 or f90 command: –Bx, –d x, –G, –h name,
–Rpath, and –ztext.

More detailed examples and explanations of linker options and environment
variables can be found in the Solaris Linker and Libraries Guide.

Generating a Load Map

The linker –m option generates a load map that displays library linking
information listing the routines linked during the building of the executable
binary program. Routines are listed together with the libraries that they come
from.

demo% setenv LD_OPTIONS “–m –Dfiles”
demo% f77 –o myprog myprog.f

demo% f77 –o myprog –Qoption ld –m –Qoption ld –Dfiles myprog.f

Libraries 33

4

Example: –m for load map:

Listing Other Information

Solaris 2.3 and later has additional linker debugging features, available
through the linker’s –Dkeyword option. A complete list can be displayed using
–Dhelp .

Example: List linker debugging aid options using –Dhelp option:

demo% f77 –Qoption ld –m any.f
any.f:
 MAIN:

LINK EDITOR MEMORY MAP

output input virtual
section section address size

.interp 100d4 11
.interp 100d4 11 (null)

.hash 100e8 2e8
.hash 100e8 2e8 (null)

.dynsym 103d0 650
.dynsym 103d0 650 (null)

.dynstr 10a20 366
.dynstr 10a20 366 (null)

.text 10c90 1e70
.text 10c90 00 /set/lang/sparc-S2/SC4.2/lib/crti.o
.text 10c90 f4 /set/lang/sparc-S2/SC4.2/lib/crt1.o
.text 10d84 00 /set/lang/sparc-S2/SC4.2/lib/values-xi.o
.text 10d88 d20 sparse.o

...etc

demo% ld –Dhelp
…

debug: args display input argument processing
debug: bindings display symbol binding;
debug: detail provide more information
debug: entry display entrance criteria descriptors

…
demo%

 34 Fortran Programmer’s Guide

4

For example, the –Dfiles linker option lists all the files and libraries
referenced during the link process:

See the Linker and Libraries Guide for further information on these linker
options.

Consistent Compiling and Linking

Ensuring a consistent choice of compiling and linking options is critical
whenever compilation and linking are done in separate steps. Compiling any
part of a program with any of the following options requires linking with the
same options:

–a, –autopar, –cg92, –dalign , –dbl , –explicitpar, –f ,
–fast , -misalign, –p, -parallel, –pg , –r8 , –xarch= a, –xcache= c,
-xchip= c, xprofile= p, –xtarget= t, –Zlp , –Ztha

Example: Compiling sbr.f with –a and smain.f without it, then linking in
separate steps (–a invokes tcov old–style profiling):

demo% f77 –Qoption ld –Dfiles direct.f
direct.f:
 MAIN direct:
debug: file=/opt/SUNWspro/SC4.2/lib/crti.o [ET_REL]
debug: file=/opt/SUNWspro/SC4.2/lib/crt1.o [ET_REL]
debug: file=/opt/SUNWspro/SC4.2/lib/values–xi.o [ET_REL]
debug: file=direct.o [ET_REL]
debug: file=/opt/SUNWspro/SC4.2/lib/libM77.a [archive]
debug: file=/opt/SUNWspro/lib/libF77.so [ET_DYN]
debug: file=/opt/SUNWspro/SC4.2/lib/libsunmath.a [archive]

…

 demo% f77 -c -a sbr.f
 demo% f77 -c smain.f
 demo% f77 -a sbr.o smain.o { pass –a to the linker}

Libraries 35

4

Library Search Paths and Order
The linker searches for libraries at several locations and in a certain prescribed
order. Some of these locations are standard paths, while others depend on the
compiler options -R path, –l library and –Ldir and the environment variable
LD_LIBRARY_PATH.

Search Order for Standard Library Paths

The standard library search paths used by the linker are determined by the
installation path, and they differ for static and dynamic loading.

The base directory, here called BaseDir, is defined as follows:

Static Linking

While building the executable file, the static linker searches for any libraries in
the following paths (among others), in the specified order:

• BaseDir/lib Sun shared libraries
• /usr/ccs/lib/ Standard location for SVr4 software
• /usr/lib Standard location for UNIX software

These are the default paths used by the linker.

Dynamic Linking

The dynamic linker searches for shared libraries at runtime, in the specified
order:

• Paths specified by user with -R path
• / BaseDir/lib/
• /usr/lib standard UNIX default

The search paths are built into the executable.

Standard Install Nonstandard Install to / my/ dir/

BaseDir = /opt/SUNWspro/ / my/ dir/SUNWspro/

 36 Fortran Programmer’s Guide

4

Library Search Path and Order — Static Linking

Use the -l library compiler option to name additional libraries for the linker to
search when resolving external references. For example, the option
–lmylib adds the library libmylib.so or libmylib.a to the search list.

The linker looks in the standard directory paths to find the additional
libmylib library. The –L option (and the LD_LIBRARY_PATH environment
variable) creates a list of paths that tell the linker where to look for libraries
outside the standard paths.

Were libmylib.a in directory /home/proj/libs , then the option
–L/home/proj/libs would tell the linker where to look when building the
executable:

Command-Line Order for –l library Options

For any particular unresolved reference, libraries are searched only once, and
only for symbols that are undefined at that point in the search. If you list more
than one library on the command line, then the libraries are searched in the
order they are found on the command line. Place –l library options as follows:

• Place the –l library option after any .f , .for , .F , .f90 , or .o files.
• If you call functions in lib x, and they reference functions in lib y, then

place –l x before –l y.

Command-Line Order for –Ldir Options

The –Ldir option adds the dir directory path to the library search list. The
linker searches for libraries first in any directories specified by the –L options
and then in the standard directories. This option is useful only if it is placed
preceding the –l library options to which it applies.

demo% f77 –o pgram part1.o part2.o –L/home/proj/libs –lmylib

Libraries 37

4

LD_LIBRARY_PATH Environment Variable

Use the environment variable LD_LIBRARY_PATH to specify directory paths
the linker should search for libraries specified with the –l library option. Using
this environment variable would make the previous example look like:

Multiple directories can be specified, separated by a colon. In the most general
case, the LD_LIBRARY_PATH variable may contain two lists of colon-separated
directories separated by a semicolon:

dirlist1; dirlist2

The directories in dirlist1 are searched first, followed by any explicit –Ldir
directories specified on the command line, followed then by dirlist2 and the
standard directories.

That is, if the compiler is called with any number of occurrences of –L , as in:

f77 ... –L path1 ... –L pathn ...

then the search ordering is:

dirlist1 path1 ... pathn dirlist2 standard_paths

When the LD_LIBRARY_PATH variable contains only a single colon-separated
list of directories, it is interpreted as dirlist2.

Note – Use of this environment variable with production software is strongly
discouraged. Although useful as a temporary mechanism for influencing the
runtime linker’s search path, any dynamic executable that can reference this
environment variable will have its search paths altered, which could cause
unexpected results or a degradation in performance.

Library Search Path and Order — Dynamic Linking

Changing the library search path and order of loading with dynamic libraries
differs from the static case in that actual linking takes place at runtime rather
than build time.

demo% setenv LD_LIBRARY_PATH /home/proj/libs
demo% f77 –o pgram part1.o part2.o –lmylib

 38 Fortran Programmer’s Guide

4

Specifying Dynamic Libraries at Build Time

When building the executable file, the linker records the paths to shared
libraries into the executable itself. These search paths can be specified by using
the –Rpath option. (Contrast with the -L dir option which indicates where at
buildtime to find the library specified by a -l library option, but does not
record this path into the binary executable.)

The directory paths that were built in when the executable was created can be
viewed using the dump command.

Example: List the directory paths built into a.out :

Specifying Dynamic Libraries at Runtime

At runtime, the linker determines where to find the dynamic libraries an
executable needs from:

• the value of LD_LIBRARY_PATH at runtime
• the paths that had been specified by –R at the time the executable file was

built.

As noted earlier, use of LD_LIBRARY_PATH can have unexpected side-effects
and is not recommended.

Errors During Dynamic Linking

When the dynamic linker cannot locate a needed library, it issues the error
message:

ld.so: prog: fatal: libmylib.so: can’t open file:

The possible causes might be:

• The libraries are not where they are supposed to be.

demo% f77 program.f -R/home/proj/libs -L/home/proj/libs -lmylib
demo% dump –Lv a.out | grep RPATH
[5] RPATH /home/proj/libs:/opt/SUNWspro/lib

Libraries 39

4

Perhaps you specified paths to shared libraries when the executable was
built, but the libraries have subsequently been moved. For example, you
built a.out with your own dynamic libraries in / my/ libs/ , and then
sometime later moved the libraries to another directory.

Use ldd to determine where the executable expects to find the libraries:

If possible, move or copy the libraries into the proper directory or make a
soft link to the directory (using ln -s) in the directory that the linker is
searching.

• LD_LIBRARY_PATH is not set correctly.

Check that LD_LIBRARY_PATH at runtime includes the path to the needed
libraries.

Creating Static Libraries
Static library files are built from precompiled object files (.o files) using the
ar (1) utility.

The linker extracts from the library any elements whose entry points are
referenced within the program it is linking, such as a subprogram, entry name,
or COMMON block initialized in a BLOCKDATA subprogram. These extracted
elements (routines) are bound permanently into the a.out executable file
generated by the linker.

Tradeoffs

There are three main issues to keep in mind regarding static, as compared to
dynamic, libraries and linking:

• Static libraries are more self contained but less adaptable.

If you bind an a.out executable file statically, the library routines it needs
become part of the executable binary. However, if it becomes necessary to
update a static library routine bound into the a.out executable, the entire

demo% ldd a.out
libsolib.so => /export/home/proj/libsolib.so
libF77.so.3 => /opt/SUNWspro/lib/libF77.so.3
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1

 40 Fortran Programmer’s Guide

4

a.out file must be relinked and regenerated to take advantage of the
updated library. With dynamic libraries, the library is not part of the a.out
file and linking is done at runtime. To take advantage of an updated
dynamic library, all that is required is that the new library be installed on
the system.

• The “elements” in a static library are individual compilation units, .o files.

Since a single compilation unit (a source file) can contain more than one
subprogram, these routines when compiled together become a single
module in the static library. This means that all the routines in the
compilation unit are loaded together into the a.out executable, even
though only one of those subprograms was actually called. This situation
can be improved by optimizing the way library routines are distributed into
compilable source files. (Still, only those library modules actually referenced
by the program are loaded into the executable.)

• Order matters when linking static libraries.

The linker processes its input files in the order in which they appear on the
command line—left to right. When the linker decides whether or not to load
an element from a library, its decision is determined by the library elements
that it has already processed. This order is not only dependent on the order
of the elements as they appear in the library file but also on the order which
the libraries are specified on the compile command line.

Example: If the Fortran program is in two files, main.f and crunch.f , and
only the latter accesses the Sun Performance Library library, it is an error to
reference that library before crunch.f or crunch.o :

 Creation of a Simple Static Library

Suppose that we can distribute all the routines in a program over a group of
source files and that these files are wholly contained in the subdirectory
test_lib/ .

Suppose further that the files are organized in such a way that they each
contain a single principal subprogram that would be called by the user
program, along with any “helper” routines that the subprogram may call but

demo% f77 main.f –lsunperf crunch.f –o myprog (Incorrect)
demo% f77 main.f crunch.f –lsunperf –o myprog (Correct)

Libraries 41

4

which are called from no other routine in the library. Also, any helper routines
called from more than one library routine are gathered together into a single
source file. This gives a reasonably well-organized set of source and object files.

Assume that the name of each source file is taken from the name of the first
routine in the file, which in most cases is one of the principal files in the
library:

The lower-level “helper” routines are gathered together into the file etc.f .
The other files may contain one or more subprograms.

First, compile each of the library source files, using the –c option, to generate
the corresponding relocatable .o files:

demo% cd test_lib
demo% ls
total 14 2 dropx.f 2 evalx.f 2 markx.f
 2 delte.f 2 etc.f 2 linkz.f 2 point.f

demo% f77 –c *.f
delte.f:
 delte:
 q_fixx:
dropx.f:
 dropx:
etc.f:
 q_fill:
 q_step:
 q_node:
 q_warn:

...etc
demo% ls
total 42
 2 dropx.f 4 etc.o 2 linkz.f 4 markx.o
 2 delte.f 4 dropx.o 2 evalx.f 4 linkz.o 2 point.f
 4 delte.o 2 etc.f 4 evalx.o 2 markx.f 4 point.o
demo%

 42 Fortran Programmer’s Guide

4

Now, create the static library testlib.a using ar :

To use this library, either include the library file on the compilation command
or use the –l and –L compilation options.

Using the .a file directly:

Notice that the main program only calls two of the routines in the library. You
can verify that the uncalled routines in the library were not loaded into the
executable file by looking for them in the list of names in the executable
displayed by nm:

In the preceding example, grep finds entries in the list of names only for those
library routines that were actually called.

demo% ar cr testlib.a *.o

demo% cat trylib.f
C program to test testlib routines

x=21.998
call evalx(x)
call point(x)
print*, 'value ',x
end

demo% f77 –o trylib trylib.f test_lib/testlib.a
trylib.f:
 MAIN:
demo%

demo% nm trylib | grep FUNC | grep point
[146]| 70016| 152|FUNC |GLOB |0 |8 |point_
demo% nm trylib | grep FUNC | grep evalx
[165]| 69848| 152|FUNC |GLOB |0 |8 |evalx_
demo% nm trylib | grep FUNC | grep delte
demo% nm trylib | grep FUNC | grep markx
demo% ..etc

Libraries 43

4

Another way to reference the library is through the –l library and
–Lpath options. Here, the library’s name would have to be changed to conform
to the lib name.a convention:

The –l library and –Lpath options are used with libraries installed in a
commonly accessible directory on the system, like /usr/local/lib , so that
other users can reference it. For example, if you left libtestlib.a in
/usr/local/lib , other users could be informed to compile with the
following command:

Replacement in a Static Library

It is not necessary to recompile an entire library if only a few elements need
recompiling. The –r option of ar permits replacement of individual elements
in a static library.

Example: Recompile and replace a single routine in a static library:

Ordering Routines in a Static Library

To order the elements in a static library when it is being built by ar , use the
commands lorder (1) and tsort (1):

demo% mv test_lib/testlib.a test_lib/libtestlib.a
demo% f77 –o trylib trylib.f –Ltest_lib –ltestlib
trylib.f:
 MAIN:

demo% f77 –o myprog myprog.f –L/usr/local/lib –ltestlib

demo% f77 –c point.f
demo% ar r testlib.a point.o
demo%

demo% ar cr mylib.a 'lorder exg.o fofx.o diffz.o | tsort'

 44 Fortran Programmer’s Guide

4

Creating Dynamic Libraries
Dynamic library files are built by the linker ld from precompiled object
modules that can be bound into the executable file after execution begins.

Another feature of a dynamic library is that modules can be used by other
executing programs in the system without duplicating modules in each
program’s memory. For this reason, a dynamic library is also a shared library.

A dynamic library offers the following features:

• The object modules are not bound into the executable file by the linker
during the compile-link sequence; such binding is deferred until runtime.

• A shared library module is bound into system memory when the first
running program references it. If any subsequent running program
references it, that reference is mapped to this first copy.

• Maintaining programs is easier with dynamic libraries. Installing an
updated dynamic library on a system immediately affects all the
applications that use it without requiring relinking of the executable.

Tradeoffs

Dynamic libraries introduce some additional tradeoff considerations:

• Smaller a.out file

Deferring binding of the library routines until execution time means that the
size of the executable file is less than the equivalent executable calling a
static version of the library; the executable file does not contain the binaries
for the library routines.

• Possibly smaller process memory utilization

When several processes using the library are active simultaneously, only one
copy of the memory resides in memory and is shared by all processes.

• Possibly increased overhead

Additional processor time is needed to load and link-edit the library
routines during runtime. Also, the library’s position-independent coding
may execute more slowly than the relocatable coding in a static library.

• Possible overall system performance improvement

Libraries 45

4

Reduced memory utilization due to library sharing should result in better
overall system performance (reduced I/O access time from memory
swapping).

Performance profiles among programs vary greatly from one to another. It is
not always possible to determine or estimate in advance the performance
improvement (or degradation) between dynamic versus static libraries.
However, if both forms of a needed library are available to you, it would be
worthwhile to evaluate the performance of your program with each.

Position-Independent Code and –pic

Position-independent code (PIC) is code that can be bound to any address in a
program without requiring relocation by the link editor. Such code is
inherently sharable between simultaneous processes. Thus, if you are building
a dynamic, shared library, you must compile the component routines to be
position-independent (by using compiler options –pic or –PIC).

In position-independent code, each reference to a global item is compiled as a
reference through a pointer into a global offset table. Each function call is
compiled in a relative addressing mode through a procedure linkage table. The
size of the global offset table is limited to 8Kbytes on SPARC processors. The
–PIC compiler option is similar to –pic , but –PIC allows the global offset
table to span the range of 32–bit addresses.

Binding Options

You can specify dynamic or static library binding when you compile. These
options are actually linker options, but they are recognized by the compiler
and passed on to the linker.

–Bdynamic | –Bstatic

–Bdynamic sets the preference for shared, dynamic binding whenever
possible. –Bstatic restricts binding to static libraries only.

When both static and dynamic versions of a library are available, use this
option to toggle between preferences on the command line:

f77 prog.f –Bdynamic –lwells –Bstatic –lsurface

 46 Fortran Programmer’s Guide

4

–dy | –dn

Allows or disallows dynamic linking for the entire executable. (This option
may appear only once on the command line.)

–dy allows dynamic, shared libraries to be linked. –dn does not allow
linking dynamic libraries.

Naming Conventions

To conform to the dynamic library naming conventions assumed by the link
loader and the compilers, assign names to the dynamic libraries that you create
with the prefix lib and the suffix .so . For example, libmyfavs.so could
then be referenced by the compiler option –lmyfavs .

The linker also accepts an optional version number suffix: for example,
libmyfavs.so.1 for version one of the library, etc.

The compiler’s –hname option records name as the name of the dynamic library
being built.

A Simple Dynamic Library

Building a dynamic library requires a compilation of the source files with the
–pic or –PIC option and linker options –G, –ztext , and –hname. These

linker options are available through the compiler command line.

You can create a dynamic library with the same files used in the static library
example.

Libraries 47

4

Example: compile with –pic and other linker options:

–G tells the linker to build a dynamic library.

–ztext warns you if it finds anything other than position-independent code,
such as relocatable text.

Example: Bind—make an executable file a.out using the dynamic library:

demo% f77 –o libtestlib.so.1 –G –pic –ztext –hlibtestlib.so.1 *.f
delte.f:

delte:
q_fixx:

dropx.f:
dropx:

etc.f:
q_fill:
q_step:
q_node:
q_warn:

evalx.f:
evalx:

linkz.f:
linkz:

markx.f:
markx:

point.f:
point:

Linking:

demo% f77 –o trylib -R‘pwd‘ trylib.f libtestlib.so.1
trylib.f:
 MAIN main:
demo% file trylib
trylib: ELF 32–bit MSB executable SPARC Version 1, dynamically
linked, not stripped
demo% ldd trylib

libtestlib.so.1 => /export/home/U/Tests/libtestlib.so.1
libF77.so.3 => /opt/SUNWspro/lib/libF77.so.3
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1

 48 Fortran Programmer’s Guide

4

Note that the example uses the -R option to bind into the executable the path
(the current directory) to the dynamic library.

The file command shows that the executable is dynamically linked.

The ldd command shows that the executable, trylib , uses some shared
libraries, including our libtestlib.so.1 ; libf77 , libdl , and libc are
included by default by f77 . It also shows exactly which files on the system are
used for these libraries.

Libraries Provided with Sun Fortran Compilers
Table 4-1 shows the libraries are installed with the compilers:

See also the math_libraries README file for more information.

VMS Library

The libV77 library is the VMS library, which contains two special VMS
routines, idate and time .

Table 4-1 Major Libraries Provided With the Compilers

Library Name Options Needed

f77 functions, nonmath libF77 None

f77 functions, nonmath, multithread safe libF77_mt –parallel

f77 math library libM77 None

VMS library libV77 –lV77

Library used with Pascal, Fortran, and C libpfc None

Library of Sun math functions libsunmath None

POSIX bindings libFposix –lFposix

POSIX bindings for extra runtime checking libFposix_c –lFposix_c

XView bindings and Xlib bindings
for the X11 interface

libFxview –lFxview
–lxview
–lX11

Libraries 49

4

To use either of these routines, include the –lV77 option.

For idate and time , there is a conflict between the VMS version and the
version that traditionally is available on UNIX operating systems. If you use
the –lV77 option, you get the VMS compatible versions of the idate and
time routines.

See the Fortran Library Reference and the Fortran 77 Language Reference for details
on these routines.

POSIX Library

There are two versions of POSIX bindings provided with the compilers:

• libFposix , which is just the bindings (-lFposix)

• libFposix_c , which does some runtime checking to make sure you are
passing correct handles (-lFposix_c)

If you pass bad handles:

• libFposix_c returns an error code (ENOHANDLE).
• libFposix core dumps with a segmentation fault.

Of course, the checking is time-consuming, and libFposix_c is several times
slower.

Both POSIX libraries come in static and dynamic forms.

The POSIX bindings provided are for IEEE Standard 1003.9–1992.

IEEE 1003.9 is a binding of 1003.1–1990 to FORTRAN (X3.8–1978).

POSIX.1 documents:

• ISO/IEC 9945–1:1990
• IEEE Standard 1003.1–1990
• IEEE Order number SH13680
• IEEE CS Catalog number 1019

To find out precisely what POSIX is, you need both the 1003.9 and the POSIX.1
documents.

 50 Fortran Programmer’s Guide

4

Shippable Libraries
If your executable uses a Sun dynamic library that is listed in the following
README file, your license includes the right to redistribute the library to your
customer.

Do not redistribute or otherwise disclose the header files, source code, object
modules, or static libraries of object modules in any form.

Refer to the section, “License to Use,” in the document, “End User Object Code
License,” at the back of the plastic case that contains the CD–ROM.

Standard install /opt/SUNWspro/READMEs/runtime.libraries

Install to / my/ dir/ / my/ dir/SUNWspro/READMEs/runtime.libraries

 51

Program Analysis and Debugging 5

This chapter presents a number of Sun Fortran compiler features that facilitate
program analysis and debugging.

Global Program Checking (f77 Only)
The f77 compiler’s –Xlist x options provide a valuable way to analyze a
source program for inconsistencies and possible runtime problems. The
analysis performed by the compiler is global, across subprograms.
–Xlist x reports errors in alignment, agreement in number and type for
subprogram arguments, common block, parameter, and various other kinds of
errors.

–Xlist x also can be used to make detailed source code listings and cross-
reference tables.

Note – Although a subset of -Xlist options are available with this release
(1.2) of f90 , a conventional cross-reference map is produced but global
program checking is not performed; full checking will appear in a subsequent
release of the f90 compiler.

 52 Fortran Programmer’s Guide

5

GPC Overview

Global program checking (GPC), invoked by the –Xlist x option, does the
following:

• Enforces type-checking rules of Fortran more stringently than usual,
especially between separately compiled routines

• Enforces some portability restrictions needed to move programs between
different machines or operating systems

• Detects legal constructions that nevertheless may be suboptimal or error-
prone

• Reveals other potential bugs and obscurities

In particular, global-cross checking reports problems such as:

• Interface problems
• Conflicts in number and type of dummy and actual arguments
• Wrong types of function values
• Possible conflicts due to data type mismatches in common blocks between

different subprograms

• Usage problems
• Function used as a subroutine or subroutine used as a function
• Declared but unused functions, subroutines, variables, and labels
• Referenced but not declared functions, subroutines, variables, and labels
• Usage of unset variables
• Unreachable statements
• Implicit type variables
• Inconsistency of the named common block lengths, names, and layouts

• Syntax problems – syntax errors found in a Fortran program
• Portability problems – code that does not conform to ANSI Fortran, if the

appropriate option is used

Program Analysis and Debugging 53

5

How to Invoke Global Program Checking

The -Xlist option on the command line invokes the compiler’s global
program analyzer. There are a number of –Xlist x suboptions, as described in
the sections that follow.

Example: Compile three files for basic global program checking:

In the preceding example, the compiler:

• Produces output listings in the file any1.lst

• Compiles and links the program if there are no errors

Screen Output

Normally, output listings produced by –Xlist x are written to a file. To display
directly to the screen, use –Xlisto to write the output file to /dev/tty .

Example: Display to terminal:

Default Output Features

The –Xlist option provides a combination of features available for output.
With no other -Xlist options, you get the following by default:

• The listing file name is taken from the first input source or object file that
appears, with the extension replaced by .lst

• A line-numbered source listing
• Error messages (embedded in listing) for inconsistencies across routines
• Cross-reference table of the identifiers
• Pagination at 66 lines per page and 79 columns per line
• No call graph
• No expansion of include files

demo% f77 –Xlist any1.f any2.f any3.f

demo% f77 –Xlisto /dev/tty any1.f

 54 Fortran Programmer’s Guide

5

File Types

The checking process recognizes all the files in the compiler command line that
end in .f , .f90 , .for , .F , .o , or .s . The .o and .s files supply the process
with information regarding global names only, such as subroutine and function
names.

Analysis Files (.fln Files)

The compiler saves individual source file analysis results into files with a .fln
suffix. It usually uses the source directory. You can specify an alternate
directory to receive these files with the –Xlistfln dir option.

Libraries compiled with -Xlist options have their analysis files built into the
binary files automatically, enabling GPC over programs that link these
libraries.

demo% f77 –Xlistfln/tmp *.f

Program Analysis and Debugging 55

5

Some Examples of -Xlist and Global Program Checking

Source code used in the following examples, Repeat.f :

demo% cat Repeat.f
 PROGRAM repeat
 pn1 = REAL(LOC (rp1))
 CALL subr1 (pn1)
 CALL nwfrk (pn1)
 PRINT *, pn1
 END ! PROGRAM repeat

 SUBROUTINE subr1 (x)
 IF (x .GT. 1.0) THEN
 CALL subr1 (x * 0.5)
 END IF
 END

 SUBROUTINE nwfrk(ix)
 EXTERNAL fork
 INTEGER prnok, fork
 PRINT *, prnok (ix), fork ()
 END

 INTEGER FUNCTION prnok (x)
 prnok = INT (x) + LOC(x)
 END

 SUBROUTINE unreach_sub()
 CALL sleep(1)
 END

 56 Fortran Programmer’s Guide

5

Example: Use –XlistE to show errors and warnings:

Compiling the same program with -Xlist also produces a cross-reference
table:

demo% f77 –XlistE –silent Repeat.f
demo% cat Repeat.lst
FILE "Repeat.f"
program repeat
 4 CALL nwfrk (pn1)
 ^
**** ERR #418: argument "pn1" is real, but dummy argument is
 integer*4
 See: "Repeat.f" line #14
 4 CALL nwfrk (pn1)
 ^
**** ERR #317: variable "pn1" referenced as integer*4 across
 repeat/nwfrk//prnok in line #21 but set as real
 by repeat in line #2
subroutine subr1
 10 CALL subr1 (x * 0.5)
 ^
**** WAR #348: recursive call for "subr1". See dynamic calls:
 "Repeat.f" line #3
subroutine nwfrk
 17 PRINT *, prnok (ix), fork ()
 ^
**** ERR #418: argument "ix" is integer*4, but dummy argument
 is real
 See: "Repeat.f" line #20
subroutine unreach_sub
 24 SUBROUTINE unreach_sub()
 ^
**** WAR #338: subroutine "unreach_sub" isn't called from program

Date: Wed Feb 23 10:40:32 1995
Files: 2 (Sources: 1; libraries: 1)
Lines: 26 (Sources: 26; Library subprograms:2)
Routines: 5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages: 5 (Errors: 3; Warnings: 2)
demo%

Program Analysis and Debugging 57

5

Output File: f77 –Xlist Repeat.f

 C R O S S R E F E R E N C E T A B L E
 Source file: Repeat.f
Legend:
D Definition/Declaration
U Simple use
M Modified occurrence
A Actual argument
C Subroutine/Function call
I Initialization: DATA or extended declaration
E Occurrence in EQUIVALENCE
N Occurrence in NAMELIST

 P R O G R A M F O R M
 Program
 –––––––
repeat <repeat> D 1:D

 Functions and Subroutines
 –––––––––––––––––––––––––
fork int*4 <nwfrk> DC 15:D 16:D 17:C

int intrinsic
 <prnok> C 21:C

loc intrinsic
 <repeat> C 2:C
 <prnok> C 21:C

nwfrk <repeat> C 4:C
 <nwfrk> D 14:D

prnok int*4 <nwfrk> DC 16:D 17:C
 <prnok> DM 20:D 21:M

real intrinsic
 <repeat> C 2:C

sleep <unreach_sub> C 25:C

subr1 <repeat> C 3:C
 <subr1> DC 8:D 10:C
unreach_sub <unreach_sub> D 24:D

 58 Fortran Programmer’s Guide

5

Output file: f77 –Xlist Repeat.f (Continued)

In the cross-reference table in the preceding example:

• ix is a 4-byte integer:
• Used as an argument in the routine nwfrk
• At line 14, used as a declaration of argument
• At line 17, used as an actual argument

• pn1 is a 4–byte real in the routine repeat:

• At line 2, modified
• At line 3, argument
• At line 4, argument
• At line 5, used

• rp1 is a 4-byte real in the routine, repeat . At line 2, it is an argument.

• x is a 4-byte real in the routines subr1 and prnok :
• In subr1 , at line 8, defined; used at lines 9 and 10
• In prnok , at line 20, defined; at line 21, used as an argument

 Variables and Arrays
 ––––––––––––––––––––

ix int*4 dummy
 <nwfrk> DA 14:D 17:A

pn1 real*4 <repeat> UMA 2:M 3:A 4:A 5:U

rp1 real*4 <repeat> A 2:A

x real*4 dummy
 <subr1> DU 8:D 9:U 10:U
 <prnok> DUA 20:D 21:A 21:U

––

Date: Tue Feb 22 13:15:39 1995
Files: 2 (Sources: 1; libraries: 1)
Lines: 26 (Sources: 26; Library subprograms:2)
Routines: 5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages: 5 (Errors: 3; Warnings: 2)
demo%

Program Analysis and Debugging 59

5

Suboptions for Global Checking Across Routines

The basic global cross-checking option is –Xlist with no suboption. It is a
combination of suboptions, each of which could have been specified separately.

Described below are options for producing the listing, errors, and cross-
reference table. Multiple suboptions may appear on the command line.

Suboption Syntax

Add suboptions according to the following rules:

• Append the suboption to –Xlist
• Put no space between the –Xlist and the suboption
• Put only one suboption per -Xlist

Combination Special and A La Carte Suboptions

Combine suboptions according to the following rules:

• The combination special is –Xlist (listing, errors, cross-reference table)
• The a la carte options are –Xlistc , –XlistE , –XlistL , and –XlistX
• All other options are detail options—not a la carte or combination specials

Example: Each of these two command lines performs the same task:

demo% f77 –Xlistc –Xlist any.f

demo% f77 -Xlistc any.f

 60 Fortran Programmer’s Guide

5

The following table shows the combination special or a la carte suboptions,
with no other suboptions:

Here is a summary of all –Xlist suboptions:

Generated Report Option

Errors, listing, cross-reference –Xlist

Errors only –Xlist E

Errors and source listing only –Xlist L

Errors and cross-reference table only –Xlist X

Errors and call graph only –Xlist c

Option Action

–Xlist (no suboption) Show errors, listing, and cross-reference table

–Xlist c Show call graphs and errors

–Xlist E Show errors

–Xlist err [nnn] Suppress error nnn in the verification report

–Xlist f Produce fast output

–Xlist fln dir Put the .fln files in dir

–Xlist h Errors from cross-checking stop compilation

–Xlist I List and cross-check include files

–Xlist L Show the listing and errors

–Xlist l n Set page breaks

–Xlist o name Rename the –Xlist output report file

–Xlist s Unreferenced symbols suppressed from the cross-reference

–Xlist vn Show different amounts of semantic information

–Xlist w[nnn] Set the width of output lines

–Xlist war [nnn] Suppress warning nnn in the report

–Xlist X Show the cross-reference table and errors

Program Analysis and Debugging 61

5

–Xlist Suboption Reference

–Xlist c Show call graphs (and cross-routine errors).

This suboption by itself does not show a listing or cross-reference. It produces
the call graph in a tree form, using printable characters. If some subroutines
are not called from MAIN, more than one graph is shown. Each BLOCKDATA is
printed separately with no connection to MAIN.

The default is not to show the call graph.

–Xlist E Show cross-routine errors.

This suboption by itself does not show a listing or a cross-reference.

–Xlist err [nnn] Suppress error nnn in the verification report.

This option is useful if you want a listing or cross-reference without the error
messages. It is also useful if you do not consider certain practices to be real
errors.

To suppress more than one error, use this option repeatedly. For example:
-Xlisterr338 suppresses error message 338. If nnn is not specified, all error
messages are suppressed.

–Xlist f For faster output, produce source file listings and cross-checking and verify
sources, but do not generate object files.

The default without this option is to generate object files.

–Xlist fln dir Put the .fln files into the dir directory, which must already exist.

The default is the source directory.

–Xlist h Halt the compilation if errors are detected while cross-checking the program. In
this case, the report is redirected to stdout instead of the *.lst file.

 62 Fortran Programmer’s Guide

5

–Xlist I List and cross-check include files.

If –XlistI is the only suboption used, include files are shown or scanned
along with the standard –Xlist output (line numbered listing, error messages,
and a cross-reference table).

• Listing—If the listing is not suppressed, then the include files are listed in
place. Files are listed as often as they are included. The files are:
• Source files
• #include files
• INCLUDE files

• Cross-Reference Table—If the cross–reference table is not suppressed, the
following files are all scanned while the cross–reference table is generated:
• Source files
• #include files
• INCLUDE files

The default is not to show include files.

–Xlist L Show listing and cross-routine errors.

This suboption by itself does not show a cross reference. The default is to show
the listing and cross–reference.

–Xlist l n Set the page length for pagination to n lines.

The suboption is the letter ell for length, not the digit one. For example,
-Xlistl45 sets the page length to 45 lines. The default is 66.

With n=0 (-Xlistl0) this option shows listings and cross-references with no
page breaks for easier on-screen viewing.

–Xlist o name Rename the –Xlist output report file. The space between o and name is
required. Output is then to the name.lst file.

To display directly to the screen, use the command: –Xlisto /dev/tty

–Xlist s Suppress unreferenced identifiers from the cross-reference table.

If the identifiers are defined in the include files but not referenced in the
source files, then they are not shown in the cross-reference table.

Program Analysis and Debugging 63

5

This suboption has no effect if the suboption -XlistI is used.

The default is not to show the occurrences in #include or INCLUDE files.

–Xlist vn Set level of checking strictness; n is 1,2 , 3, or 4. The default is 2 (–Xlistv2).

• –Xlistv1

Show the cross-checked information of all names in summary form only,
with no line numbers. This is the lowest level of checking strictness—syntax
errors only.

• –Xlistv2

Show cross-checked information with summaries and line numbers. This is
the normal level of checking strictness and includes argument inconsistency
errors and variable usage errors.

• –Xlistv3

Show cross-checking with summaries, line numbers, and show common
block maps. This is a high level of checking strictness and includes errors
caused by incorrect usage of data types in common blocks in different
subprograms.

• –Xlistv4

Show cross-checking with summaries, line numbers, and show common
block maps, and equivalence block maps. This is the top level of checking
strictness with maximum error detection.

–Xlist w[nnn] Set width of output line to n columns.

For example, -Xlistw132 sets the page width to 132 columns. The default is
79.

–Xlist war [nnn] Suppress warning nnn in the report.

If nnn is not specified, then all warning messages are suppressed from printing.
To suppress more than one, but not all warnings, use this option repeatedly.
For example, -Xlistwar338 suppresses warning message number 338.

 64 Fortran Programmer’s Guide

5

–Xlist X Show cross-reference table and cross–routine errors. This suboption by itself
does not show a listing.

The cross-reference table answers the following questions about each identifier:

• Is it an argument?
• Does it appear in a COMMON or EQUIVALENCE declaration?
• Is it set or used?

Program Analysis and Debugging 65

5

Some Examples Using Suboptions

Example: Use –Xlistwar nnn to suppress two warnings from a preceding
example:

demo% f77 –Xlistwar338 –Xlistwar348 –XlistE –silent Repeat.f
demo% cat Repeat.lst
FILE "Repeat.f"
program repeat
 4 CALL nwfrk (pn1)
 ^
**** ERR #418: argument "pn1" is real, but dummy argument is
 integer*4
 See: "Repeat.f" line #14
 4 CALL nwfrk (pn1)
 ^
**** ERR #317: variable "pn1" referenced as integer*4 across
 repeat/nwfrk//prnok in line #21 but set as real
 by repeat in line #2
subroutine nwfrk
 17 PRINT *, prnok (ix), fork ()
 ^
**** ERR #418: argument "ix" is integer*4, but dummy argument
 is real
 See: "Repeat.f" line #20

Date: Wed Feb 23 10:40:32 1995
Files: 2 (Sources: 1; libraries: 1)
Lines: 26 (Sources: 26; Library subprograms:2)
Routines: 5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages: 5 (Errors: 3; Warnings: 2)
demo%

 66 Fortran Programmer’s Guide

5

Example: Explain a message and find a type mismatch:

ShoGetc.f

Program waits for input
Type Z on keyboard →

demo% cat ShoGetc.f
CHARACTER*1 c
i = getc(c)
END

demo% f77 –silent ShoGetc.f
demo% a.out
Z

The problem:
 Why this message?

 Note: IEEE floating-point exception flags raised:
 Invalid Operation;
 See the Numerical Computation Guide, ieee_flags(3M)

Compile with -Xlist
 List the output.

Here is the error.

The default typing of
getc is not consistent
with the Fortran
library.
f77 has information
about the Fortran
library — in particular,
that getc is integer.

demo% f77 –XlistE –silent ShoGetc.f
demo% cat ShoGetc.lst
FILE "ShoGetc.f"
program MAIN
 2 i = getc(c)
 ^
**** WAR #320: variable "i" set but never referenced
 2 i = getc(c)
 ^
**** ERR #412: function "getc" used as real but declared as
 integer*4
 2 i = getc(c)
 ^
**** WAR #320: variable "c" set but never referenced

The solution : →
 Declare getc an
integer.

No error message.

demo% cat ShoGetc.f
CHARACTER*1 c
INTEGER getc
i = getc(c)
END

demo% f77 –silent ShoGetc.f
demo% a.out
Z
demo%

Program Analysis and Debugging 67

5

Special Compiler Options
Some compiler options are useful for debugging. They check subscripts, spot
undeclared variables, show stages of the compile-link sequence, display
versions of software, and so on.

With Solaris 2.3 and later, there are new linker debugging aids. See ld (1), or
run ld –Dhelp to see online documentation.

Subscript Bounds (–C)

The –C option adds checks for out-of-bounds array subscripts.

If you compile with –C, the compiler adds checks at runtime for out-of-bounds
references on each array subscript. This action helps catch some situations that
cause segmentation faults.

Example: Index out of range:

Undeclared Variable Types (–u)

The –u option checks for any undeclared variables.

The –u option causes all variables to be initially identified as undeclared, so
that all variables that are not explicitly declared are flagged with an error. The
–u flag is useful for discovering mistyped variables. If –u is set, all variables
are treated as undeclared until explicitly declared. Use of an undeclared
variable is accompanied by an error message.

demo% cat indrange.f
REAL a(10,10)
k = 11
a(k,2) = 1.0
END

demo% f77 –C –silent indrange.f
demo% a.out
 Subscript out of range on file indrange.f, line 3, procedure
MAIN.
 Subscript number 1 has value 11 in array a.
 Abort (core dumped)
demo%

 68 Fortran Programmer’s Guide

5

Version Checking (–V)

The –V option causes the name and version ID of each phase of the compiler to
be displayed. This option can be useful in tracking the origin of ambiguous
error messages and in reporting compiler failures, and to verify the level of
installed compiler patches.

Interactive Debugging With dbx and The WorkShop
The Sun WorkShop provides a tightly integrated development environment for
building and browsing, as well as debugging applications written in Fortran,
C, C++, and Pascal.

The WorkShop debugging facility is a window-based interface to dbx , while
dbx itself is an interactive, line-oriented, source-level symbolic debugger.
Either can be used to determine where a program crashed, to view or trace the
values of variables and expressions in a running code, and to set breakpoints.

The WorkShop adds a sophisticated graphical environment to the debugging
process that is integrated with tools for editing, building, and source code
version control. It includes a data visualization capability to display and
explore large and complex datasets, simulate results, and interactively steer
computations.

For details, see the Sun manuals WorkShop: Getting Started and WorkShop:
Command-Line Utilities, and the dbx (1) man pages.

The dbx program provides event management, process control, and data
inspection. You can watch what is happening during program execution, and
perform the following tasks:

• Fix one routine, then continue executing without recompiling the others
• Set watchpoints to stop or trace if a specified item changes
• Collect data for performance tuning
• Graphically monitor variables, structures, and arrays
• Set breakpoints (set places to halt in the program) at lines or in functions
• Show values—once halted, show or modify variables, arrays, structures
• Step through a program, one source or assembly line at a time
• Trace program flow—show sequence of calls taken
• Invoke procedures in the program being debugged
• Step over or into function calls; step up and out of a function call
• Run, stop, and continue execution at the next line or at some other line

Program Analysis and Debugging 69

5

• Save and then replay all or part of a debugging run
• Stack—examine the call stack, or move up and down the call stack
• Program scripts in the embedded Korn shell
• Follow programs as they fork (2) and exec (2)

Debugging Optimized Programs

To debug optimized programs, use the dbx fix command to recompile the
routines you want to debug:

• Compile the program with the appropriate –On optimization level.
• Start the execution under dbx .
• Use fix –g any.f without optimization on the routine you want to debug.
• Use continue with that routine compiled.

Some optimizations may be inhibited by the presence of -g on the compilation
command. For example, -g suppresses the automatic inlining usually obtained
with -O4 . -g cancels any parallelization option (-autopar , -explicitpar ,
-parallel), as well as -depend and -reduction . Debugging is facilitated
by specifying -g without any optimization options. See the dbx documentation
for details.

Viewing Compiler Listing Diagnostics
The error utility program can be used to view compiler diagnostics merged
with the source code. error inserts compiler diagnostics above the relevant
line in the source file. The diagnostics include the standard compiler error and
warning messages, but not the –Xlist error and warning messages.

Warning – This utility rewrites your source files and does not work if the
source files are read-only, or in a read–only directory.

error (1) is available if the operating system was installed with a developer
install, rather than an end–user install; it can also be installed from the
package, SUNWbtool .

Facilities also exist in the Sun WorkShop for viewing compiler diagnostics.
Refer to the Sun WorkShop: Getting Started guide.

 70 Fortran Programmer’s Guide

5

 71

Floating-Point Arithmetic 6

This chapter considers floating-point arithmetic and suggests strategies for
avoiding and detecting numerical computation errors.

For a detailed examination of floating-point computation on SPARC, Intel, and
PowerPC processors, the Sun Numerical Computation Guide is strongly
recommended. It includes the valuable paper “What Every Computer Scientist
Should Know About Floating-point Arithmetic,” by David Goldberg.

Introduction
Sun’s floating-point environment on SPARC, Intel, and PowerPC implements
the arithmetic model specified by the IEEE Standard 754 for Binary Floating
Point Arithmetic. This environment enables you to develop robust, high-
performance, portable numerical applications. It also provides tools to
investigate any unusual behavior by a numerical program.

In numerical programs, there are many potential sources for computational
error:

• The computational model may be wrong.
• The algorithm used may be numerically unstable.
• The data may be ill-conditioned.
• The hardware may be producing unexpected results.

 72 Fortran Programmer’s Guide

6

Finding the source of the errors in a numerical computation that has gone
wrong can be extremely difficult. The chance of coding errors can be reduced
by using commercially available and tested library packages whenever
possible. Choice of algorithms is another critical issue. Using the appropriate
computer arithmetic is another.

This chapter makes no attempt to teach or explain numerical error analysis.
The material presented here is intended to introduce the IEEE floating-point
model as implemented by Sun’s Fortran compilers.

IEEE Floating-Point Arithmetic
IEEE arithmetic is a relatively new way of dealing with arithmetic operations
that result in such problems as invalid, division by zero, overflow, underflow,
or inexact. The differences are in rounding, handling numbers near zero, and
handling numbers near the machine maximum.

The IEEE standard supports user handling of exceptions, rounding, and
precision. Consequently, the standard supports interval arithmetic and
diagnosis of anomalies. IEEE Standard 754 makes it possible to standardize
elementary functions like exp and cos , to create high precision arithmetic, and
to couple numerical and symbolic algebraic computation.

IEEE arithmetic offers users greater control over computation than does any
other kind of floating-point arithmetic. The standard simplifies the task of
writing numerically sophisticated, portable programs. Many questions about
floating-point arithmetic concern elementary operations on numbers. For
example:

• What is the result of an operation when the infinitely precise result is not
representable in the computer hardware?

• Are elementary operations like multiplication and addition commutative?

Another class of questions concerns floating-point exceptions and exception
handling. What happens if you:

• Multiply two very large numbers with the same sign?
• Divide nonzero by zero?
• Divide zero by zero?

Floating-Point Arithmetic 73

6

In older arithmetic models, the first class of questions might not have the
expected answers, while the exceptional cases in the second class might all
have the same result: the program aborts on the spot or proceeds with garbage
results.

The standard ensures that operations yield the mathematically expected results
with the expected properties. It also ensures that exceptional cases yield
specified results, unless the user specifically makes other choices.

For example, the exceptional values +Inf , -Inf , and NaN are introduced
intuitively:

Also, five types of floating-point exception are identified:

• Invalid—Operations with mathematically invalid operands— for example,
0.0/0.0, sqrt(-1.0), and log(-37.8)

• Division by zero—Divisor is zero and dividend is a finite nonzero number—
for example, 9.9/0.0

• Overflow—Operation produces a result that exceeds the range of the
exponent— for example, MAXDOUBLE+0.0000000000001e308

• Underflow—Operation produces a result that is too small to be represented
as a normal number— for example, MINDOUBLE * MINDOUBLE

• Inexact—Operation produces a result that cannot be represented with
infinite precision— for example, 2.0 / 3.0, log(1.1) and 0.1 in input

Sun’s implementation of the IEEE standard is described in the Sun Numerical
Computation Guide.

big*big = +Inf Positive infinity
big*(-big) = -Inf Negative infinity
num/0.0 = +Inf Where num > 0.0
num/0.0 = -Inf Where num < 0.0
0.0/0.0 = NaN Not a Number

 74 Fortran Programmer’s Guide

6

Handling Exceptions

Exception handling according to the IEEE standard is the default on SPARC,
Intel, and PowerPC processors. However, there is a difference between
detecting a floating-point exception and generating a signal for a floating-point
exception (SIGFPE).

Following the IEEE standard, two things happen when an untrapped exception
occurs during a floating-point operation:

• The system returns a default result.
For example, on 0/0 (invalid), return NaN as the result.

• A flag is set to indicate that an exception is raised.
For example, 0/0 (invalid), set “invalid operation” flag.

Trapping a Floating-Point Exception–f77 vs f90

With f77 , the default on SPARC, Intel, and PowerPC systems is not to
automatically generate a signal to interrupt the running program for a floating-
point exception. The assumptions are that signals could degrade performance
and that most exceptions are not significant as long as expected values are
returned.

The default with f90 is to automatically trap on division by zero, overflow,
and invalid operation. Compiling an application’s main program unit with the
f90 option –fnonstop changes this default behavior to be the same as f77 ’s.
In the discussions that follow, f77 ’s default behavior, or f90 -fnonstop , is
assumed.

To enable exception trapping, compile the main program with one of the -
ftrap options— for example, -ftrap=common .

IEEE Routines
The following interfaces help people use IEEE arithmetic. These are mostly in
the math library libsunmath and in several .h files.

• ieee_flags (3m)—Control rounding direction and rounding precision;
query exception status; clear exception status

• ieee_handler (3m)—Establish an exception handlerroutine

Floating-Point Arithmetic 75

6

• ieee_functions (3m)—List name and purpose of each IEEE function

• ieee_values (3m)—List functions that return special values

• Other libm functions:
• ieee_retrospective
• nonstandard_arithmetic
• standard_arithmetic

The SPARC processors conform to the IEEE standard in a combination of
hardware and software support for different aspects. Intel and PowerPC
processors conform to the IEEE standard entirely through hardware support.

The newest SPARC processors contain floating-point units with integer
multiply and divide instructions and hardware square root.

Best performance is obtained when the compiled code properly matches the
runtime floating-point hardware. The compiler’s –xtarget= option permits
specification of the runtime hardware. For example, –xtarget=ultra would
inform the compiler to generate object code that will perform best on an
UltraSPARC processor.

For SPARC systems – The utility fpversion displays which floating-point
hardware is installed and indicates the appropriate –xtarget value to specify.
This utility runs on all Sun SPARC architectures. See fpversion (1), the Sun
Fortran User’s Guide (regarding –xtarget) and the Numerical Computation
Guide for details.

Flags and ieee_flags()

The ieee_flags function is used to query and clear exception status flags. It
is part of the libsunmath library shipped with Sun compilers and performs
the following tasks:

• Control rounding direction and rounding precision
• Check the status of the exception flags
• Clear exception status flags

The general form of a call to ieee_flags is as follows:

flags = ieee_flags(action, mode, in, out)

 76 Fortran Programmer’s Guide

6

Each of the four arguments is a string. The input is action, mode, and in. The
output is out and flags. ieee_flags is an integer-valued function. Useful
information is returned in flags as a set of 1-bit flags. Refer to the man page for
ieee_flags (3m) for complete details.

Possible parameter values are shown in the following table:

Note that these are literal character strings, and the output parameter out must
be at least CHARACTER*9. The meanings of the possible values for in and out
depend on the action and mode they are used with. These are summarized in
Table 6-1.

For example, to determine what is the highest priority exception that has a flag
raised, pass the input argument in as the null string:

action: get, set, clear, clearall
mode: direction, precision, exception
in, out: nearest, tozero, negative, positive,

extended, double, single,
inexact, division, underflow, overflow, invalid,
all, common

Table 6-1 ieee_flags Argument Meanings

Value of in and out Refers to

nearest , tozero , negative , positive Rounding direction

extended , double , single Rounding precision

inexact, division, underflow, overflow,
invalid

Exceptions

all All 5 exceptions

common Common exceptions:
invalid, division, overflow

 CHARACTER *9, out
ieeer = ieee_flags('get', 'exception', '', out)
PRINT *, out, ' flag raised'

Floating-Point Arithmetic 77

6

Also, to determine if the overflow exception flag is raised, set the input
argument in to overflow . On return, if out equals overflow , then the
overflow exception flag is raised; otherwise it is not raised.

Example: Clear the invalid exception:

Example: Clear all exceptions:

Example: Set rounding direction to zero:

Example: Set rounding precision to double :

Turning Off All Warning Messages With ieee_flags

Calling ieee_flags with an action of clear , as shown in the following
example, resets any uncleared exceptions. Put this call before the program exits
to suppress system warning messages about floating-point exceptions at
program termination.

Example: Clear all accrued exceptions with ieee_flags() :

ieeer = ieee_flags('get', 'exception', 'overflow', out)
IF (out.eq. 'overflow') PRINT *,'overflow flag raised'

ieeer = ieee_flags('clear', 'exception', 'invalid', out)

ieeer = ieee_flags('clear', 'exception', 'all', out)

ieeer = ieee_flags('set', 'direction', 'tozero', out)

ieeer = ieee_flags('set', 'precision', 'double', out)

i = ieee_flags('clear', 'exception', 'all', out)

 78 Fortran Programmer’s Guide

6

Detecting an Exception With ieee_flags

The following example demonstrates how to determine which floating-point
exceptions have been raised by earlier computations. Bit masks defined in the
system include file f77_floatingpoint.h are applied to the value
returned by ieee_flags .

In this example, DetExcFlg.F , the include file is introduced using the
#include preprocessor directive, which requires us to name the source file
with a .F suffix. Underflow is caused by dividing the smallest double-
precision number by 2.

Example: Detect an exception using ieee_flags and decode it:

#include "f77_floatingpoint.h"
 CHARACTER*16 out
 DOUBLE PRECISION d_max_subnormal, x
 INTEGER div, flgs, inv, inx, over, under

 x = d_max_subnormal() / 2.0 ! Cause underflow

 flgs=ieee_flags('get','exception','',out) ! Which are raised?

 inx = and(rshift(flgs, fp_inexact) , 1) ! Decode
 div = and(rshift(flgs, fp_division) , 1) ! the value
 under = and(rshift(flgs, fp_underflow), 1) ! returned
 over = and(rshift(flgs, fp_overflow) , 1) ! by
 inv = and(rshift(flgs, fp_invalid) , 1) ! ieee_flags

 PRINT *, "Highest priority exception is: ", out
 PRINT *, ' invalid divide overflo underflo inexact'
 PRINT '(5i8)', inv, div, over, under, inx
 PRINT *, '(1 = exception is raised; 0 = it is not)'
 i = ieee_flags('clear', 'exception', 'all', out) ! Clear all
 END

Floating-Point Arithmetic 79

6

Example: Compile and run the preceding example (DetExcFlg.F):

IEEE Extreme Value Functions

The compilers provide a set of functions that can be called to return a special
IEEE extreme value. These values, such as infinity or minimum normal, can be
used directly in an application program.

Example: A convergence test based on the smallest number supported by the
hardware would look like:

The values available are listed in Table 6-2.

demo% f77 -silent DetExcFlg.F
demo% a.out
 Highest priority exception is: underflow
 invalid divide overflo underflo inexact
 0 0 0 1 1
 (1 = exception is raised; 0 = it is not)
demo%

IF (delta .LE. r_min_normal()) RETURN

Table 6-2 Functions for Using IEEE Values

IEEE Value Double Precision Single Precision

infinity d_infinity() r_infinity()

quiet NaN d_quiet_nan() r_quiet_nan()

signaling NaN d_signaling_nan() r_signaling_nan()

min normal d_min_normal() r_min_normal()

min subnormal d_min_subnormal() r_min_subnormal()

max subnormal d_max_subnormal() r_max_subnormal()

max normal d_max_normal() r_max_normal()

 80 Fortran Programmer’s Guide

6

The two NaN values (“quiet” and “signaling”) are “unordered” and should not
be used in comparisons such as IF(X.ne.r_quiet_nan())THEN ... To
determine whether some value is a NaN, use the function ir_isnan(r) or
id_isnan(d) .

The Fortran names for these functions are listed in these man pages:

• libm_double (3f)
• libm_single (3f)
• ieee_functions (3m)

Also see:

• ieee_values (3m)
• The f77_floatingpoint.h header file

Exception Handlers and ieee_handler()

Typical concerns about IEEE exceptions are:

• What happens when an exception occurs?
• How do I use ieee_handler() to establish a user function as an exception

handler?
• How do I write a function that can be used as an exception handler?
• How do I locate the exception—where did it occur?

Exception trapping to a user routine begins with the system generating a signal
on a floating-point exception. The standard UNIX name for signal: floating-point
exception is SIGFPE. The default situation on SPARC, Intel, and PowerPC
hardware systems is not to generate a SIGFPE when an exception occurs. For
the system to generate a SIGFPE, exception trapping must first be enabled,
usually by a call to ieee_handler() .

Establishing an Exception Handler Function

To establish a function as an exception handler, pass the name of the function
to ieee_handler() , together with the name of the exception to watch for and
the action to take. Once you establish a handler, a SIGFPE signal is generated
whenever the particular floating-point exception occurs, and the specified
function is called.

Floating-Point Arithmetic 81

6

The form for invoking ieee_handler() is:

The routine that calls ieee_handler() should also declare:

#include 'f77_floatingpoint.h'

The special arguments SIGFPE_DEFAULT, SIGFPE_IGNORE,and
SIGFPE_ABORT are defined in f77_floatingpoint.h and can be used to
change the behavior of the program for a specific exception:

Writing User Exception Handler Functions

What actions your exception handler takes are up to you. However, the
routine must be an integer function with three arguments and data types as
follows:

• handler_name(sig, sip, uap)
• handler_name is the name of the integer function.
• sig is an integer.
• sip is a record that has the structure siginfo.
• uap is not used.

i = ieee_handler(action, exception, handler)

Argument Type Possible Values

action character get , set , or clear

exception character invalid , division , overflow, underflow ,
or inexact

handler function name The name of the user handler function or
SIGFPE_DEFAULT, SIGFPE_IGNORE, or
SIGFPE_ABORT

Return value integer 0 =OK

SIGFPE_DEFAULT or
SIGFPE_IGNORE

No action taken when the specified exception
occurs.

SIGFPE_ABORT Program aborts, possibly with dump file, on
exception.

 82 Fortran Programmer’s Guide

6

Example: An exception handler function:

If the handler routine enabled by ieee_handler() is in Fortran as shown
above, it should not make any reference to its first argument (sig). This first
argument is passed by value to the routine and can only be referenced as
loc(sig) . The value is the signal number.

Detecting an Exception by Handler
The following examples show how to create handler routines to detect floating-
point exceptions.

INTEGER FUNCTION hand(sig, sip, uap)
INTEGER sig, location
STRUCTURE /fault/

INTEGER address
 INTEGER trapno

END STRUCTURE
STRUCTURE /siginfo/

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
RECORD /fault/ fault

END STRUCTURE
RECORD /siginfo/ sip
location = sip.fault.address
... actions you take ...
END

Floating-Point Arithmetic 83

6

Example: Detect exception and abort:

SIGFPE is generated whenever that floating-point exception occurs. When the
SIGFPE is detected, control passes to the myhandler function, which
immediately aborts. Compile with –g and use dbx to find the location of the
exception.

demo% cat DetExcHan.f
EXTERNAL myhandler
REAL r / 14.2 /, s / 0.0 /
i = ieee_handler ('set', 'division', myhandler)
t = r/s
END

INTEGER FUNCTION myhandler(sig,code,context)
INTEGER sig, code, context(5)
CALL abort()
END

demo% f77 -silent DetExcHan.f
demo% a.out
abort: called
Abort (core dumped)
demo%

 84 Fortran Programmer’s Guide

6

Locating an Exception by Handler
Example: Locate an exception (print address) and abort:

demo% cat LocExcHan.F
#include "f77_floatingpoint.h"

EXTERNAL Exhandler
INTEGER Exhandler, i, ieee_handler
REAL r / 14.2 /, s / 0.0 /, t

C Detect division by zero
i = ieee_handler('set', 'division', Exhandler)
t = r/s
END

INTEGER FUNCTION Exhandler(sig, sip, uap)
INTEGER sig
STRUCTURE /fault/

INTEGER address
END STRUCTURE
STRUCTURE /siginfo/

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
RECORD /fault/ fault

END STRUCTURE
RECORD /siginfo/ sip
WRITE (*,10) sip.si_signo, sip.si_code, sip.fault.address

10 FORMAT('Signal ',i4,' code ',i4,' at hex address ', Z8)
CALL abort()
END

demo% f77 -silent -g LocExcHan.F
demo% a.out
Signal 8 code 3 at hex address 11230
abort: called
Abort (core dumped)
demo%

Floating-Point Arithmetic 85

6

In most cases, knowing the actual address of the exception is of little use, except
with dbx :

Of course, we don’t have to go through nearly all this to determine the source
line that caused the error... there are easier ways as we will see in a later
section. However, this example does serve to show the basics of exception
handling.

Disabling All Signal Handlers

By default, some system signal handlers for trapping interrupts, bus errors,
segmentation violations, or illegal instructions are automatically enabled.

Although generally you would not want to turn off this default behavior, you
can do so by compiling a C program that sets the global C variable
f77_no_handlers to 1 and linking into your executable program:

demo% dbx a.out
(dbx) stopi at 0x11230 Set breakpoint at address
(2) stopi at &MAIN+0x68
(dbx) run Run program
Running: a.out
(process id 18803)
stopped in MAIN at 0x11230
MAIN+0x68:fdivs %f3, %f2, %f2
(dbx) where Shows the line number of the exception
=>[1] MAIN(), line 7 in "LocExcHan.F"
(dbx) list 7 Displays the source code line
 7 t = r/s
(dbx) cont Continue after breakpoint, enter handler routine
Signal 8 code 3 at hex address 11230
abort: called
signal ABRT (Abort) in _kill at 0xef6e18a4
_kill+0x8:bgeu _kill+0x30
Current function is exhandler
 24 CALL abort()
(dbx) quit
demo%

demo% cat NoHandlers.c
int f77_no_handlers=1 ;

demo% cc -c NoHandlers.c
demo% f77 NoHandlers.o MyProgram.f

 86 Fortran Programmer’s Guide

6

Otherwise, by default, f77_no_handlers is 0. The setting takes effect just
before execution is transferred to the user program.

This variable is in the global name space of the program; do not use
f77_no_handlers as the name of a variable anywhere else in the program.

Retrospective Summary

The ieee_retrospective function queries the floating-point status registers
to find out which exceptions have accrued. If any exception has a raised
accrued exception flag, a message is printed to standard error to inform you
which exceptions were raised but not cleared. This function is automatically
called by Fortran programs at normal program termination (CALL EXIT). The
message typically looks like this; the format varies with each release:

SPARC: Nonstandard Arithmetic

One aspect of standard IEEE arithmetic, called gradual underflow, can be
manually disabled. When disabled, the program is considered to be running
with nonstandard arithmetic.

The IEEE standard for arithmetic specifies a way of handling underflowed
results gradually by dynamically adjusting the radix point of the significand.
In IEEE floating-point format, the radix point occurs before the significand, and
there is an implicit leading bit of 1. Gradual underflow allows the implicit
leading bit to be cleared to 0 and shifts the radix point into the significant
when the result of a floating-point computation would otherwise underflow.
With a SPARC processor this result is not accomplished in hardware but in
software. If your program generates many underflows (perhaps a sign of a
problem with your algorithm), and you run on a SPARC processor, you may
experience a performance loss.

Note: IEEE floating-point exception flags raised:
 Division by Zero;
IEEE floating-point exception traps enabled:
 inexact; underflow; overflow; invalid operation;
See the Numerical Computation Guide, ieee_flags(3M),
 ieee_handler(3M)

Floating-Point Arithmetic 87

6

Gradual underflow can be disabled either by compiling with the –fns option
or by calling the library routine nonstandard_arithmetic() from within
the program to turn it off— and then calling standard_arithmetic() to
turn gradual underflow back on.

Note – To be effective, the application’s main program must be compiled with
–fns . See the Fortran User’s Guide.

For legacy applications, take note that:

• The standard_arithmetic() subroutine replaces an earlier routine
named gradual_underflow() .

• The nonstandard_arithmetic() subroutine replaces an earlier routine
named abrupt_underflow() .

Note – The –fns option and the nonstandard_arithmetic() library
routine are effective only on some SPARC systems. On Intel and PowerPC
processors, gradual underflow is performed by the hardware.

–ftrap= mode Compiler Options

The –ftrap= mode option enables trapping for floating-point exceptions. If no
signal handler has been established by an ieee_handler() call, the exception
terminates the program with a memory dump core file. See Fortran User’s
Guide for details on this compiler option. For example, to enable trapping for
overflow, division by zero, and invalid operations, compile with
–ftrap=common.

Note – Compile the application’s main program with –ftrap= for it to be
effective.

 88 Fortran Programmer’s Guide

6

Floating-Point Exceptions–f77 vs f90

Programs compiled by f77 automatically display a list of accrued floating-
point exceptions on program termination. In general, a message results if any
one of the invalid, division-by-zero, or overflow exceptions have occurred.
Inexact exceptions do not generate messages because they occur so frequently
in real programs.

f90 programs do not automatically report on exceptions at program
termination. An explicit call to ieee_retrospective (3M) is required.

You can turn off any or all of these messages with ieee_flags() by clearing
exception status flags. Do this at the end of your program.

Debugging IEEE Exceptions
In most cases, the only indication that any floating-point exceptions (such as
overflow, underflow, or invalid operation) have occurred is the retrospective
summary message at program termination. Locating where the exception
occurred requires exception that trapping be enabled. This can be done by
either compiling with the –ftrap=common option or by establishing an
exception handler routine with ieee_handler() . With exception trapping
enabled, run the program from dbx or the WorkShop, using the dbx catch
FPE command to see where the error occurs.

The advantage of recompiling with –ftrap=common is that the source code
need not be modified to trap the exceptions. However, by calling
ieee_handler() you can be more selective as to which exceptions to look at.

Floating-Point Arithmetic 89

6

Example: Recompiling with –ftrap=common and using dbx :

If you find that the program terminates with overflow and other exceptions,
you can locate the first overflow specifically by calling ieee_handler() to
trap just overflows. This requires modifying the source code of at least the
main program, as shown in the following example.

demo% f77 -g -ftrap=common -silent myprogram.f
demo% dbx a.out
Reading symbolic information for a.out
Reading symbolic information for rtld /usr/lib/ld.so.1
Reading symbolic information for libF77.so.3
Reading symbolic information for libc.so.1
Reading symbolic information for libdl.so.1
(dbx) catch FPE
(dbx) run
Running: a.out
(process id 19739)
signal FPE (floating point divide by zero) in MAIN at line 212 in
file "myprogram.f"
 212 Z = X/Y
(dbx) print Y
y = 0.0
(dbx)

 90 Fortran Programmer’s Guide

6

Example: Locate an overflow when other exceptions occur:

To be selective, the example introduces the #include , which required
renaming the source file with a .F suffix and calling ieee_handler() . You
could go further and create your own handler function to be invoked on the
overflow exception to do some application-specific analysis, and print
intermediary or debug results before aborting.

demo% cat myprog.F
#include “f77_floatingpoint.h”
 program myprogram
...
 ier = ieee_handler(‘set’,’overflow’,SIGFPE_ABORT)
...
demo% f77 -g -silent myprog.F
demo% dbx a.out
Reading symbolic information for a.out
Reading symbolic information for rtld /usr/lib/ld.so.1
Reading symbolic information for libF77.so.3
Reading symbolic information for libc.so.1
Reading symbolic information for libdl.so.1
(dbx) catch FPE
(dbx) run
Running: a.out
(process id 19793)
signal FPE (floating point overflow) in MAIN at line 55 in file
"myprog.F"
 55 w = rmax * 200. ! Cause of the overflow
(dbx) cont ! Continue execution to completion
 Note: IEEE floating-point exception flags raised:
 Inexact; Division by Zero; Underflow; ! There were other exceptions
 IEEE floating-point exception traps enabled:
 overflow;
 See the Numerical Computation Guide...
execution completed, exit code is 0
(dbx)

Floating-Point Arithmetic 91

6

Further Numerical Adventures
This section addresses some real world problems that involve arithmetic
operations that may unwittingly generate invalid, division by zero, overflow,
underflow, or inexact exceptions.

For instance, prior to the IEEE standard, if you multiplied two very small
numbers on a computer, you could get zero. Most mainframes and
minicomputers behaved that way. With IEEE arithmetic, gradual underflow
expands the dynamic range of computations.

For example, consider a machine with 1.0E-38 as the machine’s epsilon, the
smallest representable value on the machine. Multiply two small numbers:

In older arithmetic, you would get 0.0 , but with IEEE arithmetic and the same
word length, you get 1.40130E-45 . Underflow tells you that you have an
answer smaller than the machine naturally represents. This result is
accomplished by “stealing” some bits from the mantissa and shifting them
over to the exponent. The result, a denormalized number, is less precise in some
sense, but more precise in another. The deep implications are beyond this
discussion. If you are interested, consult Computer, January 1980, Volume 13,
Number 1, particularly J. Coonen’s article, “Underflow and the Denormalized
Numbers.”

Most scientific programs have sections of code that are sensitive to roundoff,
often in an equation solution or matrix factorization. Without gradual
underflow, programmers are left to implement their own methods of detecting
the approach of an inaccuracy threshold or else they must abandon the quest
for a robust, stable implementation of their algorithm.

For more details on these topics, see the Sun Numerical Computation Guide.

a = 1.0E-30
b = 1.0E-15
x = a * b

 92 Fortran Programmer’s Guide

6

Simple Underflow

Some applications actually do a lot of computation very near zero. This is
common in algorithms computing residuals or differential corrections. For
maximum numerically safe performance, perform the key computations in
extended precision arithmetic. If the application is a single-precision
application, you can perform key computations in double precision.

Example: A simple dot product computation in single precision:

If a(i) and b(i) are very small, many underflows occur. By forcing the
computation to double precision, you compute the dot product with greater
accuracy and do not suffer underflows:

For SPARC systems – You can force a SPARC processor to behave like an older
system with respect to underflow (Store Zero) by adding a call to the library
routine nonstandard_arithmetic() or by compiling the application’s main
program with the -fns option.

Continuing With the Wrong Answer

You might wonder why continue a computation if the answer is clearly wrong.
IEEE arithmetic allows you to make distinctions about what kind of wrong
answers can be ignored, such as NaN or Inf . Then decisions can be made based
on such distinctions.

sum = 0
DO i = 1, n

sum = sum + a(i) * b(i)
END DO

DOUBLE PRECISION sum
DO i = 1, n

sum = sum + dble(a(i)) * dble(b(i))
END DO
result = sum

Floating-Point Arithmetic 93

6

For an example, consider a circuit simulation. The only variable of interest (for
the sake of argument) from a particular 50-line computation is the voltage.
Further, assume that the only values that are possible are +5v, 0, -5v.

It is possible to carefully arrange each part of the calculation to coerce each
subresult to the correct range:

Furthermore, since Inf is not an allowed value, you need special logic to
ensure that big numbers are not multiplied.

IEEE arithmetic allows the logic to be much simpler. The computation can be
written in the obvious fashion, and only the final result need be coerced to the
correct value— since ±Inf can occur and can be easily tested.

Furthermore, the special case of 0/0 can be detected and dealt with as you
wish. The result is easier to read, and faster in executing, since you don’t do
unneeded comparisons.

Excessive Underflow (SPARC Only)

If two very small numbers are multiplied, the result underflows.

If you know in advance that the operands in a multiplication (or subtraction)
may be small and underflow is likely, run the calculation in double precision
and convert the result to single precision later.

For example, a dot product loop:

 4.0 < computed < Inf → 5 volts
-4.0 ≤ computed ≤ 4.0 → 0 volts
-Inf < computed ≤ -4.0 → -5 volts

 real sum, a(maxn), b(maxn)
 ...
 do i =1, n
 sum = sum + a(i)*b(i)
 enddo

 94 Fortran Programmer’s Guide

6

where the a(*) and b(*) are known to have small elements, should be run in
double precision to preserve numeric accuracy:

Doing so may also improve performance due to the software resolution of
excessive underflows caused by the original loop. However, there is no hard
and fast rule here; experiment with your intensely computational code to
determine the most profitable solutions.

Porting from Scientific Mainframes

If the application code was originally developed for 64-bit (or 60-bit)
mainframes such as CRAY or CDC, you may want to compile these codes with
the -dbl option to preserve the expected precision of the original. This option
automatically promotes all default REAL variables to DOUBLE PRECISION.
This option promotes only undeclared variables or declared as simply REAL;
variables declared explicitly REAL*4 will not be promoted. On SPARC,
-dbl also promotes variables simply declared DOUBLE to REAL*16 and
promotes COMPLEX to COMPLEX DOUBLE. See the Fortran User’s Guide for
details.

To further recreate the original mainframe environment, it is probably
preferable to stop on overflows, division by zero, and invalid operations.
Compile the main program with -ftrap=common to ensure this.

 real a(maxn), b(maxn)
 double sum
 ...
 do i =1, n
 sum = sum + a(i)*dble(b(i))
 enddo

 95

Porting 7

This chapter discusses the porting of programs from other dialects of Fortran
to Sun compilers. VAX VMS Fortran programs compile almost exactly as is
with Sun f77 ; this is discussed further in the chapter on VMS extensions in the
Fortran 77 Language Reference.

Note – Porting issues bear mostly upon Fortran 77 programs. The Sun Fortran
90 compiler, f90 , incorporates few nonstandard extensions, and these are
described in the Fortran User’s Guide.

Time Functions
Library functions that return the time of day or elapsed CPU time vary from
system to system.

The following time functions are not supported directly in the Sun Fortran
libraries, but you can write subroutines to duplicate their functions:

• Time-of-day in 10h format
• Date in A10 format
• Milliseconds of job CPU time
• Julian date in ASCII

For example, to find the current Julian date, call TIME() to get the number of
seconds since January 1, 1970, convert the result to days (divide by 86,400), and
add 2,440,587 (the Julian date of December 31, 1969).

 96 Fortran Programmer’s Guide

7

The time functions supported in the Sun Fortran library are listed in Table 7-1:

For details, see Fortran Library Reference or the individual man pages for these
functions.

The routines listed in Table 7-2 provide compatibility with VMS Fortran system
routines idate and time . To use these routines, you must include the -lV77
option on the f77/f90 command line, in which case you also get these VMS
versions instead of the standard f77 versions.

Table 7-1 Sun Fortran Time Functions

Name Function Man Page

time Return the number of seconds elapsed since 1 January,
1970

time (3f)

fdate Return the current time and date as a character string fdate (3f)

idate Return the current month, day, and year in an integer
array

idate (3f)

itime Return the current hour, minute, and second in an integer
array

itime (3f)

ctime Convert the time returned by the time function to a
character string

ctime (3f)

ltime Convert the time returned by the time function to the
local time

ltime (3f)

gmtime Convert the time returned by the time function to
Greenwich time

gmtime (3f)

etime Single Processor: Return elapsed user and system time for
program execution
Multiple Processors: Return the wall clock time

etime (3f)

dtime Return the elapsed user and system time since last call to
dtime

dtime (3f)

Table 7-2 Summary: VMS Fortran System Routines

Name Definition Calling Sequence Argument Type

idate ♦ Date as day, month, year call idate(d, m, y) integer

time ♦ Current time as hhmmss call time(t) character*8

Porting 97

7

The error condition subroutine errsns is not provided, because it is totally
specific to the VMS operating system.

Here is a simple example of the use of these time functions (TestTim.f):

subroutine startclock
common / myclock / mytime
integer mytime, time
mytime = time()
return
end
function wallclock
integer wallclock
common / myclock / mytime
integer mytime, time, newtime
newtime = time()
wallclock = newtime – mytime
mytime = newtime
return
end
integer wallclock, elapsed
character*24 greeting
real dtime, timediff, timearray(2)

c print a heading
call fdate(greeting)
print*, "Hello, Time Now Is: ", greeting
print*,"See how long 'sleep 4' takes, in seconds"
call startclock
call system('sleep 4')
elapsed = wallclock()
print*, "Elapsed time for sleep 4 was: ", elapsed," seconds"

c now test the cpu time for some trivial computing
timediff = dtime(timearray)
q = 0.01
do 30 i = 1, 1000

q = atan(q)
30 continue

timediff = dtime(timearray)
print*, "atan(q) 1000 times took: ", timediff ," seconds"
end

 98 Fortran Programmer’s Guide

7

Running this program produces the following results:

Formats
Some f77 format edit descriptors may behave differently on other systems.
Here are some format specifiers that f77 treats differently than some other
implementations:

• A—Used with character type data elements. In Fortran, this specifier worked
with any variable type. f77 supports the older usage, up to four characters
to a word.

• $—Suppresses newline character output.

• R—Sets an arbitrary radix for the I formats that follow in the descriptor.

• SU—Selects unsigned output for following I formats. For example, you can
convert output to either hexadecimal or octal with the following formats,
instead of using the Z or O edit descriptors:

Carriage-Control
Fortran carriage-control grew out of the capabilities of the equipment used
when Fortran was originally developed. For similar historical reasons, an
operating system derived from the UNIX operating system, does not have
Fortran carriage-control, but you can simulate it in two ways.

demo% TimeTest
Hello, Time Now Is: Mon Feb 12 11:53:54 1996

 See how long 'sleep 4' takes, in seconds
 Elapsed time for sleep 4 was: 5 seconds
 atan(q) 1000 times took: 2.26550E-03 seconds
demo%

10 FORMAT(SU, 16R, I4)
20 FORMAT(SU, 8R, I4)

Porting 99

7

• (f77 only) For simple jobs, use OPEN(N, FORM='PRINT') to enable single
or double spacing, formfeed, and stripping off of column one. It is legal to
reopen unit 6 to change the form parameter to PRINT, for example:

You can use lp (1) to print a file that is opened in this manner.

• Use the asa filter to transform Fortran carriage-control conventions into the
UNIX carriage-control format (see the asa (1) man page) before printing
files with the lpr command.

Working With Files
Early Fortran systems did not use named files, but did provide a command line
mechanism to equate actual file names with internal unit numbers. This facility
can be emulated in a number of ways, including standard UNIX redirection:

Example: Redirecting stdin to redir.data (using csh (1)):

See Chapter 2, Fortran Input/Output, for more on redirection and working with
files.

OPEN(6, FORM='PRINT')

demo% cat redir.data ← The data file
 9 9.9

demo% cat redir.f ← The source file
read(*,*) i, z ← The program reads standard input
print *, i, z
stop
end

demo% f77 -silent -o redir redir.f ← The compilation step
demo% redir < redir.data ← Run with redirection reads data file
 9 9.90000
demo%

 100 Fortran Programmer’s Guide

7

Data Representation
The Fortran 77 Language Reference and the Sun Numerical Computation Guide
discuss in detail the hardware representation of data objects in Fortran.
Differences between data representations across systems and hardware
platforms usually generate the most significant portability problems.

The following issues should be noted:

• Sun adheres to the IEEE Standard 754 for floating-point arithmetic.
Therefore, the first four bytes in a REAL*8 are not the same as in a REAL*4.

• The default sizes for reals, integers, and logicals are described in the Fortran
standard, except:
• when the -i2 flag is used, which shrinks integers and logicals to two

bytes, but leaves reals as four bytes
• when the –dbl or –r8 flags are used to promote integers, logicals and

reals to eight bytes

• Character variables can be freely mixed and equivalenced to variables of
other types, but be careful of potential alignment problems.

• f77 IEEE floating-point arithmetic does raise exceptions on overflow or
divide by zero but does not signal SIGFPE or trap by default. It does deliver
IEEE indeterminate forms in cases where exceptions would otherwise be
signaled. This is explained in the Floating Point Arithmetic chapter of this
Guide.

• The extreme finite, normalized values can be determined. See
libm_single (3f) and libm_double (3f). The indeterminate forms can be
written and read, using formatted and list-directed I/O statements.

Hollerith Data
Many “dusty-deck” Fortran applications store Hollerith ASCII data into
numerical data objects. With the 1977 Fortran standard, the CHARACTER data
type was provided for this purpose and its use is recommended. You can still
initialize variables with the older Fortran Hollerith (nH) feature, but this is not

Porting 101

7

standard practice. Table 7-3 indicates the maximum number of characters that
will fit into certain data types. (In this table, boldfaced data types indicate
default types subject to promotion by -dbl , -r8 , or -xtypemap= .)

When storing standard ASCII characters with normal Fortran:

• With -r8 , unspecified size INTEGER and LOGICAL do not hold double.
• With -dbl , unspecified size INTEGER and LOGICAL do hold double.

The storage is allocated with both options, but it is unavailable in normal
Fortran with -r8 .

Table 7-3 Maximum Characters in Data Types

Maximum Number of Standard ASCII Characters

Data Type
No -i2 , -i4 ,
-r8 , -dbl -i2 -i4 -r8 -dbl

BYTE 1 1 1 1 1

COMPLEX 8 8 8 16 16

COMPLEX*16 16 16 16 16 16

COMPLEX*32 32 32 32 32 32

DOUBLE COMPLEX 16 16 16 32 32

DOUBLE PRECISION 8 8 8 16 16

INTEGER 4 2 4 4 8

INTEGER*2 2 2 2 2 2

INTEGER*4 4 4 4 4 4

INTEGER*8 8 8 8 8 8

LOGICAL 4 2 4 4 8

LOGICAL*1 1 1 1 1 1

LOGICAL*8 8 8 8 8 8

REAL 4 4 4 8 8

REAL*4 4 4 4 4 4

REAL*8 8 8 8 8 8

REAL*16 16 16 16 16 16

 102 Fortran Programmer’s Guide

7

Example: Initialize variables with Hollerith:

If you pass Hollerith constants as arguments, or if you use them in expressions
or comparisons, they are interpreted as character-type expressions.

If needed, you can initialize a data item of a compatible type with a Hollerith
and then pass it to other routines.

demo% cat FourA8.f
double complex x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
write(6, '(4A8, "!")') x
end

demo% f77 -silent -o FourA8 FourA8.f
demo% FourA8
abcdefghijklmnopqrstuvwxyz012345!
demo%

Porting 103

7

Example:

Nonstandard Coding Practices
As a general rule, porting an application program from one system and
compiler to another can be made easier by eliminating any nonstandard
coding. Optimizations or work-arounds that were successful on one system
may only serve to obscure and confuse compilers on other systems. In
particular, optimized hand-tuning for one particular architecture may turn out
to cause degradations in performance elsewhere. This is discussed later in the
chapters on performance and tuning. However, the following issues are worth
considering with regards to porting in general.

 program respond
 integer yes, no
 integer ask
 data yes, no / 3hyes, 2hno /

 if (ask() .eq. yes) then
 print *, 'You may proceed!'
 else
 print *, 'Request Rejected!'
 endif
 end

 integer function ask()
 double precision solaris, response
 integer yes, no
 data yes, no / 3hyes, 2hno /
 data solaris/ 7hSOLARIS/
10 format("What system? ", $)
20 format(a8)

 write(6, 10)
 read (5, 20) response
 ask = no
 if (response .eq. solaris) ask = yes
 return
 end

 104 Fortran Programmer’s Guide

7

Uninitialized Variables

Some systems automatically initialize local and COMMON variables to zero or
some not-a-number value. However, there is no standard practice, and
programs should not make assumptions regarding the initial value of any
variable. To assure maximum portability, a program should initialize all
variables.

Aliasing Across Calls

Aliasing occurs when the same storage address is referenced by more than one
name. This happens when actual arguments to a subprogram overlap between
themselves or between COMMON variables within the subprogram. For example,
arguments X and Z refer to the same storage locations, as do B and H:

Aliasing in this manner should be avoided in all portable code. The results on
some systems and with higher optimization levels could be unpredictable.

Obscure Optimizations

Legacy codes may contain source-code restructurings of ordinary
computational DO loops intended to cause older vectorizing compilers to
generate optimal code for a particular architecture. In most cases, these
restructurings are no longer needed and may degrade the portability of a
program. Two common restructurings are strip-mining and loop unrolling.

 COMMON /INS/B(100)
 REAL S(100), T(100)
 ...
 CALL SUB(S,T,S,B,100)
 ...
 SUBROUTINE SUB(X,Y,Z,H,N)
 REAL X(N),Y(N),Z(N),H(N)
 COMMON /INS/B(100)
 ...

Porting 105

7

Strip-Mining

Fixed-length vector registers on some architectures led programmers to
manually “strip-mine” the array computations in a loop into segments:

Strip-mining is no longer appropriate with modern compilers; the loop can be
written much less obscurely as:

 REAL TX(0:63)
 ...
 DO IOUTER = 1,NX,64
 DO IINNER = 0,63
 TX(IINNER) = AX(IOUTER+IINNER) * BX(IOUTER+IINNER)/2.
 QX(IOUTER+IINNER) = TX(IINNER)**2
 END DO
 END DO

 DO IX = 1,N
 TX = AX(I)*BX(I)/2.
 QX(I) = TX**2
 END DO

 106 Fortran Programmer’s Guide

7

Loop Unrolling

Unrolling loops by hand was a typical source-code optimization technique
before compilers were available that could perform this restructuring
automatically. A loop written as:

should be rewritten the way it was originally intended:

 DO K = 1, N-5, 6
 DO J = 1, N
 DO I = 1,N
 A(I,J) = A(I,J) + B(I,K) * C(K ,J)
 * + B(I,K+1) * C(K+1,J)
 * + B(I,K+2) * C(K+2,J)
 * + B(I,K+3) * C(K+3,J)
 * + B(I,K+4) * C(K+4,J)
 * + B(I,K+5) * C(K+5,J)
 END DO
 END DO
 END DO
 DO KK = K,N
 DO J =1,N
 DO I =1,N
 A(I,J) = A(I,J) + B(I,KK) * C(KK,J)
 END DO
 END DO
 END DO

 DO K = 1,N
 DO J = 1,N
 DO I = 1,N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

Porting 107

7

Troubleshooting
Here are a few suggestions for what to try when programs ported to Sun
Fortran do not run as expected.

Results Are Close, but Not Close Enough

Try the following:

• Pay attention to the size and the engineering units. Numbers very close to
zero can appear to be different, but the difference is not significant. For
example, 1.9999999e-30 ≈ -9.9992112e-33, especially if this number is the
difference between two large numbers, such as the distance across the
continent in feet, as calculated on two different computers.

VAX math is not as good as IEEE math, and even different IEEE processors
may differ. This is especially true if the mathematics involves many
trigonometric functions. These functions are much more complicated than
one might think, and the standard defines only the basic arithmetic
functions. There can be subtle differences, even between IEEE machines.
Review the chapter Floating-Point Arithmetic, in this Guide.

• Try running with a call nonstandard_arithmetic() . Doing so can
also improve performance considerably, and make your Sun workstation
behave more like a VAX. If you have access to a VAX or some other system,
run it there, also. It is quite common for many numerical applications to
produce slightly different results on each floating-point implementation.

• Check for NaN, +Inf , and other signs of probable errors. See the chapter
Floating-Point Arithmetic in this Guide, or the man page ieee_handler (3m)
for instructions on how to trap the various exceptions. On most machines,
these exceptions simply abort the run.

 108 Fortran Programmer’s Guide

7

• Two numbers can differ by 6 x 1029 and still have the same floating-point
form. Here is an example of different numbers, with the same
representation:

The output is:

In this example, the difference is 6 x 1029. The reason for this
indistinguishable, wide gap is that in IEEE single-precision arithmetic, you
are guaranteed only six decimal digits for any one decimal-to-binary
conversion. You may be able to convert seven or eight digits correctly, but it
depends on the number.

Program Fails without Warning

If the program fails without warning and runs different lengths of time
between failures, then:

• Compile with minimal optimization (–O1). If the program then works,
compile only selective routines with higher optimization levels.

• Understand that optimizers must make assumptions about the program.
Nonstandard coding or constructs can cause problems. Almost no optimizer
handles all programs at all levels of optimization.

 real*4 x,y
 x=99999990e+29
 y=99999996e+29
 write (*,10), x, x
 10 format('99,999,990 x 10^29 = ', e14.8, ' = ', z8)
 write(*,20) y, y
 20 format('99,999,996 x 10^29 = ', e14.8, ' = ', z8)
 end

99,999,990 x 10^29 = 0.99999993E+37 = 7cf0bdc1
99,999,996 x 10^29 = 0.99999993E+37 = 7cf0bdc1

 109

Performance Profiling 8

This chapter describes how to measure and display program performance.
Knowing where a program is spending most of its compute cycles and how
efficiently it uses system resources is a prerequisite for performance tuning.

The time Command
The simplest way to gather basic data about program performance and
resource utilization is to use the time (1) command or, in csh , the set time
command.

Running the program with the time command prints a line of timing
information on program termination.

The interpretation is:

user system wallclock resources memory I/O paging

• user – 6.5 seconds in user code, approximately
• system – 17.1 seconds in system code for this task, approximately
• wallclock – 1 minute 16 seconds to complete
• resources – 31% of system resources dedicated to this program

demo% time myprog
 The Answer is: 543.01
6.5u 17.1s 1:16 31% 11+21k 354+210io 135pf+0w
demo%

 110 Fortran Programmer’s Guide

8

• memory – 11 kilobytes of shared program memory, 21 kilobytes of private
data memory

• I/O – 354 reads, 210 writes
• paging – 135 page faults, 0 swapouts

Multiprocessor Interpretation of time Output

Timing results are interpreted in a different way when the program is run in
parallel in a multiprocessor environment. Since /bin/time accumulates the
user time on different threads, only wall clock time is used.

Since the user time displayed includes the time spent on all the processors, it
can be quite large and is not a good measure of performance. A better measure
is the real time, which is the wall clock time. This also means that to get an
accurate timing of a parallelized program it must be run on a quiet system
dedicated to just your program.

The gprof Profiling Command
The gprof (1) command provides a detailed postmortem analysis of program
timing at the subprogram level, including how many times a subprogram was
called, who called it and whom it called, and how much time was spent in the
routine and by the routines it called.

To enable gprof profiling, compile and link the program with the -pg option:

The program must complete normally for gprof to obtain meaningful timing
information.

At program termination, the file gmon.out is automatically written in the
working directory. This file contains the profiling data that will be interpreted
by gprof .

Invoking gprof produces a report on standard output. An example is shown
on the next pages. Not only the routines in your program are listed but also the
library procedures and the routines they call.

demo% f77 -o Myprog -fast -pg Myprog.f .. .etc
...
demo% gprof Myprog

Performance Profiling 111

8

The report is mostly two profiles of how the total time is distributed across the
program procedures: the call graph and the flat profile. They are preceded by
an explanation of the column labels, followed by an index. (The gprof -b
option eliminates the explanatory text; see the gprof (1) man page for other
options that can be used to limit the amount of output generated.)

In the graph profile, each procedure (subprogram, procedure) is presented in a
call-tree representation. The line representing a procedure in its call-tree is
called the function line, and is identified by an index number in the leftmost
column, within square brackets; the lines above it are the parent lines; the lines
below it, the descendant lines.

The call graph profile is followed by a flat profile that provides a routine-by-
routine overview. An (edited) example of gprof output follows.

Note – User-defined functions appear with their Fortran names followed by an
underscore. Library routines appear with leading underscores.

parent line caller 1
parent line caller 2

....
[n] time function line function name

descendant line called 1
descendant line called 2

....

 112 Fortran Programmer’s Guide

8

The call graph profile:

granularity: each sample hit covers 2 byte(s) for 0.08% of 12.78 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

 0.00 12.66 1/1 main [1]
[3] 99.1 0.00 12.66 1 MAIN_ [3]
 0.92 10.99 1000/1000 diffr_ [4]
 0.62 0.00 2000/2001 code_ [9]
 0.11 0.00 1000/1000 shock_ [11]
 0.02 0.00 1000/1000 bndry_ [14]
 0.00 0.00 1/1 init_ [24]
 0.00 0.00 2/2 output_ [40]
 0.00 0.00 1/1 input_ [47]

 0.92 10.99 1000/1000 MAIN_ [3]
[4] 93.2 0.92 10.99 1000 diffr_ [4]
 1.11 4.52 3000/3000 deriv_ [7]
 1.29 2.91 3000/6000 cheb1_ [5]
 1.17 0.00 3000/3000 dissip_ [8]

 1.29 2.91 3000/6000 deriv_ [7]
 1.29 2.91 3000/6000 diffr_ [4]
[5] 65.7 2.58 5.81 6000 cheb1_ [5]
 5.81 0.00 6000/6000 fftb_ [6]
 0.00 0.00 128/321 cos [21]
 0.00 0.00 128/192 __sin [279]

 5.81 0.00 6000/6000 cheb1_ [5]
[6] 45.5 5.81 0.00 6000 fftb_ [6]
 0.00 0.00 64/321 cos [21]
 0.00 0.00 64/192 __sin [279]

...

Performance Profiling 113

8

The flat profile overview:

• Function Line

The function line [5] in the preceding example reveals that:
• cheb1 was called 6000 times— 3000 from deriv , 3000 from diffr .
• 2.58 seconds were spent in cheb1 itself.
• 5.81 seconds were spent in routines called by cheb1 .
• 65.7% of the execution time of the program was within cheb1 .

• Parent Lines

The parent lines above [5] indicate that cheb1 was called from two routines,
deriv and diffr . The timings on these lines show how much time was
spent in cheb1 when it was called from each of these routines.

• Descendant Lines

The lines below the function line indicate the routines called from cheb1 ,
fftb,sin, and cos . The library sine function is called indirectly.

• Flat Profile

Function names appear on the right. The profile is sorted by percentage of
total execution time.

granularity: each sample hit covers 2 byte(s) for 0.08% of 12.84
seconds

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 45.2 5.81 5.81 6000 0.97 0.97 fftb_ [6]
 20.1 8.39 2.58 6000 0.43 1.40 cheb1_ [5]
 9.1 9.56 1.17 3000 0.39 0.39 dissip_ [8]
 8.6 10.67 1.11 3000 0.37 1.88 deriv_ [7]
 7.1 11.58 0.92 1000 0.92 11.91 diffr_ [4]
 4.8 12.20 0.62 2001 0.31 0.31 code_ [9]
 2.5 12.53 0.33 69000 0.00 0.00 __exp [10]
 0.9 12.64 0.11 1000 0.11 0.11 shock_ [11]
...

 114 Fortran Programmer’s Guide

8

Overhead Considerations

Profiling (compiling with the -pg option) may greatly increase the running
time of a program. This is due to the extra overhead required to clock program
performance and subprogram calls. Profiling tools like gprof attempt to
subtract an approximate overhead factor when computing relative runtime
percentages. All other timings shown may not be accurate due to UNIX and
hardware timekeeping inaccuracies.

Programs with short execution times are the most difficult to profile because
the overhead may be a significant fraction of the total execution time. The best
practice is to choose input data for the profiling run that will result in a
realistic test of the program’s performance. If this is not possible, consider
enclosing the main computational part of the program within a loop that
effectively runs the program N times. Estimate actual performance by dividing
the profile results by N.

The Fortran library includes two routines that return the total time used by the
calling process. See dtime (3F) and etime (3F).

Missing Profile Libraries

If the profiling libraries are not installed when you try to use profiling, you
may get an error message like this:

There is a system utility to extract files from the release CD. You can use it to
get the debugging files after the system is installed. See add_services (8). You
may want to get help from your system administrator.

demo% f77 -p real.f
real.f:
 MAIN stuff:
ld: -lc_p: No such file or directory
demo%

Performance Profiling 115

8

The tcov Profiling Command
The tcov (1) command, when used with programs compiled with the -a,
-xa, or -xprofile=tcov options, produces a statement-by-statement profile
of the source code showing which statements executed and how often. It also
gives a summary of information about the basic block structure of the
program.

There are two implementations of tcov coverage analysis. The original tcov is
invoked by the -a or -xa compiler options. Enhanced statement level coverage
is invoked by the -xprofile=tcov compiler option and the -x tcov option.
In either case, the output is a copy of the source files annotated with statement
execution counts in the margin. Although these two versions of tcov are
essentially the same as far as the Fortran user is concerned (most of the
enhancements apply to C++ programs), there will be some performance
improvement with the newer style.

“Old Style” tcov Coverage Analysis

Compile the program with the -a (or -xa) option. This produces the file
$TCOVDIR/file.d for each source .f file in the compilation. (If environment
variable $TCOVDIR is not set at compile time, the .d files are stored in the
current directory.)

Run the program (execution must complete normally). This produces updated
information in the .d files. To view the coverage analysis merged with the
individual source files, run tcov on the source files. The annotated source files
are named $TCOVDIR/file.tcov for each source file.

The output produced by tcov shows the number of times each statement was
actually executed. Statements that were not executed are marked with ####->
to the left of the statement.

 116 Fortran Programmer’s Guide

8

Here is a simple example:

demo% f77 -a -o onetwo -silent one.f two.f
demo% onetwo

 ... output from program
demo% tcov one.f two.f
demo% cat one.tcov two.tcov

program one
 1 -> do i=1,10
 10 -> call two(i)

end do
 1 -> end

 Top 10 Blocks
 Line Count
 3 10
 2 1
 5 1

 3 Basic blocks in this file
 3 Basic blocks executed
100.00 Percent of the file executed

 12 Total basic block executions
 4.00 Average executions per basic block

subroutine two(i)
 10 -> print*, "two called", i

return
end

 Top 10 Blocks
 Line Count
 2 10

 1 Basic blocks in this file
 1 Basic blocks executed
100.00 Percent of the file executed

 10 Total basic block executions
 10.00 Average executions per basic block
demo%

Performance Profiling 117

8

“New Style” Enhanced tcov Analysis

To use new style tcov , compile with -xprofile=tcov . When the program is
run, coverage data is stored in program.profile/tcovd , where program is the
name of the executable file. (If the executable were a.out ,
a.out.profile/tcovd would be created.)

Run tcov -x dirname source_files to create on file.tcov in the current directory
the coverage analysis merged with each source file.

Running a simple example:

Environment variables $SUN_PROFDATA and $SUN_PROFDATA_DIR can be
used to specify where the intermediary data collection files are kept. These are
the *.d and tcovd files created by old and new style tcov , respectively.

Each subsequent run accumulates more coverage data into the myprog.tcovd
file. Data for each object file is zeroed out the first time the program is executed
after the corresponding source file has been recompiled. Data for the entire
program is zeroed out by removing the myprog.tcovd file.

These environment variables can be used to separate the collected data from
different runs. With these variables set, the running program writes execution
data to the files in $SUN_PROFDATA_DIR/$SUN_PROFDATA/. Similarly, the
directory that tcov reads is specified by tcov -x $SUN_PROFDATA . If
$SUN_PROFDATA_DIR is set, tcov will prepend it, looking for files in
$SUN_PROFDATA_DIR/$SUN_PROFDATA/, and not the working directory. For
the details, see the tcov (1) man page.

demo% f77 -o onetwo -silent -xprofile=tcov one.f two.f
demo% onetwo

 ... output from program
demo% tcov -x onetwo.profile one.f two.f
demo% cat one.f.tcov two.f.tcov

program one
 1 -> do i=1,10
 10 -> call two(i)

end do
 1 -> end

.....etc
demo%

 118 Fortran Programmer’s Guide

8

I/O Profiling
You can obtain a report about how much data was transferred by your
program. For each Fortran unit, the report shows the file name, the number of
I/O statements, the number of bytes, and some statistics on these items.

To obtain an I/O profiling report, insert calls to the library routines
start_iostats and end_iostats around the parts of the program you wish
to measure. (A call to end_iostats is required if the program terminates with
an END or STOP statement rather than a CALL EXIT .)

I/O statements profiled include READ, WRITE, PRINT, OPEN, CLOSE, INQUIRE,
BACKSPACE, ENDFILE, and REWIND. The runtime system opens stdin ,
stdout , and stderr before the first executable statement of your program, so
you must explicitly reopen these units after the call to start_iostats
without first closing them for monitoring.

Example: Profile stdin , stdout , and stderr :

If you want to measure only part of the program, call end_iostats to stop
the process. A call to end_iostats may also be required if your program
terminates with an END or STOP statement rather than CALL EXIT .

The program must be compiled with the -pg option. When the program
terminates, the I/O profile report is produced on the file name.io_stats .
(name is the name of the executable file).

EXTERNAL start_iostats
…
CALL start_iostats
OPEN(5)
OPEN(6)
OPEN(0)

Performance Profiling 119

8

Here is an example:

demo% f77 -o myprog -pg -silent myprog.f
demo% myprog

... output from program
demo% cat myprog.io_stats

 INPUT REPORT
1. unit 2. file name 3. input data 4. map
 cnt total avg std dev (cnt)
--
 0 stderr 0 0 0 0 No
 0 0 0 0
 5 stdin 2 8 4 0 No
 1 8 8 0
 6 stdout 0 0 0 0 No
 0 0 0 0
 19 fort.19 8 48 6 4.276 No
 4 48 12 0
 20 fort.20 8 48 6 4.276 No
 4 48 12 0
 21 fort.21 8 48 6 4.276 No
 4 48 12 0
 22 fort.22 8 48 6 4.276 No
 4 48 12 0

 OUTPUT REPORT
1. unit 5. output data 6. blk size 7. fmt 8. direct
 cnt total avg std dev (rec len)

 0 4 40 10 0 -1 Yes seq
 1 40 40 0
 5 0 0 0 0 -1 Yes seq
 0 0 0 0
 6 26 248 9.538 1.63 -1 Yes seq
 6 248 41.33 3.266
 19 8 48 6 4.276 500548 Yes seq
 4 48 12 0
 20 8 48 6 4.276 503116 No seq
 4 48 12 0
 21 8 48 6 4.276 503116 Yes dir
 4 48 12 0 (12)
 22 8 48 6 4.276 503116 No dir
 4 48 12 0 (12)
 …

 120 Fortran Programmer’s Guide

8

Each pair of lines in the report displays information about an I/O unit. There is
one section showing input operations and another for output. The first line of a
pair displays statistics on the number of data elements transferred before the
unit was closed. The second row of statistics is based on the number of I/O
statements processed.

In the example, there were 6 calls to write a total of 26 data elements to
standard output. A total of 248 bytes were transferred. The display also shows
the average and standard deviation in bytes transferred per I/O statement
(9.538 and 1.63, respectively), and the average and standard deviation per I/O
statement call (42.33 and 3.266, respectively).

The input report also contains a column to indicate whether a unit was
memory mapped or not. If mapped, the number of mmap() calls is recorded in
parentheses in the second row of the pair.

The output report indicates block sizes, formatting, and access type. A file
opened for direct access shows its defined record length in parentheses in the
second row of the pair.

Note – Compiling with environment variable LD_LIBRARY_PATH set may
disable I/O profiling, which relies on its profiling I/O library being in a
standard location.

 121

Performance and Optimization 9

This chapter considers some optimization techniques that may improve the
performance of numerically intense Fortran programs. Proper use of
algorithms, compiler options, library routines, and coding practices can bring
significant performance gains. This discussion does not discuss cache, I/O, or
system environment tuning. Parallelization issues are treated in the next
chapter.

Some of the issues considered here are:

• Compiler options that may improve performance
• Compiling with feedback from runtime performance profiles
• Use of optimized library routines for common procedures
• Coding strategies to improve performance of key loops

The subject of optimization and performance tuning is much too complex to be
treated exhaustively here. However, this discussion should provide the reader
with a useful introduction to these issues. A list of books that cover the subject
much more deeply appears at the end of the chapter.

Optimization and performance tuning is an art that depends heavily on being
able to determine what to optimize or tune.

 122 Fortran Programmer’s Guide

9

Choice of Compiler Options
Choice of the proper compiler options is the first step in improving
performance. Sun compilers offer a wide range of options that affect the object
code. In the default case, where no options are explicitly stated on the compile
command line, most options are off. To improve performance, these options
must be explicitly selected.

Performance options are normally off by default because most optimizations
force the compiler to make assumptions about a user’s source code. Programs
that conform to standard coding practices and do not introduce hidden side
effects should optimize correctly. However, programs that take liberties with
standard practices may run afoul of some of the compiler’s assumptions. The
resulting code may run faster, but the computational results may not be
correct.

Recommended practice is to first compile with all options off, verify that the
computational results are correct and accurate, and use these results and
performance profile as a baseline. Then, proceed in steps— recompiling with
additional options and comparing execution results and performance against
the baseline. If numerical results change, the program may have questionable
code, which needs careful analysis to locate and reprogram.

If performance does not improve significantly, or degrades, as a result of
adding optimization options, the coding may not provide the compiler with
opportunities for further performance improvements. The next step would
then be to analyze and restructure the program at the source code level to
achieve better performance.

Performance and Optimization 123

9

Performance Option Reference

The compiler options listed in Table 9-1 provide the user with a repertoire of
strategies to improve the performance of a program over default compilation.
Only some of the compilers’ more potent performance options appear below. A
more complete list can be found in the Fortran User’s Guide.

Some of these options will increase compilation time because they invoke a
deeper analysis of the program. Some options work best when routines are
collected into files along with the routines that call them (rather than splitting
each routine into its own file); this allows the analysis to be global.

-fast

This single option selects a number of performance options that, working
together, produce object code optimized for execution speed without an
excessive increase in compilation time.

The options selected by -fast are subject to change from one release to
another, and not all are available on each platform:

• -xtarget=native – generates code optimized for the host architecture
• -O4 – sets optimization level
• -libmil – inlines calls to some simple library functions
• -fsimple=1 – simplifies floating-point code (SPARC only)
• -dalign – uses faster, double word loads and stores (SPARC only)
• -xlibmopt – use optimized libm math library (SPARC, PowerPC only)
• -fns -ftrap=%none – turns off all trapping

Table 9-1 Some Effective Performance Options

 Action Option

 Use various optimization options together -fast

 Set compiler optimization level to n -On (-O = -O3)

 Specify target hardware -xtarget= sys

 Optimize using performance profile data (with -O5) -xprofile=use

 Unroll loops by n -unroll= n

 Permit simplifications and optimization of floating-point -fsimple=1|2

 Perform dependency analysis to optimize loops -depend

 124 Fortran Programmer’s Guide

9

• -depend – analyze loops for data dependencies (SPARC only)
• –nofstore – disables forcing precision on expressions (Intel only)

-fast provides a quick way to engage much of the optimizing power of the
compilers. Each of the composite options may be specified individually, and
each may have side effects to be aware of (discussed in the Fortran User’s
Guide). Following -fast with additional options adds further optimizations.
For example:

f77 -fast -O5 ...

sets the optimization to level 5 instead of 4.

Note – -fast includes -dalign and -native . These options may have
unexpected side-effects for some programs.

-On

No compiler optimizations are performed by the compilers unless a -O option
is specified explicitly (or implicitly with macro options like -fast). In nearly
all cases, specifying an optimization level for compilation improves program
execution performance. On the other hand, higher levels of optimization
increase compilation time and may significantly increase code size.

For most cases, level -O3 is a good balance between performance gain, code
size, and compilation time. Level -O4 adds automatic inlining of calls to
routines contained in the same source file as the caller routine, among other
things. Level -O5 adds more aggressive optimization techniques that would
not be applied at lower leves. In general, levels above -O3 should be specified
only to those routines that make up the most compute-intensive parts of the
program and thereby have a high certainty of improving performance. (There
is no problem linking together parts of a program compiled with different
optimization levels.)

SPARC: Optimization With Runtime Profile Feedback

The compiler applies its optimization strategies at level O3 and above much
more efficiently if combined with -xprofile=use . With this option (available
only on SPARC processors), the optimizer is directed by a runtime execution
profile produced by the program (compiled with -xprofile=collect) with

Performance and Optimization 125

9

typical input data. The feedback profile indicates to the compiler where
optimization will have the greatest effect. This may be particularly important
with -O5 . Here’s a typical example of profile collection with higher
optimization levels:

The first compilation above generates an executable that produces statement
coverage statistics when run. The second compilation uses this performance
data to guide the optimization of the program.

(See Fortran User’s Guide and Performance Profiling Tools for details on -
xprofile options.)

-dalign

With -dalign the compiler is able to generate double-word load/store
instructions whenever possible. Programs that do much data motion may
benefit significantly when compiled with this option. (It is one of the options
selected by -fast .) The double-word instructions are almost twice as fast as
the equivalent single word operations.

However, users should be aware that using -dalign (and therefore -fast)
may cause problems with some programs that have been coded expecting a
specific alignment of data in COMMON blocks. With -dalign , the compiler may
add padding to ensure that all double (and quad) precision data (either REAL
or COMPLEX) are aligned on double word boundaries, with the result that:

• COMMON blocks may be larger than expected due to added padding
• All program units sharing COMMON must be compiled with -dalign if any

one of them is compiled with -dalign

For example, a program that writes data by aliasing an entire COMMON block of
mixed data types as a single array may not work properly with -dalign
because the block will be larger (due to padding of double and quad precision
variables) than the program expects.

demo% f77 -o prg -fast -xprofile=collect prg.f ...
demo% prg
demo% f77 -o prgx -fast -O5 -xprofile=use:prg.profile prg.f ...
demo% prgx

 126 Fortran Programmer’s Guide

9

SPARC: -depend (f77 only)

Adding -depend to optimization levels -O3 and higher (on SPARC
processors) extends the compiler’s ability to optimize DO loops and loop nests.
With this option, the optimizer analyzes inter-iteration loop dependencies to
determine whether or not certain transformations of the loop structure can be
performed. Only loops without dependencies can be restructured. However,
the added analysis may increase compilation time.

-fsimple=2 (f77 only)

Unless directed to, the compiler does not attempt to simplify floating-point
computations (this is the default, -fsimple=0). With the -fast option,
-fsimple=1 is used and some conservative assumptions are made. Adding
-fsimple=2 enables the optimizer to make further simplifications with the
understanding that this may cause some programs to produce slightly different
results due to rounding effects. If -fsimple level 1 or 2 is used, all program
units should be similarly compiled to insure consistent numerical accuracy,

-unroll= n

Unrolling short loops with long iteration counts can be profitable for some
routines. However, unrolling can also increase program size and may even
degrade performance of other loops. With n=1, the default, no loops are
unrolled automatically by the optimizer. With n greater than 1, the optimizer
attempts to unroll loops up to a depth of n. If a DO loop with a variable loop
limit can be unrolled, both an unrolled version and the original loop are
compiled. A runtime test on iteration count determines whether or not
executing the unrolled loop is inappropriate. Loop unrolling, especially with
simple one or two statement loops, increases the amount of computation done
per iteration and provides the optimizer better opportunities to schedule
registers and simplify operations. The tradeoff between number of iterations,
loop complexity, and choice of unrolling depth is not easy to determine, and
some experimentation may be needed.

Performance and Optimization 127

9

The example that follows shows how a simple loop might be unrolled to a
depth of four with -unroll=4 (the source code is not changed with this
option):

This example shows a simple loop with a fixed loop count. The restructuring is
more complex with variable loop counts.

-xtarget= system

The performance of some programs may benefit if the compiler has an accurate
description of the target computer hardware. When program performance is
critical, the proper specification of the target hardware could be very
important. This is especially true when running on the newer SPARC
processors. However, for most programs and older SPARC processors, the
performance gain may be negligible and a generic specification may be
sufficient.

The Fortran User’s Guide lists all the system names recognized by -xtarget= .
For any given system name (for example, ss1000 , for SPARC Server 1000), -
xtarget expands into a specific combination of -xarch , -xcache , and -
xchip that properly matches that system. The optimizer uses these
specifications to determine strategies to follow and instructions to generate.

Original Loop:
 DO I=1,20000
 X(I) = X(I) + Y(I)*A(I)
 END DO

Unrolled by 4 compiles as:
 DO I=1, 19997,4

 TEMP1 = X(I) + Y(I)*A(I)
 TEMP2 = X(I+1) + Y(I+1)*A(I+1)
 TEMP3 = X(I+2) + Y(I+2)*A(I+2)
 X(I+3) = X(I+3) + Y(I+3)*A(I+3)
 X(I) = TEMP1
 X(I+1) = TEMP2
 X(I+2) = TEMP3
 END DO

 128 Fortran Programmer’s Guide

9

The special setting -xtarget=native enables the optimizer to compile code
targeted at the host system (the system doing the compilation). This is
obviously useful when compilation and execution are done on the same
system. When the execution system is not known, it is desirable to compile for
a generic architecture, therefore -xtarget=generic is the default, although
this may produce suboptimal performance.

Other Performance Strategies
Assuming that you have experimented with using a variety of optimization
options, compiling your program and measuring actual runtime performance,
the next step might be to look closely at the Fortran source program to see
what further tuning can be tried.

Focusing on just those parts of the program that use most of the compute time,
you might consider the following strategies:

• Replace handwritten procedures with calls to equivalent optimized libraries
• Remove I/O, calls, and unnecessary conditional operations from key loops
• Eliminate aliasing that might inhibit optimization
• Rationalize tangled, spaghetti-like code to use block IF

These are some of the good programming practices that tend to lead to better
performance. It is possible to go further, hand-tuning the source code for a
specific hardware configuration. However, these attempts may only further
obscure the code and make it even more difficult for the compiler’s optimizer
to achieve significant performance improvements. Excessive hand-tuning of
the source code may hide the original intent of the procedure and could have a
significantly detrimental effect on performance for different architectures.

• Use Optimized Libraries

In most situations, optimized commercial or shareware libraries perform
standard computational procedures far more efficiently than you could by
coding them by hand.

For example, the Sun Performance Library™ is a suite of highly optimized
mathematical subroutines based on the standard LAPACK, BLAS, FFTPACK,
VFFTPACK, and LINPACK libraries. Performance improvement using these
routines can be significant when compared with hand coding.

Performance and Optimization 129

9

• Eliminate Performance Inhibitors

Use the profiling techniques described in the previous chapter to identify the
key computational parts of the program. Then, carefully analyze the loop or
loop nest to eliminate coding that might either inhibit the optimizer from
generating optimal code or otherwise degrade performance. See also the
chapter on Porting. Many of the nonstandard coding practices that make
portability difficult may also inhibit optimization by the compiler.

Reprogramming techniques that improve performance are dealt with in more
detail in some of the reference books listed at the end of the chapter. Three
major approaches are worth mentioning here:

• Remove I/O From Key Loops

I/O within a loop or loop nest enclosing the significant computational work of
a program will seriously degrade performance. The amount of CPU time spent
in the I/O library may be a major portion of the time spent in the loop. (I/O
also causes process interrupts, thereby degrading program throughput.) By
moving I/O out of the computation loop wherever possible, the number of
calls to the I/O library can be greatly reduced.

• Eliminate Subprogram Calls

Subroutines called deep within a loop nest may get called thousands of times.
Even if the time spent in each routine per call is small, the total effect may be
substantial. Also, subprogram calls inhibit optimization of the loop that
contains them because the compiler cannot make assumptions about the state
of registers over the call.

Automatic inlining of subprogram calls (using -inline= x,y,..z, or -O4) is one
way to let the compiler replace the actual call with the subprogram itself
(pulling the subprogram into the loop). The subprogram source code for the
routines that are to be inlined be must be found in the same file as the calling
routine.

There are other ways to eliminate subprogram calls:

 130 Fortran Programmer’s Guide

9

• Use statement functions. If the external function being called is a simple
math function, it may be possible to rewrite the function as a statement
function or set of statement functions. Statement functions are compiled in-
line and can be optimized.

• Push the loop into the subprogram. That is, rewrite the subprogram so that
it can be called fewer times (outside the loop) and operate on a vector or
array of values per call.

• Rationalize Tangled Code

Complicated conditional operations within a computationally intensive loop
can dramatically inhibit the compiler’s attempt at optimization. In general, a
good rule to follow is to eliminate all arithmetic and logical IF ’s, replacing
them with block IF ’s:

Original Code:
 IF(A(I)-DELTA) 10,10,11
10 XA(I) = XB(I)*B(I,I)
 XY(I) = XA(I) - A(I)
 GOTO 13
11 XA(I) = Z(I)
 XY(I) = Z(I)
 IF(QZDATA.LT.0.) GOTO 12
 ICNT = ICNT + 1
 ROX(ICNT) = XA(I)-DELTA/2.
12 SUM = SUM + X(I)
13 SUM = SUM + XA(I)

Untangled Code:
 IF(A(I).LE.DELTA) THEN
 XA(I) = XB(I)*B(I,I)
 XY(I) = XA(I) - A(I)
 ELSE
 XA(I) = Z(I)
 XY(I) = Z(I)
 IF(QZDATA.GE.0.) THEN
 ICNT = ICNT + 1
 ROX(ICNT) = XA(I)-DELTA/2.
 ENDIF
 SUM = SUM + X(I)
 ENDIF
 SUM = SUM + XA(I)

Performance and Optimization 131

9

Using block IF not only improves the opportunities for the compiler to
generate optimal code, it also improves readability and assures portability.

Further Reading
The following reference books provide more details:

• Fortran 77 Language Reference, Sun Microsystems, Inc.

• Numerical Computation Guide, Sun Microsystems, Inc.

• Performance Profiling Tools, Sun Microsystems, Inc.

• Programming Pearls, by Jon Louis Bentley, Addison Wesley

• More Programming Pearls, by Jon Louis Bentley, Addison Wesley

• Writing Efficient Programs, by Jon Louis Bentley, Prentice Hall

• FORTRAN Optimization, by Michael Metcalf, Academic Press 1982

• Optimizing FORTRAN Programs, by C. F. Schofield Ellis Horwood Ltd., 1989

• A Guidebook to Fortran on Supercomputers, John Levesque, Joel Williamson,
Academic Press, 1989

• High Performance Computing, Kevin Dowd, O’Reilly & Associates, 1993

 132 Fortran Programmer’s Guide

9

 133

Parallelization 10

This chapter presents an overview of multiprocessor parallelization and
describes the capabilities of Sun’s Fortran compilers. Implementation
differences between f77 and f90 are noted.

Note – Parallelization features are only available on SPARC platforms running
Solaris 2.x, and require a Sun WorkShop license.

Introduction
Parallelizing (or multithreading) an application recasts the compiled program to
run on a multiprocessor system. Parallelization enables single tasks, such as a
DO loop, to run over multiple processors with a potentially significant
execution speedup.

Before an application program can be run efficiently on a multiprocessor
system like the SPARCstation 10 or SPARCcenter 2000, it needs to be
multithreaded. That is, tasks that can be performed in parallel need to be
identified and reprogrammed to distribute their computations.

Multithreading an application can be done manually by making appropriate
calls to the libthread primitives. However, a significant amount of analysis
and reprogramming may be required. (See the Solaris Multithreaded
Programming Guide for more information.)

 134 Fortran Programmer’s Guide

10

Sun compilers can automatically generate multithreaded object code that to
run on multiprocessor systems. The Fortran compilers focus on DO loops as the
primary language element supporting parallelism. Parallelization distributes
the computational work of a loop over several processors without requiring
modifications to the Fortran source program.

Choice of which loops to parallelize and how they should be distributed can be
left entirely up to the compiler (-autopar), determined explicitly by the
programmer with source code directives (-explicitpar), or done in
combination (-parallel) .

Note – Programs that do their own (explicit) thread management should not be
compiled with any of the compiler’s parallelization options. Explicit
multithreading (calls to libthread primitives) cannot be combined with
routines compiled with these parallelization options.

Not all loops in a program can be profitably parallelized. Loops containing
only a small amount of computational work (compared to the overhead spent
starting and synchronizing parallel tasks) may actually run slower when
parallelized. Also, some loops cannot be safely parallelized at all; they would
compute different results when run in parallel due to dependencies between
statements or iterations.

Sun compilers can detect loops that may be safely and profitably parallelized
automatically. However, in most cases, the analysis is necessarily conservative,
due to the concern for possible hidden side effects. (A display of which loops
were and were not parallelized can be produced by the
-loopinfo option.) By inserting source code directives before loops, you can
explicitly influence the analysis, controlling how a specific loop is (or is not) to
be parallelized. However, it then becomes your responsibility to ensure that
such explicit parallelization of a loop does not lead to incorrect results.

Speedups—What to Expect

If you parallelize a program so that it runs over four processors, can you
expect it to take (roughly) one fourth the time than it did with a single
processor (a fourfold speedup)?

Parallelization 135

10

Probably not. It can be shown (by Amdahl’s law) that the overall speedup of a
program is strictly limited by the fraction of the execution time spent in code
running in parallel. This is true no matter how many processors are applied. In fact,
if c is the percentage of the execution time run in parallel, the theoretical
speedup limit is 100/(100–c); therefore, if only 60% of a program runs in
parallel, the maximum increase in speed is 2.5, independent of the number of
processors. And with just four processors, the theoretical speedup for this
program (assuming maximum efficiency) would be just 1.8 and not 4. With
overhead, the actual speedup would be less.

As with any optimization, choice of loops is critical. Parallelizing loops that
participate only minimally in the total program execution time has only
minimal effect. To be effective, the loops that consume the major part of the run
time must be parallelized. The first step, therefore, is to determine which loops
are significant and to start from there.

Problem size also plays an important role in determining the fraction of the
program running in parallel and consequently the speedup. Increasing the
problem size increases the amount of work done in loops. A triply nested loop
could see a cubic increase in work. If the outer loop in the nest is parallelized,
a small increase in problem size could contribute to a significant performance
improvement (compared to the unparallelized performance).

Steps to Parallelizing a Program

Here is a very general outline of the steps to parallelize an application:

1. Optimize. Use the appropriate set of compiler options to get the best serial
performance on a single processor.

2. Profile. Using typical test data, determine the performance profile of the
program. Identify the most significant loops.

3. Benchmark. Determine that the serial test results are accurate. Use these
results and the performance profile as the benchmark.

4. Parallelize. Use a combination of options and directives to compile and build
a parallelized executable.

5. Verify. Run the parallelized program on a single processor and check results
to find instabilities and programming errors that might have crept in.

6. Test. Make various runs on several processors to check results.

 136 Fortran Programmer’s Guide

10

7. Benchmark. Make performance measurements with various numbers of
processors on a dedicated system. Measure performance changes with
changes in problem size (scalability).

8. Repeat steps 4 to 7. Make improvements to parallelization scheme based on
performance.

Data Dependency Issues

Not all loops are parallelizable. Running a loop in parallel over a number of
processors may result in iterations out of order. Or, the multiple processors
executing the loop in parallel may interfere with each other. These situations
arise whenever there are data dependencies in the loop.

Recurrence

Variables that are set in one iteration of a loop and used in a subsequent
iteration introduce cross-iteration dependencies, or recurrences. Recurrence in a
loop requires that the iterations to be executed in the proper order. For
example:

requires the value computed for A(I) in the previous iteration to be used (as
A(I-1)) in the current iteration. To produce results running each iteration in
parallel that are the same as with single processor, iteration I must complete
before iteration I+1 can execute.

 DO I=2,N
 A(I) = A(I-1)*B(I)+C(I)
 END DO

Parallelization 137

10

Reduction

Reduction operations reduce the elements of an array into a single value. For
example, summing the elements of an array into a single variable involves
updating that variable in each iteration:

If each processor running this loop in parallel takes some subset of the
iterations, the processors will interfere with each other, overwriting the value
in SUM. For this to work, each processor must execute the summation one at a
time, although the order is not significant.

Certain common reduction operations are recognized and handled as special
cases by the compiler.

Indirect Addressing

Loop dependencies can result from stores into arrays that are indexed in the
loop by subscripts whose values are not known. For example, indirect
addressing could be order dependent if there are repeated values in the index
array:

In the preceding, repeated values in ID cause elements in A to be overwritten.
In the serial case, the last store is the final value. In the parallel case, the order
is not determined. The values of A(L) that are used, old or updated, are order
dependent.

Data Dependent Loops

It may be possible to rewrite a loop to eliminate data dependencies, making it
parallelizable. However, extensive restructuring may be required.

 DO K = 1,N
 SUM = SUM + A(I)*B(I)
 END DO

 DO L = 1,NW
 A(ID(L)) = A(L) + B(L)
 END DO

 138 Fortran Programmer’s Guide

10

Some general rules are:

• A loop is data independent only if all iterations write to distinct memory
locations.

• Iterations may read from the same locations as long as no one iteration
writes to them.

These are general conditions for parallelization. The compilers’ automatic
parallelization analysis considers additional criteria when deciding whether to
parallelize a loop. However, the you can use directives to explicitly force loops
to be parallelized, even loops that contain inhibitors and produce incorrect
results.

Parallel Options and Directives Summary

The tables that follow list the f77 4.2 and f90 1.2 compilation options and
directives related to parallelization.

Table 10-1 Parallelization Options for f77

f77 Options Syntax

 Automatic (only) -autopar

 Automatic and Reduction -autopar -reduction

 Explicit (only) -explicitpar

 Automatic and Explicit -parallel

 Automatic and Reduction and Explicit -parallel -reduction

 Show which loops are parallelized -loopinfo

 Show warnings with explicit -vpara

 Allocate local variables on stack -stackvar

 Use Sun-style MP directives -mp=sun

 Use Cray-style MP directives -mp=cray

Parallelization 139

10

The following tables list f77 and f90 parallel directives.

Notes on Compiler Options
• -reduction requires -autopar .
• -autopar includes -depend and loop structure optimization.
• -parallel is equivalent to -autopar -explicitpar .
• -noautopar, -noexplicitpar, -noreduction are the negations.
• Parallelization options can be in any order, but they must be all lowercase.
• Reduction operations are not analyzed for explicitly parallelized loops.
• Use of any of the parallelization options requires a WorkShop license.

Table 10-2 Parallelization Options for f90

f90 Options Syntax

Explicit (only) -explicitpar

Automatic and Explicit -parallel

Automatic and Reduction and Explicit -parallel -reduction

Allocate local variables on stack -stackvar

Table 10-3 Parallel Directives for f77

 f77 Parallel Directives Purpose

 C$PAR DOALL optional qualifiers Parallelize next loop, if possible

 C$PAR DOSERIAL Inhibit parallelization of next loop

 C$PAR DOSERIAL* Inhibit parallelization of loop nest

Table 10-4 Parallel Directives for f90

 f90 Parallel Directives Purpose

 !MIC$ DOALL optional qualifiers Parallelize next loop, if possible

 140 Fortran Programmer’s Guide

10

Specifying the Number of Processors

The environment variable PARALLEL controls the maximum number of
processors available to the program:

enables, for example, the execution of a program using at most four threads. If
the target machine has four processors available, the threads will map to
independent processors. If there are fewer than four processors available, some
threads may run on the same processor as others, possibly degrading
performance.

The Solaris command psrinfo (1M) displays a list of the processors available
on a system:

Stacks, Stack Sizes, and Parallelization

The executing program maintains a main memory stack for the parent program
and distinct stacks for each thread. Stacks are temporary memory address
spaces used to hold arguments and AUTOMATIC variables over subprogram
invocations.

The default size of the main stack is about 8 megabytes. The Fortran compilers
normally allocate local variables and arrays as STATIC (not on the stack).
However, the -stackvar option forces allocation of all local variables and
arrays on the stack (as if they were AUTOMATIC variables). Use of -stackvar
is recommended with parallelization because it improves the optimizer’s
ability to parallelize CALLs in loops. -stackvar is required with explicitly
parallelized loops containing subprogram calls. (See discussion of
-stackvar in the Fortran User’s Guide.)

demo% setenv PARALLEL 4

demo% psrinfo
0 on-line since 03/18/96 15:51:03
1 on-line since 03/18/96 15:51:03
2 on-line since 03/18/96 15:51:03
3 on-line since 03/18/96 15:51:03

Parallelization 141

10

The limit command displays the current main stack size as well as setting it:

Each thread of a multithreaded program has its own thread stack. This stack
mimics the main program stack but is unique to the thread. The thread’s
PRIVATE arrays and variables (local to the thread) are allocated on the thread
stack. The default size is 256 kilobytes. The size is set with the STACKSIZE
environment variable:

Setting the thread stack size to a value larger than the default may be necessary
for most parallelized Fortran codes. However, it may not be possible to know
just how large to set it, except by trial and error, especially if private/local
arrays are involved. If the stack size is too small for a thread to run, the
program will abort with a segmentation fault.

demo% limit
cputime unlimited
filesize unlimited
datasize 2097148 kbytes
stacksize 8192 kbytes <- current main stack size
coredumpsize 0 kbytes
descriptors 64
memorysize unlimited
demo% limit stacksize 65536 <- set main stack to 64Mb

demo% setenv STACKSIZE 8192 <- Set thread stack size to 8 Mb

 142 Fortran Programmer’s Guide

10

Automatic Parallelization
With the f77 option -autopar and the f90 option -parallel , the compilers
automatically find those DO loops that can be parallelized effectively. These
loops are then transformed to distribute their iterations evenly over the
available processors. The compiler generates the threads calls needed in the
compiled code to make this happen.

Loop Parallelization

The compiler’s dependency analysis transforms a DO loop into a parallelizable
task. The compiler may restructure the loop to split out unparallelizable
sections that will run serially. It then distributes the work evenly over the
available processors. Each processor executes a different chunk of iterations.

Example: With four CPUs and a parallelized loop with 1000 iterations:

Only loops that do not depend on the order in which the computations are
performed can be successfully parallelized. The compiler’s dependency
analysis rejects loops with inherent data dependencies. If it cannot fully
determine the data flow in a loop, the compiler acts conservatively and does
not parallelize. Also, it may choose not to parallelize a loop if it determines the
performance gain does not justify the overhead.

Note that the compiler always chooses to parallelize loops using a chunk
distribution—simply dividing the work in the loop into equal blocks of
iterations. Other distribution schemes may be specified using explicit
parallelization directives described later in this chapter.

Definitions: Array, Scalar, and Pure Scalar

A few definitions, from the point of view of automatic parallelization, are
needed:

An array is a variable that is declared with at least one dimension.

Processor 1 executing iterations 1 through 250
Processor 2 executing iterations 251 through 500
Processor 3 executing iterations 501 through 750
Processor 4 executing iterations 751 through 1000

Parallelization 143

10

A scalar is a variable that is not an array.

A pure scalar is a scalar variable that is not aliased—not referenced in an
EQUIVALENCE or POINTER statement.

Examples: Array/scalar—both m and a are array variables; s is pure scalar:

The variables u, x , z , and px are scalar variables, but not pure scalars.

Automatic Parallelization Criteria

DO loops that have no cross-iteration data dependencies are automatically
parallelized by -autopar (f77) or -parallel (f90). The general criteria for
automatic parallelization are:

• DO loops are parallelized, but not DO WHILE.

• The values of array variables for each iteration of the loop must not depend
on the values of array variables for any other iteration of the loop.

• Calculations within the loop must not conditionally change any pure scalar
variable that is referenced after the loop terminates.

• Calculations within the loop must not change a scalar variable across
iterations. This is called a loop-carried dependency.

Apparent Dependencies (f77 only)

The compiler may automatically eliminate a reference that appears to create a
dependency transforming the compiled code. One of the many such
transformations makes use of private versions of some of the arrays. Typically,
the compiler does this if it can determine that such arrays are used in the
original loops only as temporary storage.

dimension a(10)
real m(100,10), s, u, x, z
equivalence (u, z)
pointer (px, x)
s = 0.0
...

 144 Fortran Programmer’s Guide

10

Example: Using -autopar , with dependencies eliminated by private arrays:

In the preceding example, the outer loop is parallelized and run on
independent processors. Although the inner loop references to array a(*)
appear to result in a data dependency, the compiler generates temporary
private copies of the array to make the outer loop iterations independent.

Inhibitors to Automatic Parallelization

Under automatic parallelization, the compilers do not parallelize a loop if:

• The DO loop is nested inside another DO loop that is parallelized.
• Flow control allows jumping out of the DO loop.
• A user-level subprogram is invoked inside the loop.
• An I/O statement is in the loop.
• Calculations within the loop change an aliased scalar variable.

The following additional inhibitors exist for the f90 1.2 compiler:

• The step size of the DO loop is a variable.
• The DO loop is the innermost in a nest or is a singly-nested loop.

Nested Loops

On multiprocessor systems, it is most effective to parallelize the outermost
loop in a loop nest, rather than the innermost. Because parallel processing
typically involves relatively large loop overhead, parallelizing the outermost
loop minimizes the overhead and maximizes the work done for each processor.
Under automatic parallelization, the compilers start their loop analysis from

parameter (n=1000)
real a(n), b(n), c(n,n)
do i = 1, 1000 <--Parallelized
 do k = 1, n

a(k) = b(k) + 2.0
 end do
 do j = 1, n

c(i,j) = a(j) + 2.3
 end do
end do
end

Parallelization 145

10

the outermost loop in a nest and work inward until a parallelizable loop is
found. Once a loop within the nest is parallelized, loops contained within the
parallel loop are passed over.

Note – f90 1.2: Innermost or singly-nested loops are not automatically
parallelized.

Automatic Parallelization With Reduction Operations

A computation that transforms an array into a scalar is called a reduction
operation. Typical reduction operations are the sum or product of the elements
of a vector. Reduction operations violate the criterion that calculations within a
loop not change a scalar variable in a cumulative way across iterations.

Example: Reduction summation of the elements of a vector:

However, for some operations, if the reduction is the only factor that prevents
parallelization, it is still possible to parallelize the loop. Common reduction
operations occur so frequently that the compilers are capable of recognizing
and parallelizing them as special cases.

Recognition of reduction operations is not included in the automatic
parallelization analysis unless the -reduction compiler option is specified
along with -autopar or -parallel .

If a parallelizable loop contains one of the reduction operations listed in
Table 10-5, the compiler will parallelize it if -reduction is specified.

s = 0.0
do i = 1, 1000

s = s + v(i)
end do
t(k) = s

 146 Fortran Programmer’s Guide

10

Recognized Reduction Operations

The following table lists the reduction operations that are recognized by f77 .

Note – All forms of the MIN and MAX functions are recognized.

Table 10-5 Recognized Reduction Operations (f77)

Mathematical Operations Fortran Statement Templates

Sum of the elements s = s + v(i)

Product of the elements s = s * v(i)

Dot product of two vectors s = s + v(i) * u(i)

Minimum of the elements s = amin(s, v(i)) (See Note below)

Maximum of the elements s = amax(s, v(i)) (See Note below)

OR of the elements do i = 1, n
b = b .or. v(i)

end do

AND of nonpositive elements b = .true.
do i = 1, n

if (v(i) .le. 0) b=b .and. v(i)
end do

Count nonzero elements k = 0
do i = 1, n

if (v(i) .ne. 0) k = k + 1
end do

Parallelization 147

10

Numerical Accuracy and Reduction Operations

Floating-point sum or product reduction operations may be inaccurate due to
the following conditions:

• The order in which the calculations were performed in parallel was not the
same as when performed serially on a single processor.

• The order of calculation affected the sum or product of floating-point
numbers. Hardware floating-point addition and multiplication are not
associative. Roundoff, overflow, or underflow errors may result depending
on how the operands associate. For example, (X*Y)*Z and X*(Y*Z) may
not have the same numerical significance.

In some situations, the error may not be acceptable.

Example: Overflow and underflow, with and without reduction:

demo% cat t3.f
real A(10002), result, MAXFLOAT
MAXFLOAT = r_max_normal()
do 10 i = 1 , 10000, 2

A(i) = MAXFLOAT
A(i+1) = -MAXFLOAT

10 continue

A(5001)=-MAXFLOAT
A(5002)=MAXFLOAT

do 20 i = 1 ,10002 !Add up the array
RESULT = RESULT + A(i)

20 continue
write(6,*) RESULT
end

demo% setenv PARALLEL 2 {Number of processors is 2}
demo% f77 -silent -autopar t3.f
demo% a.out
 0. {Without reduction, 0. is correct}
demo% f77 -silent -autopar -reduction t3.f
demo% a.out
 Inf {With reduction, Inf. is not correct}
demo%

 148 Fortran Programmer’s Guide

10

Example: Roundoff: get the sum of 100,000 random numbers between –1 and +1:

Results vary with the number of processors. The following table shows the
sum of 100,000 random numbers between –1 and +1.

In this situation, roundoff error on the order of 10-14 is acceptable for data that
is random to begin with. For more information, see the Sun Numerical
Computation Guide.

demo% cat t4.f
parameter (n = 100000)
double precision d_lcrans, lb / -1.0 /, s, ub / +1.0 /, v(n)
s = d_lcrans (v, n, lb, ub) ! Get n random nos. between -1 and +1
s = 0.0
do i = 1, n

s = s + v(i)
end do
write(*, '(" s = ", e21.15)') s
end

demo% f77 -autopar -reduction t4.f

Number of Processors Output

1 s = 0.568582080884714E+02

2 s = 0.568582080884722E+02

3 s = 0.568582080884721E+02

4 s = 0.568582080884724E+02

Parallelization 149

10

Explicit Parallelization
This section describes the source code directives recognized by f77 4.2 and
f90 1.2 to explicitly indicate which loops to parallelize and what strategy to
use.

Explicit parallelization of a program requires prior analysis and deep
understanding of the application code as well as the concepts of shared-
memory parallelization.

Note – Be aware that there are differences in directive syntax and features
between the f77 and f90 implementations. f77 accepts either Sun or Cray
style directives, while f90 accepts only Cray style directives.

DO loops are marked for parallelization by directives placed immediately
before them. The compiler options -parallel and -explicitpar must be
used for DO loops to be recognized and parallel code generated. Take care
when choosing which loops to mark for parallelization. The compiler generates
threaded, parallel code for all loops marked with DOALL directives, even if
there are data dependencies that will cause the loop to compute incorrect
results when run in parallel.

If you do your own multithreaded coding using the libthread primitives, do
not use any of the compilers’ parallelization options—the compilers cannot
parallelize code that has already been parallelized with user calls to the threads
library.

Parallelizable Loops

A loop is appropriate for explicit parallelization if:

• It is a DO loop, but not DO WHILE.
• The values of array variables for each iteration of the loop do not depend on

the values of array variables for any other iteration of the loop.
• If the loop changes a scalar, that scalar is not referenced after the loop

terminates. Such scalar variables are not guaranteed to have a defined value
after the loop terminates, since the compiler does not automatically ensure a
proper storeback for them.

• For each iteration, any subprogram that is invoked inside the loop does not
reference or change values of array variables for any other iteration.

• The DO loop index must be an integer.

 150 Fortran Programmer’s Guide

10

Scoping Rules: Private and Shared

A private variable or array is private to a single iteration of a loop. The value
assigned to a private variable or array in one iteration is not propagated to any
other iteration of the loop.

A shared variable or array is shared with all other iterations. The value assigned
to a shared variable or array in an iteration is seen by other iterations of the
loop.

If an explicitly parallelized loop contains shared references, then you must
ensure that sharing does not cause correctness problems. The compiler does no
synchronization on updates or accesses to shared variables.

If you specify a variable as private in one loop, and its only initialization is
within some other loop, the value of that variable may be left undefined in the
loop.

Default Scoping Rules for Sun-Style Directives

For Sun-style (C$PAR) explicit directives, the compiler uses default rules to
determine whether a scalar or array is shared or private. You can override the
default rules to specify the attributes of scalars or arrays referenced inside a
loop. (With Cray-style !MIC$ directives, all variables that appear in the loop
must be explicitly declared either shared or private on the DOALL directive.)

The compiler applies these default rules:

• All scalars are treated as private. A processor local copy of the scalar is made
in each processor, and that local copy is used within that process.

• All array references are treated as shared references. Any write of an array
element by one processor is visible to all processors. No synchronization is
performed on accesses to shared variables.

If inter-iteration dependencies exist in a loop, then the execution may result in
erroneous results. You must ensure that these cases do not arise. The compiler
may sometimes be able to detect such a situation at compile time and issue a
warning, but it does not disable parallelization of such loops.

Parallelization 151

10

Example: Potential problem through equivalence:

In the preceeding example, since the scalar variable y has been equivalenced to
a(1) , it is no longer a private variable, even though the compiler treats it as
such by the default scoping rule. Thus, the presence of the DOALL directive
may lead to erroneous results when the parallelized i loop is executed.

You can fix the example by using C$PAR DOALL PRIVATE(y) .

Sun-Style Parallelization Directives (f77 only)

Parallelization directives are comment lines that tell the compiler to parallelize
(or not to parallelize) the DO loop that follows the directive. Directives are also
called pragmas.

A parallelization directive consists of one or more directive lines.

Sun-style directives are recognized by f77 by default (or with the -mp=sun
option). Cray-style or f90 directives are discussed on page 167. A Sun-style
directive line is defined as follows:

• The letters of a directive line case-insensitive.
• The first five characters are C$PAR, *$PAR, or !$PAR .
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.
• Directives are listed in columns 7 and beyond.
• Qualifiers, if any, follow directives—on the same line or continuation lines.
• Multiple qualifiers on one line are separated by commas.
• Spaces before, after, or within a directive or qualifier are ignored.
• Columns beyond 72 are ignored unless the -e option is specified.

equivalence (a(1),y)
C$PAR DOALL

do i = 1,n
y = i
a(i) = y

end do

C$PAR Directive [Qualifiers] <- Initial directive line
C$PAR& [More_Qualifiers] <- Optional continuation lines

 152 Fortran Programmer’s Guide

10

The parallel directives and their actions are as follows:

Examples: f77 parallel directives:

DOALL Directive

The compilers will parallelize the DO loop following a DOALL directive (if
compiled with the -parallel or -explicitpar options).

Note – Analysis and transformation of reduction operations within loops is not
done if they are explicitly parallelized.

Directive Action

DOALL Parallelize the next loop.

DOSERIAL Do not parallelize the next loop.

DOSERIAL* Do not parallelize the next nest of loops.

C$PAR DOALL

C$PAR DOSERIAL

C$PAR DOALL SHARED(I,K,X,V), PRIVATE(A)

C$PAR DOALL
C$PAR& SHARED(I,K,X,V)
C$PAR& PRIVATE(A)

No qualifiers

This one-line directive is equivalent to
the three-line directive that follows.

Parallelization 153

10

Example: Explicit parallelization of a loop:

CALL in a Loop

A subprogram call in a loop (or in any subprograms called from within the
called routine) may introduce data dependencies that could go unnoticed
without a deep analysis of the data and control flow through the chain of calls.
While it is best to parallelize outermost loops that do a significant amount of
the work, these tend to be the very loops that involve subprogram calls.

Because such an interprocedural analysis is difficult and could greatly increase
compilation time, automatic parallelization modes do not attempt it. With
explicit parallelization, the compiler generates parallelized code for a loop
marked with a DOALL directive that contains calls to subprograms. It is still the
programmer’s responsibility to insure that no data dependencies exist within
the loop and all that the loop encloses, including called subprograms.

Multiple invocations of a routine from different processors may cause
problems resulting from references to local static variables that interfere with
each other. Making all the local variables in a routine automatic rather than
static will prevent this problem. Each invocation of a subprogram will then
have its own unique store of local variables maintained on the stack, and no
two invocations will interfere with each other.

Local subprogram variables can be made automatic variables that reside on the
stack either by listing them on an AUTOMATIC statement or by compiling the
subprogram with the -stackvar option. However, local variables initialized
in DATA statements must be rewritten to be initialized in actual assignments.

demo% cat t4.f
...

C$PAR DOALL
do i = 1, n

a(i) = b(i) * c(i)
end do
do k = 1, m

x(k) = x(k) * z(k,k)
end do
...

demo% f77 -explicitpar t4.f

 154 Fortran Programmer’s Guide

10

Note – Allocating local variables to the stack may cause stack overflow. See
page 140 about increasing the size of the stack.

Data dependencies can still be introduced through the data passed down the
call tree as arguments or through COMMON blocks. This data flow should be
analyzed carefully before parallelizing a loop with subprogram calls.

DOALL Qualifiers

All qualifiers on the DOALL directive are optional. Table 10-6 summarizes them.

PRIVATE(varlist)
The PRIVATE(varlist) qualifier specifies that all scalars and arrays in the list
varlist are private for the DOALL loop. Both arrays and scalars can be specified
as private. In the case of an array, each thread of the DOALL loop gets a copy of
the entire array. All other scalars and arrays referenced in the DOALL loop, but
not contained in the private list, conform to their appropriate default scoping
rules.

Table 10-6 DOALL Qualifiers

Qualifiers Action Syntax

PRIVATE Do not share variables u1, …
between iterations.

DOALL PRIVATE(u1, u2,…)

SHARED Share variables v1, v2, …
between iterations.

DOALL SHARED(v1, v2,…)

MAXCPUS Use no more than n CPUs. DOALL MAXCPUS(n)

READONLY The listed variables are not
modified in the DOALL loop.

DOALL READONLY(v1, v2,…)

SAVELAST Save the last DO iteration values
of all private variables.

DOALL SAVELAST

STOREBACK Save the last DO iteration values
of variables v1, …

DOALL STOREBACK(v1, v2,…)

REDUCTION Treat the variables v1, v2, … as
reduction variables.

DOALL REDUCTION(v1, v2,…)

SCHEDTYPE Set the scheduling type to t. DOALL SCHEDTYPE(t)

Parallelization 155

10

Example: Specify a private array:

In the preceding example, the array a is specified as private to the i loop.

SHARED(varlist)
The SHARED(varlist) qualifier specifies that all scalars and arrays in the list
varlist are shared for the DOALL loop. Both arrays and scalars can be specified
as shared. Shared scalars and arrays are common to all the iterations of a
DOALL loop. All other scalars and arrays referenced in the DOALL loop, but not
contained in the shared list, conform to their appropriate default scoping rules.

Example: Specify a shared variable:

In the preceding example, the variable y has been specified as a variable whose
value should be shared among the iterations of the i loop.

READONLY(varlist)
The READONLY(varlist) qualifier specifies that all scalars and arrays in the list
varlist are read-only for the DOALL loop. Read-only scalars and arrays are a
special class of shared scalars and arrays that are not modified in any iteration
of the DOALL loop. Specifying scalars and arrays as READONLY indicates to the
compiler that it does not need use a separate copy of that variable or array for
each thread of the DOALL loop.

C$PAR DOALL PRIVATE(a)
do i = 1, n

a(1) = b(i)
do j = 2, n

a(j) = a(j-1) + b(j) * c(j)
end do
x(i) = f(a)

end do

equivalence (a(1),y)
C$PAR DOALL SHARED(y)

do i = 1,n
a(i) = y

end do

 156 Fortran Programmer’s Guide

10

Example: Specify a read-only variable:

In the preceding example, x is a shared variable but the compiler can rely on
the fact that it will not change over each iteration of the i loop because of its
READONLY specification.

STOREBACK(varlist)
A STOREBACK variable or array is one whose value is computed in a DOALL
loop. The computed value can be used after the termination of the loop. In
other words, the last loop iteration values of storeback scalars and arrays may
be visible outside of the DOALL loop.

Example: Specify the loop index variable as storeback:

In the preceding example, both the variables x and i are STOREBACK variables,
even though both variables are private to the i loop.

There are some potential problems for STOREBACK, however.

The STOREBACK operation occurs at the last iteration of the explicitly
parallelized loop, even if this last iteration is the same iteration that last
updates the value of the STOREBACK variable or array.

x = 3
C$PAR DOALL SHARED(x),READONLY(x)

do i = 1, n
b(i) = x + 1

end do

C$PAR DOALL PRIVATE(x), STOREBACK(x,i)
do i = 1, n

x = ...
end do
... = i
... = x

Parallelization 157

10

Example: STOREBACK variable potentially different from the serial version:

In the preceding example, the value of the STOREBACK variable x that is
printed out may not be the same as that printed out by a serial version of the i
loop. In the explicitly parallelized case, the processor that processes the last
iteration of the i loop (when i = n) and performs the STOREBACK operation for
x , may not be the same processor that currently contains the last updated value
of x . The compiler issues a warning message about these potential problems.

In an explicitly parallelized loop, arrays are not treated by default as
STOREBACK, so include them in the list varlist if such a storeback operation is
desired— for example, if the arrays have been declared as private.

SAVELAST

The SAVELAST qualifier specifies that all private scalars and arrays are
STOREBACK for the DOALL loop. A STOREBACK variable or array is one whose
value is computed in a DOALL loop; this computed value can be used after the
termination of the loop. In other words, the last loop iteration values of
STOREBACK scalars and arrays may be visible outside of the DOALL loop.

Example: Specify SAVELAST:

In the preceding example, variables x , y, and i are STOREBACK variables.

C$PAR DOALL PRIVATE(x), STOREBACK(x)
do i = 1, n

if (...) then
x = ...

end if
end do
print *,x

C$PAR DOALL PRIVATE(x,y), SAVELAST
do i = 1, n

x = ...
y = ...

end do
... = i
... = x
... = y

 158 Fortran Programmer’s Guide

10

REDUCTION(varlist)
The REDUCTION(varlist) qualifier specifies that all variables in the list varlist are
reduction variables for the DOALL loop. A reduction variable is one whose
partial values can be individually computed on various processors, and whose
final value can be computed from all its partial values.

The presence of a list of reduction variables can aid the compiler in identifying
if a DOALL loop is a reduction loop and in generating parallel reduction code
for it.

Example: Specify a reduction variable:

In the preceeding example, the variable x is a (sum) reduction variable; the i
loop is a (sum) reduction loop.

C$PAR DOALL REDUCTION(x)
do i = 1, n

x = x + a(i)
end do

Parallelization 159

10

SCHEDTYPE(t)
The SCHEDTYPE(t) qualifier specifies that the specific scheduling type t be
used to schedule the DOALL loop.

Scheduling Type Action

STATIC Use static scheduling for this DO loop.
Distribute all iterations uniformly to all available processors.

SELF[(chunksize)] Use self-scheduling for this DO loop.
Distribute chunksize iterations to each available processor:
• Repeat with the remaining iterations until all the iterations
have been processed.
• If chunksize is not provided, f77 selects a value.
Example: With 1000 iterations and chunksize of 4, distribute 4
iterations to each CPU.

FACTORING[(m)] Use factoring scheduling for this DO loop.
With n iterations initially and k CPUs, distribute n/(2k)
iterations uniformly to each processor until all iterations have
been processed.
• At least m iterations must be assigned to each processor.
• There can be one final smaller residual chunk.
• If m is not provided, f77 selects a value.
Example: With 1000 iterations and FACTORING(4), and 4
CPUs, distribute 125 iterations to each CPU, then 62
iterations, then 31 iterations, and so on.

GSS[(m)] Use guided self-scheduling for this DO loop.
With n iterations initially, and k CPUs, then:
• Assign n/k iterations to the first processor.
• Assign the remaining iterations divided by k to the second
processor, and so on until all iterations have been processed.
Note:
• At least m iterations must be assigned to each CPU.
• There can be one final smaller residual chunk.
• If m is not provided, f77 selects a value.
Example: With 1000 iterations and GSS(10), and 4 CPUs,
distribute 250 iterations to the first CPU, then 187 to the
second CPU, then 140 to the third CPU, and so on.

 160 Fortran Programmer’s Guide

10

Multiple Qualifiers

Qualifiers can appear multiple times with cumulative effect. In the case of
conflicting qualifiers, the compiler issues a warning message, and the qualifier
appearing last prevails.

Example: A three-line Sun-style directive:

Example: A one-line equivalent of the preceding three lines:

DOSERIAL Directive

The DOSERIAL directive tells f77 not to parallelize the specified loop. This
directive applies to the one loop immediately following it (if you compile it
with -explicitpar or -parallel).

Example: Exclude one loop from parallelization:

In the preceding example, the j loop is not parallelized, but the i or k loop can
be.

C$PAR DOALL MAXCPUS(4) READONLY(S) PRIVATE(A,B,X) MAXCPUS(2)
C$PAR DOALL SHARED(B,X,Y) PRIVATE(Y,Z)
C$PAR DOALL READONLY(T)

C$PAR DOALL MAXCPUS(2), PRIVATE(A,Y,Z), SHARED(B,X), READONLY(S,T)

do i = 1, n
C$PAR DOSERIAL

do j = 1, n
do k = 1, n

...
end do

end do
end do

Parallelization 161

10

DOSERIAL* Directive

The DOSERIAL* directive tells f77 not to parallelize the specified nest of
loops. This directive applies to the whole nest of loops immediately following
it (if you compile with -explicitpar or -parallel).

Example: Exclude a whole nest of loops from parallelization:

In the preceeding loops, the j and k loops are not parallelized; the i loop may
be.

Interaction Between DOSERIAL* and DOALL

If both DOSERIAL and DOALL are specified, the last one prevails.

Example: Specifying both DOSERIAL and DOALL:

In the preceeding example, the i loop is not parallelized, but the j loop is.

Also, the scope of the DOSERIAL* directive does not extend beyond the textual
loop nest immediately following it. The directive is limited to the same
function or subroutine that it is in.

do i = 1, n
C$PAR DOSERIAL*

do j = 1, n
do k = 1, n

...
end do

end do
end do

C$PAR DOSERIAL*
do i = 1, 1000

C$PAR DOALL
do j = 1, 1000

...
end do

end do

 162 Fortran Programmer’s Guide

10

Example: DOSERIAL* does not extend to a loop of a called subroutine:

In the preceeding example, DOSERIAL* applies only to the i loop and not to
the j loop, regardless of whether the call to the subroutine callee is inlined.

Inhibitors to Explicit Parallelization

In general, the compiler parallelizes a loop if you explicitly direct it to. There
are exceptions—some loops the compiler just cannot parallelize.

The following are the primary detectable inhibitors that may prevent explicitly
parallelizing a DO loop.

• The DO loop is nested inside another DO loop that is parallelized.

This exception holds for indirect nesting, too. If you explicitly parallelize a
loop that includes a call to a subroutine, then even if you parallelize loops in
that subroutine, those loops are not run in parallel at runtime.

• A flow control statement allows jumping out of the DO loop.

• The index variable of the loop is subject to side effects, such as being
equivalenced.

program caller
common /block/ a(10,10)

C$PAR DOSERIAL*
do i = 1, 10

call callee(i)
end do
end

subroutine callee(k)
common /block/a(10,10)
do j = 1, 10

a(j,k) = j + k
end do
return
end

Parallelization 163

10

If you compile with -vpara , you may get a warning message if f77 detects a
problem with explicitly parallelizing a loop. f77 may still parallelize the loop.
The following list of typical parallelization problems shows those that are
ignored by the compiler and those that generate messages with -vpara .

Example: Nested loops:

Table 10-7 Explicit Parallelization Problems

Problem Parallelized Message

Loop is nested inside another loop that is
parallelized.

No No

Loop is in a subroutine, and a call to the subroutine
is in a parallelized loop.

No No

Jumping out of loop is allowed by a flow control
statement.

No Yes

Index variable of loop is subject to side effects. Yes No

Some variable in the loop keeps a loop-carried
dependency.

Yes Yes

I/O statement in the loop—usually unwise, because the
order of the output is not predictable.

Yes No

...
C$PAR DOALL

do 900 i = 1, 1000 ! ← Parallelized (outer loop)
do 200 j = 1, 1000 ! ← Not parallelized, no warning

...
200 continue
900 continue

...
demo% f77 -explicitpar -vpara t6.f

 164 Fortran Programmer’s Guide

10

Example: A parallelized loop in subroutine:

In the preceeding example, the loop within the subroutine is not parallelized
because the subroutine itself is run in parallel.

Example: Jumping out of loop:

Example: Index variable subject to side effects:

C$PAR DOALL
do 100 i = 1, 200

...
call calc (a, x)
...

100 continue
...

demo% f77 -explicitpar -vpara t.f

subroutine calc (b, y)
...

C$PAR DOALL
do 1 m = 1, 1000

...
1 continue

return
end

At runtime, the loop may run in parallel. At runtime, both loops do not run in parallel.

C$PAR DOALL
do i = 1, 1000 ! ← Not parallelized, with warning

...
if (a(i) .gt. min_threshold) go to 20
...

end do
20 continue

...
demo% f77 -explicitpar -vpara t9.f

equivalence (a(1), y) ! ← Source of possible side effects
...

C$PAR DOALL
do i = 1, 2000 ! ← Parallelized: no warning, but not safe

y = i
a(i) = y

end do
...

demo% f77 -explicitpar -vpara t11.f

Parallelization 165

10

Example: Variable in loop has loop-carried dependency:

I/O With Explicit Parallelization

You can do I/O in a loop that executes in parallel, provided that:

• It does not matter that the output from different threads is
interleaved, so program output is nondeterministic.

• You ensure the safety of executing the loop in parallel, because you must
use an explicit directive and the -explicitpar or -parallel option.

Example: I/O statement in loop

C$PAR DOALL
do 100 i = 1, 200 ! ← Parallelized, with warning

y = y * i ! ← y has a loop-carried dependency
a(i) = y

100 continue
...

demo% f77 -explicitpar -vpara t12.f

C$PAR DOALL
do i = 1, 10 ! ← Parallelized with no warning (not advisable)

k = i
call show (k)

end do
subroutine show(j)
write(6,1) j

1 format('Line number ', i3, '.')
end

demo% f77 -silent -explicitpar -vpara t13.f
demo% setenv PARALLEL 2
demo% a.out
(The output displays the numbers 1 through 10, but in a different order each time.)

 166 Fortran Programmer’s Guide

10

Example: Recursive I/O:

In the preceeding example, the program may deadlock in libF77_mt and
hang. Type Control-C to regain keyboard control.

There are situations where the programmer may not be aware that I/O could
take place within a parallelized loop. Consider a user-supplied exception
handler that prints output when it catches an arithmetic exception (like divide
by zero). If a parallelized loop provokes an exception, the implicit I/O from the
handler may cause I/O deadlocks and a system hang.

In general:

• The library libF77_mt is MT safe, but mostly not MT hot.
• You cannot do recursive (nested) I/O if you compile with -mt .

As an informal definition, an interface is MT safe if:

• It can be simultaneously invoked by more than one thread of control.

• The caller is not required to do any explicit synchronization before calling
the function.

• The interface is free of data races.

A data race occurs when the content of memory is being updated by more than
one thread, and that bit of memory is not protected by a lock. The value of that
bit of memory is nondeterministic—the two threads race to see who gets to
update the thread (but in this case, the one who gets there last, wins!).

do i = 1, 10 <-- Parallelized with no warning ---unsafe
k = i
print *, list(k) <-- list is a function that does I/O

end do
end
function list(j)
write(6,"(’Line number ’, i3, ’.’)") j
list = j
end

demo% f77 -silent -mt t14.f
demo% setenv PARALLEL 2
demo% a.out

Parallelization 167

10

An interface is colloquially called MT hot if the implementation has been tuned
for performance advantage, using the techniques of multithreading. For some
formal definitions of multithreading technology, read The Solaris Multithreaded
Programming Guide. See also the Threads page by searching for “threads” at:
http://www.sun.com/search/search.html

Cray-Style Parallelization Directives

Parallel directives have two forms: Sun style and Cray style. The f77 default is
Sun style (-mp=sun). To use Cray-style directives with f77 , you must compile
with -mp=cray . Only Cray-style directives are available with f90 .

Mixing program units compiled with both Sun and Cray directives can
produce different results.

A major difference between Sun and Cray directives is that Cray style requires
explicit scoping of every scalar and array in the loop as either SHARED or PRIVATE.

The following table shows Cray style directive syntax.

Cray Directive Syntax

A parallel directive consists of one or more directive lines. A directive line is
defined as follows:

• The directive line is case insensitive.
• The first five characters are CMIC$, *MIC$, or !MIC$.
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.
• Directives are listed in columns 7 and beyond.
• Qualifiers, if any, follow directives—on the same line or continuation lines.
• Multiple qualifiers on a line are separated by commas.
• All variables and arrays are in qualifiers SHARED or PRIVATE.
• Spaces before, after, or within a directive or qualifier are ignored.

Table 10-8 Overview of Alternate Directive Syntax

Parallel Directive Syntax (Cray Style)

!MIC$ DOALL
!MIC$& SHARED(v1, v2, …)
!MIC$& PRIVATE(u1, u2, …)
 ... optional qualifiers

 168 Fortran Programmer’s Guide

10

• Columns beyond 72 are ignored.

With f90 -free free-format, leading blanks may appear before !MIC$.

Qualifiers (Cray Style)

For Cray-style directives, the PRIVATE qualifier is required. Each variable
within the DO loop must be qualified as private or shared, and the DO loop
index must always be private. Table 10-9 summarizes available Cray-style
qualifiers.

Table 10-9 DOALL Qualifiers (Cray Style)

Qualifier Action

SHARED(v1, v2, …) Share the variables v1, v2, … between parallel processes. That is,
they are accessible to all the tasks.

PRIVATE(x1, x2, …) Do not share the variables x1, x2, … between parallel processes.
That is, each task has its own private copy of these variables.

SAVELAST Save the values of private variables from the last DO iteration.

MAXCPUS(n) Use no more than n CPUs.

Parallelization 169

10

For Cray-style directives, the DOALL directive allows a single scheduling
qualifier, for example, !MIC$& CHUNKSIZE(100) . Table 10-10 shows the Cray-
style DOALL directive scheduling qualifiers:

The f77 default scheduling type is the Sun-style STATIC. The f90 default is
GUIDED.

Inhibitors to f90 Explicit Parallelization

In addition to the explicit parallelization problems listed on page 162, the
parallelization inhibitors for f90 include:

• The DO increment parameter, if specified, is a variable.
• There is an I/O statement in the loop.
• Parallelized loops in subprograms called from parallelized loops are, in fact,

not run in parallel.

Debugging Parallelized Programs
Compiling with the -g option cancels any of the parallelization options
-autopar , -explicitpar , and -parallel , as well as -reduction and
-depend . Some alternative ways to debug parallelized code are suggested in
the following section.

Table 10-10 DOALL Cray Scheduling

Qualifier Action

GUIDED Distribute the iterations by use of guided self-scheduling.
This distribution minimizes synchronization overhead, with
acceptable dynamic load balancing.

SINGLE Distribute one iteration to each available processor.

CHUNKSIZE(n) Distribute n iterations to each available processor.
 n may be an expression. For best performance, n must be an
integer constant. Example: With 100 iterations and
CHUNKSIZE(4) , distribute 4 iterations to each CPU.

NUMCHUNKS(m) If there are n iterations, then distribute n/m iterations to each
available processor. There can be one smaller residual chunk.
m is an expression. For best performance, m must be an integer
constant. Example: With 100 iterations and NUMCHUNKS(4),
distribute 25 iterations to each CPU.

 170 Fortran Programmer’s Guide

10

Some Solutions Without dbx

Debugging parallelized programs requires some cleverness. The following
schemes suggest ways to approach the problem:

• Turn off parallelization.

You can do one of the following:
• Turn off the parallelization options—Verify that the program works

correctly by compiling with -O3 or -O4 , but without any parallelization.
• Set the CPUs to one—run the program with the environment variable,

PARALLEL=1.

If the problem disappears, then you know it is due to parallelization.

Check also for out of bounds array references by compiling with -C .

Problems using -autopar may indicate that the compiler is parallelizing
something it should not.

• Turn off -reduction .

If you are using the -reduction option, summation reduction may be
occurring and yielding slightly different answers. Try running without this
option.

• Reduce the number of compile options.

Compile with just -parallel -O3 and check the results.

• Use fsplit .

If you have a lot of subroutines in your program, use fsplit to break them
into separate files. Then compile some with and without -parallel , and
use ld to link the .o files. You need to use -parallel on the ld command.

Execute the binary and verify results.

Repeat this process until the problem is narrowed down to one subroutine.

You can proceed using a dummy subroutine or explicit parallelization to
track down the loop that causes the problem.

• Use -loopinfo .

Check which loops are being parallelized and which loops are not.

Parallelization 171

10

• Use a dummy subroutine.

Create a dummy subroutine or function which does nothing. Put calls to this
subroutine in a few of the loops that are being parallelized. Recompile and
execute. Use -loopinfo to see which loops are being parallelized.

Continue this process until you start getting the correct results.

Then remove the calls from the other loops, compile, and execute to verify
that you are getting the correct results.

• Use explicit parallelization.

Add the C$PAR DOALL directive to a couple of the loops that are being
parallelized. Compile with -explicitpar , then execute and verify the
results. Use -loopinfo to see which loops are being parallelized. This
method permits the addition of I/O statements to the parallelized loop.

Repeat this process until you find the loop that causes the wrong results.

Note – If you need -explicitpar only (without -autopar), do not compile
with -explicitpar and -depend . This method is the same as compiling with
-parallel , which, of course, includes -autopar .

• Run loops backward serially.

Replace DO I=1,N with DO I=N,1,-1 . Different results point to data
dependencies.

• Avoid using the loop index.

 172 Fortran Programmer’s Guide

10

It is safer to do so in the loop body, especially if the index is used as an
argument in a call.

One Possible Way With dbx

To use dbx on a parallel loop, temporarily rewrite the program as follows:

• Isolate the body of the loop in a file and subroutine of its own.
• In the original routine, replace loop body with a call to the new subroutine.
• Compile the new subroutine with -g and no parallelization options.
• Compile the changed original routine with parallelization and no -g .

Replace:
 DO I=1,N
 ...
 CALL SNUBBER(I)
 ...
 ENDDO

With:
DO I1=1,N

 I=I1
 ...
 CALL SNUBBER(I)
 ...
 ENDDO

Parallelization 173

10

Example: Manually transform a loop to allow using dbx in parallel:

Original: split loop.f
into
two parts:
 Part 1 to loop1.f
 Part 2 to loop2.f

Part 1: Loop replaced
loop body (the “main”)

Part 2: Body of the loop
→

Compile Part 1: parallel,
no dbx.
Compile Part 2: dbx, no
parallel.
Link both into a.out.

Start a.out under dbx
control.
Put a breakpoint into the
loop body and run.

dbx stops at the
breakpoint.

Show k.
See the dbx
documentation.

demo% cat loop.f
C$PAR DOALL

DO i = 1,10
WRITE(0,*) 'Iteration ', i

END DO
END

demo% cat loop1.f
C$PAR DOALL

DO i = 1,10
k = i
CALL loop_body (k)

END DO
END

demo% cat loop2.f
SUBROUTINE loop_body (k)
WRITE(0,*) 'Iteration ', k
RETURN
END

demo% f77 -O3 -c -explicitpar loop1.f

demo% f77 -c -g loop2.f

demo% f77 loop1.o loop2.o -explicitpar

demo% dbx a.out ← Various dbx messages not shown
(dbx) stop in loop_body
(2) stop in loop_body
(dbx) run
Running: a.out
(process id 28163)
t@1 (l@1) stopped in loop_body at line 2 in file "loop2.f"
 2 write(0,*) 'Iteration ', k
(dbx) print k
k = 1 ← Various values other than 1 are possible
(dbx)

 174 Fortran Programmer’s Guide

10

 175

C-Fortran Interface 11

This chapter treats issues regarding Fortran and C interoperability.

The discussion is inherently limited to the specifics of the Sun Fortran 77,
Fortran 90, and C compilers.

Note – Material common to both Sun Fortran 77 and Fortran 90 is presented in
examples that use Fortran 77.

Compatibility Issues
Most C-Fortran interfaces must agree in all of these aspects:

• Function/subroutine: definition and call
• Data types: compatibility of types
• Arguments: passing by reference or value
• Arguments: order
• Procedure name: uppercase and lowercase and trailing underscore (_)
• Libraries: telling the linker to use Fortran libraries

Some C-Fortran interfaces must also agree on:

• Arrays: indexing and order
• File descriptors and stdio
• File permissions

 176 Fortran Programmer’s Guide

11

Function or Subroutine

The word function has different meanings in C and Fortran:

• In C, all subprograms are functions; however, some may return a null
(void) value.

• In Fortran, a function passes a return value, but a subroutine does not.

Fortran Calls a C Function
• If the called C function returns a value, call it from Fortran as a function.
• If the called C function does not return a value, call it as a subroutine.

C Calls a Fortran Subprogram
• If the called Fortran subprogram is a function, call it from C as a function

that returns a compatible data type.
• If the called Fortran subprogram is a subroutine, call it from C as a function

that returns a value of int (compatible to Fortran INTEGER*4) or void . A
value is returned if the Fortran subroutine uses alternate returns, in which
case it is the value of the expression on the RETURN statement. If no
expression appears on the RETURN statement, zero is returned.

C-Fortran Interface 177

11

Data Type Compatibility

Fortran 77 vs. C Data Types

Table 11-1 shows the sizes and allowable alignments for Fortran 77 data types.
It assumes no compilation options effecting alignment or promoting default
data sizes are applied.

Note the following:

• C data types int , int long , and long , are equivalent (4 bytes).
• REAL*16 and COMPLEX*32 are only available on SPARC and PowerPC.

Table 11-1 Data Sizes and Alignments—Pass by Reference (f77 vs. cc)

Fortran 77 Data Type C Data Type
Size
(Bytes)

 Alignment (Bytes)
SPARC Intel PowerPC

BYTE X
CHARACTER X
CHARACTER*n X

char x
char x
char x[n]

1
1
n

1
1
1

1
1
1

1
1
1

COMPLEX X
COMPLEX*8 X
DOUBLE COMPLEX X
COMPLEX*16 X
COMPLEX*32 X

struct {float r,i;} x;
struct {float r,i;} x;
struct {double dr,di;}x;
struct {double dr,di;}x;
struct {long double dr,di;} x;

8
8
16
16
32

4
4
4/8
4/8
4/8

2/4
2/4
2/4
2/4
—

4
4
8
8
8

DOUBLE PRECISION X
REAL X
REAL*4 X
REAL*8 X
REAL*16 X

double x
float x
float x
double x
long double x

8
4
4
8
16

4/8
4
4
4/8
4/8

2/4
2/4
2/4
2/4
—

8
4
4
8
8

INTEGER X
INTEGER*2 X
INTEGER*4 X
INTEGER*8 X

int x
short x
int x
long long int x

4
2
4
8

4
2
4
4

2/4
2
2/4
2/4

4
2
4
8

LOGICAL X
LOGICAL*1 X
LOGICAL*2 X
LOGICAL*4 X
LOGICAL*8 X

int x
char x
short x
int x
long long int x

4
1
2
4
8

4
1
2
4
4

2/4
1
2
2/4
2/4

4
1
2
4
8

 178 Fortran Programmer’s Guide

11

• The REAL*16 and the COMPLEX*32 can be passed between f77 and ANSI
C, but not between f77 and some previous versions of C.

• Alignments marked 2/4 for Intel indicate that either two byte or four byte
alignment is possible, but two byte can result in a performance degradation.

• Alignments marked 4/8 for SPARC indicate that either four byte or eight
byte alignment is possible, but four byte can result in a performance
degradation.

• Alignments shown are for f77 data types.
• The elements and fields of arrays and structures must be compatible.
• You cannot pass arrays, character strings, or structures by value.
• You can pass arguments by value from f77 to C, but not from C to f77 ,

since the %VAL() does not work in a SUBROUTINE statement.

Fortran 90 vs. C Data Types

The following table similarly compares the Fortran 90 data types with C:

Table 11-2 Data Sizes and Alignment—Pass by Reference (f90 vs. cc) (SPARC only)

Fortran 90 Data Type C Data Type
Size
(Bytes)

Alignment
(Bytes)

CHARACTER x unsigned char x ; 1 1

CHARACTER (LEN=n) x
CHARACTER (LEN=n, KIND=1) x

unsigned char x[n] ;
unsigned char x[n] ;

n
n

1
1

COMPLEX x struct {float r,i;} x; 8 4

COMPLEX (KIND=4) x
COMPLEX (KIND=8) x

struct {float r,i;} x;
struct {double dr,di;} x;

8
16

4
4

DOUBLE PRECISION x double x ; 8 4

REAL x float x ; 4 4

REAL (KIND=4) x
REAL (KIND=8) x

float x ;
double x ;

4
8

4
4

INTEGER x int x ; 4 4

INTEGER (KIND=1) x
INTEGER (KIND=2) x
INTEGER (KIND=4) x

signed char x ; See Note
short x ; See Note
int x ;

(1)
(2)
4

4
4
4

LOGICAL x int x ; 4 4

LOGICAL (KIND=1) x
LOGICAL (KIND=2) x
LOGICAL (KIND=4) x

signed char x ;
short x ;
int x ;

1
2
4

4
4
4

C-Fortran Interface 179

11

Note the following:

• In this release (f90 1.2), INTEGER, for KIND=1, 2, or 4, take 4 bytes, align on
4-byte boundaries, and use 32-bit arithmetic.

• C data types int , int long , and long , are equivalent (4 bytes).

Case Sensitivity

C and Fortran take opposite perspectives on case sensitivity:

• C is case sensitive—uppercase or lowercase matters.
• Fortran ignores case.

The f77 and f90 default is to ignore case by converting subprogram names to
lowercase. It converts all uppercase letters to lowercase letters, except within
character-string constants.

There are two usual solutions to the uppercase/lowercase problem:

• In the C subprogram, make the name of the C function all lowercase.
• Compile the f77 program with the -U option, which tells f77 to preserve

existing uppercase/lowercase distinctions on function/subprogram names.

Use one of these two solutions, but not both.

Most examples in this chapter use all lowercase letters for the name in the C
function, and do not use the f77 –U compiler option. (f90 1.2 does not have an
equivalent option.)

Underscore in Names of Routines

The Fortran compiler normally appends an underscore (_) to the names of
subprograms appearing both at entry point definition and in calls. This
convention differs from C procedures or external variables with the same user-
assigned name. If the name has exactly 32 characters, the underscore is not
appended. All Fortran library procedure names have double leading
underscores to reduce clashes with user-assigned subroutine names.

There are three usual solutions to the underscore problem:

• In the C function, change the name of the function by appending an
underscore to that name.

 180 Fortran Programmer’s Guide

11

• Use the f77 C() pragma to tell the Fortran 77 compiler to omit those
trailing underscores.

• Use the f77 -ext_names option to make external names without
underscores.

Use only one of these solutions.

The examples in this chapter could use the Fortran 77 C() compiler pragma to
avoid underscores. The C() pragma directive takes the names of external
functions as arguments. It specifies that these functions are written in the C
language, so the Fortran compiler does not append an underscore as it
ordinarily does with external names. The C() directive for a particular function
must appear before the first reference to that function. It must also appear in
each subprogram that contains such a reference. The conventional usage is:

If you use this pragma, the C function does not need an underscore appended
to the function name.

This release of Fortran 90 (1.2) does not have equivalent methods for avoiding
underscores. Trailing underscores are required in the names of C routines
called from Fortran 90 routines.

Argument-Passing by Reference or Value

In general, Fortran routines pass arguments by reference. In a call, if you
enclose an argument with the f77 nonstandard function %VAL() , the calling
routine passes it by value.

In general, C passes arguments by value. If you precede an argument by the
ampersand operator (&), C passes the argument by reference using a pointer. C
always passes arrays and character strings by reference.

Argument Order

Except for arguments that are character strings, Fortran and C pass arguments
in the same order. However, for every argument of character type, the Fortran
routine passes an additional argument giving the length of the string. These
are long int quantities in C, passed by value.

EXTERNAL ABC, XYZ!$PRAGMA C(ABC, XYZ)

C-Fortran Interface 181

11

The order of arguments is:

• Address for each argument (datum or function)

• A long int for each character argument (the whole list of string lengths
comes after the whole list of other arguments).

Example:

Array Indexing and Order

Array indexing and order differ between Fortran and C.

Array Indexing

C arrays always start at zero, but by default Fortran arrays start at 1. There are
two usual ways of approaching indexing.

• You can use the Fortran default, as in the preceeding example. Then the
Fortran element B(2) is equivalent to the C element b[1] .

• You can specify that the Fortran array B starts at B(0) as follows:

This way, the Fortran element B(1) is equivalent to the C element b[1] .

Array Order

Fortran arrays are stored in column-major order: A(3,2)

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) A(1,3) A(2,3) A(3,3)

C arrays in row-major order: A[3][2]
 A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2] A[2][0] A[2][1] A[2][2]

This Fortran code fragment: Is equivalent to this in C:
CHARACTER*7 S
INTEGER B(3)
 …
CALL SAM(S, B(2))

char s[7];
long b[3];
 …
sam_(s, &b[1], 7L) ;

INTEGER B(0:2)

 182 Fortran Programmer’s Guide

11

For one-dimensional arrays, this is no problem. For two-dimensional and
higher arrays, be aware of how subscripts appear and are used in all references
and declarations—some adjustments may be necessary.

For example, it may be confusing to do part of a matrix manipulation in C and
the rest in Fortran. It may be preferable to pass an entire array to a routine in
the other language and perform all the matrix manipulation in that routine to
avoid doing part in C and part in Fortran.

File Descriptors and stdio

Fortran I/O channels are in terms of unit numbers. The I/O system does not
deal with unit numbers but with file descriptors. The Fortran runtime system
translates from one to the other, so most Fortran programs do not have to
recognize file descriptors.

Many C programs use a set of subroutines, called standard I/O (or stdio).
Many functions of Fortran I/O use standard I/O, which in turn uses operating
system I/O calls. Some of the characteristics of these I/O systems are listed in
Table 11-3.

Table 11-3 Comparing Fortran and C I/O

Fortran Units Standard I/O File Pointers File Descriptors

Files Open Opened for reading
and writing

Opened for reading; or
Opened for writing; or
Opened for both; or Opened
for appending. See OPEN(3S).

Opened for reading; or
Opened for writing; or
Opened for both

Attributes Formatted or
unformatted

Always unformatted, but
can be read or written with
format-interpreting routines

Always unformatted

Access Direct or sequential Direct access if the physical
file representation is direct
access, but can always be
read sequentially

Direct access if the
physical file
representation is direct
access, but can always be
read sequentially

Structure Record Byte stream Byte stream

Form Arbitrary
nonnegative
integers

Pointers to structures in the
user’s address space

Integers from 0-63

C-Fortran Interface 183

11

File Permissions

C programmers typically open input files for reading and output files for
writing or for reading and writing. In Fortran, it is not possible for the system
to foresee what use you will make of a file, since there is no parameter to the
OPEN statement that gives that information.

Fortran tries to open a file with the maximum permissions possible, first for
both reading and writing, then for each separately.

This event occurs transparently and is of concern only if you try to perform a
READ, WRITE, or ENDFILE but you do not have permission. Magnetic tape
operations are an exception to this general freedom, since you can have write
permissions on a file, but not have a write ring on the tape.

Libraries and Linking With the f77 or f90 Command

To link the proper Fortran and C libraries, use the f77 or f90 command to
invoke the linker.

Example 1: Use f77 to link:

demo% cc -c RetCmplxmain.c
demo% f77 RetCmplx.f RetCmplxmain.o ← This command line does the linking.
demo% a.out
 4.0 4.5
 8.0 9.0
demo%

 184 Fortran Programmer’s Guide

11

Passing Data Arguments by Reference
The standard method for passing data between Fortran routines and C
procedures is by reference. To a C procedure, a Fortran subroutine or function
call looks like a procedure call with all arguments represented by pointers. The
only peculiarity is the way Fortran handles character strings as arguments and
as the return value from a CHARACTER*n function.

Simple Data Types
• For simple data types (not COMPLEX or CHARACTER strings), define or pass

each associated argument in the C routine as a pointer:

Code Example 11-1 Passing Simple Data Types

 Fortran calls C C calls Fortran
 integer i
 real r
 external CSim
 i = 100
 call CSim(i,r)
 ...

 void csim_(int *i, float *r)
 {
 *r = *i;
 }

 int i=100;
 float r;
 extern void fsim_(int *i, float *r);
 fsim_(&i, &r);
 ...

 subroutine FSim(i,r)
 integer i
 real r
 r = i
 return
 end

C-Fortran Interface 185

11

COMPLEX Data
• Treat Fortran COMPLEX data as a pointer to a C struct of two float s or

two double s:

Character Strings

Passing strings between C and Fortran routines is not recommended because
there is no standard interface. However, note the following rules:

• All C strings are passed by reference.
• Fortran calls pass an additional argument for every character type in the

argument list. The extra argument gives the length of the string and is
equivalent to a C long int passed by value. (This is implementation
dependent.) The extra string-length arguments appears after the explicit
arguments in the call.

Code Example 11-2 Passing COMPLEX Data Types

 Fortran calls C C calls Fortran
 complex w
 double complex z
 external CCmplx
 call CCmplx(w,z)
 ...

struct cpx {float r, i;};
struct dpx {double r,i;};
void ccmplx_(
 struct cpx *w,
 struct dpx *z)
{
 w -> r = 32.;
 w -> i = .007;
 z -> r = 66.67;
 z -> i = 94.1;
}

 struct cpx {float r, i;};
 struct cpx d1;
 struct cpx *w = &d1;
 struct dpx {double r, i;};
 struct dpx d2;
 struct dpx *z = &d2;
 fcmplx_(w, z);
 ...

 subroutine FCmplx(w, z)
 complex w
 double complex z
 w = (32., .007)
 z = (66.67, 94.1)
 return
 end

 186 Fortran Programmer’s Guide

11

A Fortran call with a character string argument is shown below with its C
equivalent:

If the length of the string is not needed in the called routine, the extra
arguments may be ignored. However, note that Fortran does not automatically
terminate strings with the explicit null character that C expects. This must be
added by the calling program.

One-Dimensional Arrays
• Array subscripts in C start with 0.

Code Example 11-3 Passing a CHARACTER string

 Fortran call: C equivalent:
 CHARACTER*7 S
 INTEGER B(3)
 ...
 CALL CSTRNG(S, B(2))
 ...

 char s[7];
 long b[3];
...
 cstrng_(s, &b[1], 7L);
...

Code Example 11-4 Passing a One-Dimensional Array

 Fortran calls C C calls Fortran
 integer i, Sum
 integer a(9)
 external FixVec
 ...
 call FixVec (a, Sum)
 ...

void fixvec_ (
 int v[9], int *sum)
{
 int i;
 *sum = 0;
 for (i = 0; i <= 8; i++)
 *sum = *sum + v[i];
}

extern void vecref_
 (int[], int *);
 ...
 int i, sum;
 int v[9] = ...
 vecref_(v, &sum);
 ...

 subroutine VecRef(v, total)
 integer i, total, v(9)
 total = 0
 do i = 1,9
 total = total + v(i)
 end do
 ...

C-Fortran Interface 187

11

Two-Dimensional Arrays
• Rows and columns between C and Fortran are switched.

Code Example 11-5 Passing a Two-Dimensional Array

 Fortran calls C C calls Fortran
 REAL Q(10,20)
 ...
 Q(3,5) = 1.0
 CALL FIXQ(Q)
 ...

 void fixq_(float a[20][10])
 {
 ...
 a[5][3] = a[5][3] + 1.;
 ...
 }

extern void
 qref_(int[][10], int *);
 ...
 int m[20][10] = ... ;
 int sum;
 ...
 qref_(m, &sum);
 ...

 SUBROUTINE QREF(A,TOTAL)
 INTEGER A(10,20), TOTAL
 DO I = 1,10
 DO J = 1,20
 TOTAL = TOTAL + A(I,J)
 END DO
 END DO
 ...

 188 Fortran Programmer’s Guide

11

Structures
• C and Fortran 77 structures and Fortran 90 derived types can be passed to

each other’s routines as long as the corresponding elements are compatible.

Code Example 11-6 Passing Fortran 77 STRUCTURE Records

 Fortran calls C C calls Fortran
 STRUCTURE /POINT/
 REAL X, Y, Z
 END STRUCTURE
 RECORD /POINT/ BASE
 EXTERNAL FLIP
 ...
 CALL FLIP(BASE)
 ...

struct point {
 float x,y,z;
};
void flip_(v)
struct point *v;
{
 float t;
 t = v -> x;
 v -> x = v -> y;
 v -> y = t;
 v -> z = -2.*(v -> z);
}

struct point {
 float x,y,z;
};
void fflip_ (struct point *) ;
 ...
 struct point d;
 struct point *ptx = &d;
 ...
 fflip_ (ptx);
 ...

 SUBROUTINE FFLIP(P)
 STRUCTURE /POINT/
 REAL X,Y,Z
 END STRUCTURE
 RECORD /POINT/ P
 REAL T
 T = P.X
 P.X = P.Y
 P.Y = T
 P.Z = -2.*P.Z
 ...

C-Fortran Interface 189

11

Code Example 11-7 Passing Fortran 90 Derived Types

 Fortran 90 calls C C calls Fortran 90
 TYPE point
 REAL :: x, y, z
 END TYPE point
 TYPE (point) base
 EXTERNAL flip
 ...
 CALL flip(base)
 ...

struct point {
 float x,y,z;
};
void flip_(v)
struct point *v;
{
 float t;
 t = v -> x;
 v -> x = v -> y;
 v -> y = t;
 v -> z = -2.*(v -> z);
}

struct point {
 float x,y,z;
};
extern void fflip_ (
 struct point *) ;
 ...
 struct point d;
 struct point *ptx = &d;
 ...
 fflip_ (ptx);
 ...

 SUBROUTINE FFLIP(P)
 TYPE POINT
 REAL :: X, Y, Z
 END TYPE POINT
 TYPE (POINT) P
 REAL :: T
 T = P%X
 P%X = P%Y
 P%Y = T
 P%Z = -2.*P%Z
 ...

 190 Fortran Programmer’s Guide

11

Pointers
• A Fortran 77 pointer can be passed to a C routine as a pointer to a pointer

because the Fortran routine passes arguments by reference. A Fortran 77
pointer is not equivalent, however, to a C char ** data type.

• C pointers are not compatible with Fortran 90.

Passing Data Arguments by Value
Call by value is only available for simple data with Fortran 77, and only by
Fortran routines calling C routines. There is no way for a C routine to call a
Fortran routine and pass arguments by value. It is not possible to pass arrays,
character strings, or structures by value. These are best passed by reference.

• Use the nonstandard Fortran 77 function %VAL(arg) as an argument in the
call.

In the example, the Fortran routine passes x by value and y by reference. The
C routine incremente both x and y, but only y is changed:

Code Example 11-8 Passing Fortran 77 POINTER

 Fortran calls C C calls Fortran
 REAL X
 POINTER (P2X, X)
 EXTERNAL PASS
 P2X = MALLOC(4)
 X = 0.
 CALL PASS(X)
 ...

 void pass_(x)
 int **x;
 {
 **x = 100.1;
 }

 extern void fpass_;
 ...
 float *x;
 float **p2x;
 fpass_(p2x) ;
 ...

 SUBROUTINE FPASS (P2X)
 REAL X
 POINTER (P2X, X)
 X = 0.
 ...

C-Fortran Interface 191

11

Functions that Return a Value
A Fortran function that returns a value of type BYTE (Fortran 77 only),
INTEGER, REAL, LOGICAL, DOUBLE PRECISION, or REAL*16 (SPARC and
PowerPC only) is equivalent to a C function that returns a compatible type (see
Table 11-1 and Table 11-2). There are two extra arguments for the return values
of character functions, and one extra argument for the return values of
complex functions.

Code Example 11-9 Passing Simple Data Arguments by Value: Fortran 77 Calling C

 Fortran calls C
 REAL x, y
 x = 1.
 y = 0.
 PRINT *, x,y
 CALL value(%VAL(x), y)
 PRINT *, x,y
 END

void value_(float x, float *y)
{
 printf("%f, %f\n",x,*y);
 x = x + 1.;
 y = y + 1.;
 printf("%f, %f\n",x,*y);
}

Compiling and running produces output:
 1.00000 0. x and y from Fortran
1.000000, 0.000000 x and y from C
2.000000, 1.000000 new x and y from C
 1.00000 1.00000 new x and y from Fortran

 192 Fortran Programmer’s Guide

11

Returns Simple Data Type
• The following example returns a REAL or float value. BYTE, INTEGER,

LOGICAL, DOUBLE PRECISION, and REAL*16 are treated in a similar way:

Returns COMPLEX Data
• A Fortran function returning COMPLEX or DOUBLE COMPLEX is equivalent to

a C function with an additional first argument that points to the return
value in memory. The general pattern for the Fortran function and its
corresponding C function is:

Code Example 11-10 Functions Returning a Value – REAL and float

 Fortran calls C C calls Fortran
 real ADD1, R, S
 external ADD1
 R = 8.0
 S = ADD1(R)
 ...

 float add1_(pf)
 float *pf;
 {
 float f ;
 f = *pf;
 f++;
 return (f);
 }

 float r, s;
 extern float fadd1_() ;
 r = 8.0;
 s = fadd1_(&r);
 ...

 real function fadd1 (p)
 real p
 fadd1 = p + 1.0
 return
 end

Fortran function C function
COMPLEX FUNCTION CF(a1, a2, ..., an) cf_ (return, a1, a2, ..., an)

struct { float r, i; } * return;

C-Fortran Interface 193

11

This is shown in the following example:

Fortran 90 COMPLEX function type is incompatible with this implementation.

Returns CHARACTER String
• Passing strings between C and Fortran routines is not encouraged. However,

a Fortran character-string-valued function is equivalent to a C function with
two additional first arguments—data address and string length. The general
pattern for the Fortran function and its corresponding C function is:

Code Example 11-11 Function Returning COMPLEX(Fortran 77 only)

 Fortran calls C C calls Fortran
 COMPLEX U, V, RETCPX
 EXTERNAL RETCPX
 U = (7.0, -8.0)
 V = RETCPX(U)
 ...

 struct complex { float r, i; };
 void retcpx_(temp, w)
 struct complex *temp, *w;
 {
 temp->r = w->r + 1.0;
 temp->i = w->i + 1.0;
 return;
 }

 struct complex { float r, i; };
 struct complex c1, c2;
 struct complex *u=&c1, *v=&c2;
 extern retfpx_();
 u -> r = 7.0;
 u -> i = -8.0;
 retfpx_(v, u);
 ...

 COMPLEX FUNCTION RETFPX(Z)
 COMPLEX Z
 RETFPX = Z + (1.0, 1.0)
 RETURN
 END

Fortran function C function
CHARACTER*n FUNCTION C(a1, ..., an) void c_ (result, length, a1, ..., an)

char result[];
long length;

 194 Fortran Programmer’s Guide

11

Here is an example:

In this example, the C function and calling C routine must accommodate
two initial extra arguments (pointer to result string and length of string) and
one additional argument at the end of the list (length of character
argument). Note that in the Fortran routine called from C, it is necessary to
explicitly add a final null character.

Code Example 11-12 Function Returning CHARACTER String

 Fortran calls C C calls Fortran
 CHARACTER STRING*16, CSTR*9
 STRING = ’ ’
 STRING = ’123’ // CSTR(’*’,9)
 ...

 void cstr_(char *p2rslt,
 int rslt_len,
 char *p2arg,
 int *p2n,
 int arg_len)
{ /* return n copies of arg */
 int count, i;
 char *cp;
 count = *p2n;
 cp = p2rslt;
 for (i=0; i<count; i++) {
 *cp++ = *p2arg ;
 }
}

 void fstr_(char *, int,
 char *, int *, int);
 char sbf[9] = "123456789";
 char *p2rslt = sbf;
 int rslt_len = sizeof(sbf);
 char ch = ’*’;
 int n = 4;
 int ch_len = sizeof(ch);
 /* make n copies of ch in sbf
 */
 fstr_(p2rslt, rslt_len,
 &ch, &n, ch_len);
 ...

 FUNCTION FSTR(C, N)
 CHARACTER FSTR*(*), C
 FSTR = ’’
 DO I = 1,N
 FSTR(I:I) = C
 END DO
 FSTR(N+1:N+1) = CHAR(0)
 END

C-Fortran Interface 195

11

Labeled COMMON

Fortran labeled COMMON can be emulated in C by using a global struct :

Note that the external name established by the C routine must end in
underscore to link with the block created by the Fortran program.

Sharing I/O Between Fortran and C
Mixing Fortran I/O with C I/O (issuing I/O calls from both C and Fortran
routines) is not recommended. It is better to do all Fortran I/O or all C I/O, but
not both.

The Fortran I/O library is implemented largely on top of the C standard I/O
library. Every open unit in a Fortran program has an associated standard I/O
file structure. For the stdin , stdout , and stderr streams, the file structure
need not be explicitly referenced, so it is possible to share them.

If a Fortran main program calls C to do I/O, the Fortran I/O library must be
initialized at program startup to connect units 0, 5, and 6 to stderr , stdin ,
and stdout , respectively. The C function must take the Fortran I/O
environment into consideration to perform I/O on open file descriptors.

However, if a C main program calls a Fortran subprogram to do I/O, the
automatic initialization of the Fortran I/O library to connect units 0, 5, and 6 to
stderr , stdin , and stdout is lacking. This connection is normally made by

Code Example 11-13 Labeled COMMON

 Fortran COMMON Definition C "COMMON" Definition
 COMMON /BLOCK/ ALPHA,NUM
 ...

extern struct block {
 float alpha;
 int num;
 };
extern struct block block_ ;

main ()
{
 ...
 block_.alpha = 32.;
 block_.num += 1;
 ...
}

 196 Fortran Programmer’s Guide

11

a Fortran main program. If a Fortran function attempts to reference the
stderr stream (unit 0) without the normal Fortran main program I/O
initialization, output will be written to fort.0 instead of to the stderr
stream.

The C main program can initialize Fortran I/O and establish the preconnection
of units 0, 5, and 6 by calling the f_init() Fortran 77 library routine at the
start of the program and, optionally, f_exit() at termination.

Remember: even though the main program is in C, you should link with f77 .

Alternate Returns
Fortran’s alternate returns mechanism is obsolescent and should not be used if
portability is an issue. There is no equivalent in C to alternate returns, so the
only concern would be for a C routine calling a Fortran routine with alternate
returns.

The Sun Fortran implementation returns the int value of the expression on
the RETURN statement. This is superbly implementation dependent and its use
is not recommended:

Code Example 11-14 Alternate Returns (Obsolete)

 C calls Fortran Running the Example
int altret_ (int *);
main ()
{
 int k, m ;
 k =0;
 m = altret_(&k) ;
 printf("%d %d\n", k, m);
}

SUBROUTINE ALTRET(I, *, *)
 INTEGER I
 I = I + 1
 IF(I .EQ. 0) RETURN 1
 IF(I .GT. 0) RETURN 2
 RETURN
END

demo% cc -c tst.c
demo% f77 -o alt alt.f tst.o
alt.f:

altret:
demo% alt
1 2

The C routine receives the return value 2
from the Fortran routine because it executed
the RETURN 2 statement.

197

Index

Symbols
∆, xv
%VAL() , pass by value, 180
* as logical unit identifier, 5

A
abrupt underflow, 87
agreement across routines, -Xlist , 51
aliasing, 104
align

data types, Fortran 90 vs. C, 178
data, Fortran 77 vs C, 177
errors across routines, -Xlist , 51

ANSI
conformance check, -Xlist , 52

ANSI X3.9-1978 standard, 1
ar to create static library, 39, 43
arguments

reference versus value, C–Fortran
interface, 180

array
differences between C and

Fortran, 181
ASCII characters

maximum characters in data
types, 101

B
-Bdynamic, -Bstatic , 45
bindings

POSIX, 48
static or dynamic (-B, -d), 45
Xlib, 48
XView, 48

blank space, xv
BS 6832 standard, 1

C
-C , 67
C directive, 180
C$PAR Sun-style directives, 151
call

graphs, -Xlistc , 61
in parallelized loops, 153
inhibiting optimization, 129
passing arguments by reference or

value, 180
carriage-control, 98
case sensitivity, 179
C–Fortran interface

array indexing, 181
call arguments and ordering, 180
case sensitivity, 179
comparing I/O, 182

198 Fortran Programmer’s Guide

compatibility issues, 175
function compared to subroutine, 176
function names, 179, 184
passing data by value, 190, 191, 195
sharing I/O, 195

checking strictness, -Xlistv n, 63
CHUNKSIZE directive qualifier, 169
CMIC$ Cray-style directives, 167
command line

passing runtime arguments, 9
redirection and piping, 12

common block
maps, -Xlist , 63

compile
viewing source listing with

diagnostics, 69
conventions in text, xv
Cray style parallelization directives, 149
cross reference table, -Xlist , 64

D
-dalign , 125
data

alignment, Fortran 77 vs C, 177
alignment, Fortran 90 vs C, 178
Hollerith, 100
inspection, dbx , 68
maximum characters in data

types, 101
representation, 100
sizes, C vs. Fortran 77, 177
sizes, C vs. Fortran 90, 178

data dependency
apparent, 143
parallelization, 136
restructuring to eliminate, 137

data race
defined, 166

dd conversion utility, 18
debug, 51 to 69

arguments, agree in number and
type, 51

common blocks, agree in size and
type, 51

compiler options, 67
dbx and debugger , 68 to 69
exceptions, 88
index check of arrays, 67
linker debugging aids, 33
parameters, agree globally, 51
segmentation fault, 67
subscript array bounds checking, 67

declared but unused, checking,
-Xlist , 52

denormalized number, 91
-depend , 126
diagnostics, source, 69
direct I/O, 13

to internal files, 15
directives

C() C interface, 180
Cray parallelization, 167
parallelization, summary, 139
Sun parallelization, 151

display to terminal, -Xlist , 53
division by zero, 73
-dn, -dy , 46
DOALL directive, 152

qualifiers, 154
documentation, 3
DOSERIAL directive, 152
DOSERIAL* directive, 152
dynamic libraries

See libraries, dynamic

E
environment variables

LD_LIBRARY_PATH, 37
LOGICALNAMEMAPPING, 12
PARALLEL, 140
passed to program, 10
with IOINIT , 10

equivalence block maps, -Xlist , 63

Index 199

error
messages

listing with -XlistE , 61
suppress with -Xlist , 61

standard error
accrued exceptions, 86

establish a signal handler, 83
event management, dbx , 68
exceptions

accrued, 78
debugging, 88 to 90
detecting, 83
IEEE, 73
ieee_handler , 80
messages, 88
suppressing warnings with

ieee_flags , 77, 88
trapping

with -ftrap= mode, 87
extended

syntax check, -Xlist , 52
extensions and features, 2
external

C functions, 180
names, 179

F
FACTORING, directive qualifier, 159
-fast , 123
features and extensions, 2
feedback, performance profiling, 124
file names

on INCLUDE statements, 12
passing to programs, 9

files
attached at runtime, 10
internal, 15
opening scratch files, 7
passing file names to programs, 9, 99
permissions, C–Fortran interface, 183
preconnected, 7, 8
standard error, 7, 8
standard input, 7, 8

standard output, 7, 8
tape, 18

FIPS 69-1 standard, 1
fix and continue, dbx , 68
.fln files

directory, -Xlist , 61
-Xlist , 54

analysis files, .fln , -Xlist , 54
floating-point arithmetic, 71 to 94

considerations, 91
denormalized number, 91
exceptions, 73
IEEE, 72
underflow, 91
See also IEEE arithmetic, 72

-fns , disable underflow, 87
font conventions, xv
format

edit descriptors, 98
Fortran

libraries, 48
standards and validation, 1
SunSoft features and extensions, 2

free format, xv
-fsimple , 126
-ftrap= mode, 87
function

compared to subroutine, 176
data type of, checking, -Xlist , 52
names, Fortran vs. C, 179
unused, checking, -Xlist , 52
used as a subroutine, checking,

-Xlist , 52

G
-G , 47
GETARG library routine, 6, 9
GETC library routine, 18
GETENV library routine, 6, 10
global

program checking, 51
strictness, -Xlist , 63

200 Fortran Programmer’s Guide

gprof
usage, 110

graphically monitor variables, dbx , 68
GSA validation, 1
GSS, directive qualifier, 159
GUIDED directive qualifier, 169

H
Hollerith data, 100

I
IDATE VMS routine, 48
IEEE (Institute of Electronic and Electrical

Engineers), 72
IEEE arithmetic

754 standard, 1, 72
continue with wrong answer, 92
exception handling, 74
exceptions, 73
excessive overflow, 93
gradual underflow, 86, 91
interfaces, 74
signal handler, 83
underflow handling, 86

ieee_flags , 74, 76, 88
ieee_functions , 74
ieee_handler , 74, 80
ieee_retrospective , 86, 88
ieee_values , 75
INCLUDE, 12
include files

list and cross checking with
-XlistI , 62

inconsistency
arguments, checking, -Xlist , 52
named common blocks, checking,

-Xlist , 52
indirect addressing

data dependency, 137
inexact

floating-point arithmetic, 73

input/output, 5 to 19
accessing files, 5
comparing Fortran and C I/O, 182
dd conversion utility, 18
direct I/O, 13

to internal files, 15
end-of-file on tape, 18
Fortran 90 considerations, 19
in parallelized loops, 165
inhibiting optimization, 129
inhibiting parallelization, 163
initialize for FORTRAN 77 from

C, 196
internal I/O, 15
logical unit, 5
opening files, 7
preconnect units 0, 5, 6 from C, 196
preconnected units, 7
profiling, 118
random I/O, 13
redirection and piping, 12
scratch files, 7
tape, 17

multifile, 19
interface

problems, checking for, -Xlist , 52
internal files, 15
IOINIT library routine, 10

K
keywords, xv

L
labels, unused, -Xlist , 52
-L dir, 36
libF77 , 48
libFposix , 48
libM77 , 48
libraries, 31 to 50

create
dynamic, 44
static, 46

Index 201

dynamic
creating, 44

example, 46
naming, 46
position-independent code, 45
specifying, 38
tradeoffs, 44

in general, 31
linking, 32
load map, 32
math, 48
optimized, 128
POSIX, 49
profiling, 114
provided with SunSoft Fortran, 48
redistributable, 50
search order

command line options, 36
LD_LIBRARY_PATH, 37
paths, 35

shared
See dynamic

static
creating, 39
ordering routines, 43
recompile and replace

module, 43
tradeoffs, 39

VMS, 48
libV77 , 48
line width, output, -Xlist , 63
line-numbered listing, -Xlist , 53
linking

binding options (-B, -d), 45
consistent compile and link, 34
libraries, 32

specifying static or dynamic, 45
mixing C and Fortran, 183
search order, 35

-l x, -L dir, 36
troubleshooting errors, 38

lint-like checking across routines,
-Xlist , 51

listing
cross-references with -Xlist , 64

line numbered with diagnostics,
-Xlist , 51

-XlistL , 62
logical unit, 5

attached at runtime, 10
loop unrolling

and portability, 106
with -unroll , 126

-lV77 , 49
-l x, 36

M
-m linker option for load map, 33
macros

with make, 23
make, 21, 25

command, 23
macros, 23
makefile , 21
suffix rules, 25

makefile , 21
maps

common blocks, -Xlist , 63
equivalence blocks, -Xlist , 63

MAXCPUS, directive qualifier, 154, 168
measuring program performance See

performance, profiling
MIL-STD-1753 standard, 1
monitor variables graphically, dbx , 68
multifile tape access, 19
multifile tapes, 19
multiplatform release, xiv
multithreading

See parallelization

N
NBS validation, 1
NIST validation, 1
nonstandard_arithmetic() , 87
NUMCHUNKS directive qualifier, 169

202 Fortran Programmer’s Guide

O
/opt/SUNWspro

standard location for Sun
software, 35

optimization
hand restructurings and

portability, 104
optimization See performance
options

debugging, useful, 67
for optimization, 122
parallelization, 138

order of
linker libraries search, 35
linker search, 35
-l x, -L dir options, 36

output
to terminal, -Xlist , 53
-Xlist report file, 62

overflow
excessive, 93
floating-point arithmetic, 73
locating

example, 90
with reduction operations, 147

overriding make macro values, 24

P
PARALLEL, number of processors, 140
parallelization, 133 to 173

automatic, 142, 143
criteria, 143

CALL, loops with, 153
chunk distribution, 142
data dependency, 136
data race, 166
debugging, 169
definitions, 142
directives

Cray-style, 167
summary, 139
Sun style directives, 151

explicit, 149
criteria, 149
loop scheduling, 159
loop scheduling (Cray), 169
scoping rules, 150
scoping variables with Cray

directives, 167
inhibitors

for f90 , 169
to automatic parallelization, 144
to explicit parallelization, 162

options summary, 138
private and shared variables, 150
reduction operations, 145
specifying number of processors, 140
specifying stack sizes, 140
-stackvar , 140
steps to, 135
what to expect, 134
with directives, 149

performance
optimization, 121 to 131

choosing options, 122
further reading, 131
inhibitors, 129
levels, 124
libraries, 128
loop unrolling, 126
options

summary, 123
specifying target hardware, 127
with runtime profile, 124
See also parallelization

profiling, 109 to 120
gprof , 110
I/O, 118
libraries missing, 114
overhead, 114
tcov , 115
time , 109

-PIC , 45
-pic , 45
platforms, xiv
porting, 95 to 108

accessing files, 99

Index 203

aliasing, 104
carriage-control, 98
data representation issues, 100
format edit descriptors, 98
Hollerith data, 100
initializing with Hollerith, 101
nonstandard coding, 103
obscure optimizations, 104
precision considerations, 94
problems, checking, -Xlist , 52
strip-mining, 105
time functions, 95
troubleshooting guidelines, 107
uninitialized variables, 104
unrolled loops, 106

position-independent code
(-pic), 45

POSIX
bindings, libFposix , 48
Library, 49

pragma
See directives

preattached logical units, 10
preconnected units, 7
preserve case, 179
preserving precision, 94
PRIVATE, directive qualifier, 154, 168
process control, dbx , 68
program analysis, 51 to 69
program development tools, 21 to 29

make, 21
SCCS, 26

psrinfo command, 140
pure scalar variable

defined, 143

R
random I/O, 13
READONLY, directive qualifier, 154
recurrence

data dependency, 136
redistributable libraries, 50

reduction operations
data dependency, 137
numerical accuracy, 147
recognized by the compiler, 146

REDUCTION, directive qualifier, 154
referenced but not declared, checking,

-Xlist , 52
retrospective summary of exceptions, 86
roundoff

with reduction operations, 147
runtime

arguments to program, 9
runtime.libraries ,

redistributable, 50

S
SAVELAST, directive qualifier, 154, 168
scalar

defined, 143
SCCS

checking in files, 29
checking out files, 28
creating files, 28
creating SCCS directory, 26
inserting keywords, 27
putting files under SCCS, 26

SCHEDTYPE, directive qualifier, 154
scheduling, parallel loops, 159, 169
segmentation fault

due to out-of-bounds subscripts, 67
SELF, directive qualifier, 159
shared library

See libraries, dynamic, 44
SHARED, directive qualifier, 154, 168
sharing I/O, C–Fortran interface, 195
shippable libraries, 50
SIGFPE signal

definition, 74, 80
when generated, 83

SINGLE directive qualifier, 169
source

diagnostics, 69

204 Fortran Programmer’s Guide

source code control See SCCS
stack size and parallelization, 140
STACKSIZE, stack size, 141
-stackvar , 140
standard

error
accrued exceptions, 86

standard files
error, 8
input, 7
output, 7
redirection and piping, 12

standard_arithmetic() , 87
standards

conformance, 1
statement

unreachable, checking, -Xlist , 52
static libraries

See libraries, static
STATIC, directive qualifier, 159
stdio , C-Fortran interface, 182
STOREBACK, directive qualifier, 154
strip-mining

degrades portability, 105
subroutine

compared to function, 176
names, 179
unused, checking, -Xlist , 52
used as a function, checking,

-Xlist , 52
suffix rules in make, 25
summing and reduction, automatic

parallelization, 145
suppress

error nnn, -Xlist , 61
unreferenced identifiers, -Xlist , 62
warnings

-Xlist , 63
syntax

errors, -Xlist , 52

T
tab format, xv
tape files, 18
tape I/O, 17

end-of-file, 18
multifile, 19

target
specifying hardware, 127

tcov , 115
time command, 109

multiprocessor interpretation, 110
time functions, 95

summarized, 96
VMS routines, 96

TIME VMS routine, 48
timing program execution, 109
TOPEN library routines, 17
transporting See porting
trapping

exceptions with -ftrap= mode, 87
troubleshooting

program fails, 108
results not close enough, 107

type checking across routines, -Xlist , 52

U
-U do not convert to lowercase, 179
undeclared

variables, -u , 67
underflow

abrupt, 87
floating-point arithmetic, 73
gradual (IEEE), 86, 91
simple, 92
with reduction operations, 147

underscore
in external names, 180

uninitialized
variables, 104

unit
logical unit attached at runtime, 10
preconnected units, 7

Index 205

-unroll , 126
unused functions, subroutines, variables,

labels, -Xlist , 52
uppercase

external names, 179
uppercase characters, xv

V
-V , 68
VAL() , pass by value, 180
validation of Fortran, 1
variables

aliased, 104
private and shared, 150, 167
undeclared, checking for with -u , 67
uninitialized, 104
unused, checking, -Xlist , 52
used but unset, checking, -Xlist , 52

version
checking, 68

Viewing, 69
VMS Fortran

file names on INCLUDE, 12
library libV77 , 48
time functions, 96

W
watchpoints, dbx , 68
width of output lines, -Xlist , 63

X
X11 interface, 48
X3.9-1978, 1
-xl[d] , 12
-Xlist

a la carte options, 59
combination special, 59
defaults, 53
display directly to terminal, 53
errors and

call graph, -Xlistc , 60

cross reference, -XlistX , 60
listing, -XlistL , 60

suboptions, 59 to 64
details, 61
summary, 60

-Xlistc , 61
-XlistE , 60, 61
-Xlisterr , 61
-Xlistf , 61
-Xlistfln dir

.fln files directory, 61
-Xlisth , 61
-XlistI , 62
-XlistL , 62
-Xlistl n, 62
-Xlisto , 62
-Xlists , 62
-Xlistv n, 63
-Xlistw , 63
-Xlistwar , 63
-XlistX , 64
-xprofile , 124
-xtarget , 127

Z
-ztext , 47

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunSoft, Sun WorkShop, Sun Performance WorkShop et Sun Performance Library sont des
marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC,
utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

f90 est derivé de CRAY CF90™, un produit de Cray Research, Inc..

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

