
PH 411/511 Electronics

RLC Circuits and the Concept of Resonance

Concept

The purpose is to explore the behavior of RLC circuits based upon series and parallel LC combinations.
Analyses will be performed in both the time domain (response to an impulse input signal) and in the
frequency domain (response to a single frequency sine wave). The use of RLC circuits as passive bandpass
and notch filters will be investigated. Fourier analysis of a complicated waveform will be introduced.

Helpful hints and warnings

The “ground symbol” in a circuit implies that the grounds (outer conductors or shields) of the signal
generator and the oscilloscope are connected to the circuit at this point. Unlike the DMM, the signal
generator and oscilloscopes grounds can be connected only to the circuit ground. Thus, in the bandpass
RLC circuit, the oscilloscope can be used only to measure the potential across the parallel LC combination.
In the notch-filter RLC circuit, the oscilloscope can be used only to measure the potential across the series
LC combination.

To read the inductance on the encapsulated inductors, look for three numbers such as 151. The first
two digits are the real first two digits of the inductance. The third digit is the order of magnitude or power
of ten. So, 151 means an inductance of 150 something. To figure out what “something” is, the type and
size of the inductor needs to be considered. For the encapsulated inductors in the laboratory, the unit is
microHenry or µH. So, 150 µH = 0.15 mH. Measure both the inductance and resistance of your inductor
using the LRC meter.

For measurements, be sure to vary the frequency of the applied signal over a wide range, such as 100 Hz
to 1MHz, to make sure that you are working in the right range for your choice of R, L and C.

Measure values of all components used in your circuits. L and C values can be measured using the
laboratory RLC meter.

Assigned Problems

1. From Simpson

Problems 2.12, 2.23
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Experimental Instructions

2. Parallel LC resonant circuit

The parallel LC resonant circuit pictured below has a resonant frequency ω◦ = 1/
√

LC. The inductor is not
ideal in the sense that it has a finite internal resistance RL which can be modeled as a resistor in series with
the inductor.

a. Time-domain analysis: response to a current impulse input signal.

In this picture, a very short current impulse applied to the inductor will induce an oscillation. This
is analogous to hitting a pendulum at rest or ringing a bell. The resistance of the inductor and/or
the input resistance of the oscilloscope will lead to a decay of the signal. You will need to build an
impulse source that is not exactly the ideal current impulse but useful nonetheless. A better source
would be an inductively-coupled current, that is a transformer structure that is beyond our capability
in the laboratory.

LC

Unit Current Impulse
V (t) = V◦e

−t/τsin(ωt)

(a) A periodic impulse signal requires a function generator which has a highly variable duty factor.
Since the function generators cannot generate an impulse (about 1 µsec) at a 1 kHz rate, you
must build such a source. The TA will guide you in this effort.

(b) Construct the parallel LC circuit above, using values of L and C such that the frequency ν = ω/2π
is about 50 kHz. Measure the resistance r of the inductor before you place it in the circuit. Add
a resistor in series with the L||C part of the circuit, known as the LC tank, with R ≈ 200Ω.

(c) Apply the impulse signal, record the response and explain the behavior of this circuit to the
impulse.

b. Time-domain analysis: response to a square wave input.

(a) Apply a relatively low frequency square wave to this circuit and measure the signal across the
LC tank. Sketch the waveform and determine the frequency of any oscillation that is present.
Scan the frequency of the square wave from 100 Hz to about ν/10 and determine if there is any
frequency dependence to the appearance of the signal across the LC tank.

c. Frequency-domain analysis: response to a sine-wave input.
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(a) Apply a sine wave to the circuit and measure the transmission function |A| = |VL/V◦| and the
phase difference as a function of the frequency ω. Scan the frequency from 50 to 106 Hz. Be sure
to take at least 20 data points in the vicinity of the resonant frequency and about 20 points over
the rest of the range.

(b) Graph |A| in dB and the phase difference as a function of log ν, and compare these graphs with
theoretical expressions.

(c) Measure the full-width half-maximum (FWHM) bandwidth, denoted as ∆ω. Determine Q from
your data and compare it to the theoretical value.

3. Series LC circuit

The series LC resonant circuit pictured below has a resonant frequency ω◦ = 1/
√

LC.

a. Frequency-domain analysis: response to a single frequency sine wave input.

L VL

VC

R

VR

C

V◦

(a) Construct this circuit, using values of L and C such that the frequency ν = ω/2π lies in the 50
to 200 kHz range. Measure the resistance of the inductor before you place it in the circuit. Use
R ≈ 1kΩ.

(b) Apply a sine wave to the circuit and measure the signal across the inductor and the capacitor,
that is, VL + VC . Notice that it is also possible to measure just VC with the oscilloscope. Record
the transmission function |A| = |Vout/Vin| and the phase difference as a function of the frequency
ω. Scan the frequency from 50 to 106 Hz. Be sure to take at least 20 data points in the vicinity
of the resonant frequency.

(c) Graph |A| in dB and the phase difference as a function of log ν, and compare these graphs with
theoretical expressions.
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(d) Determine Q from your data and compare it to the theoretical values.

(e) From the theoretical analysis of this circuit, what is the current I as ω varies from 0 to ∞?

4. Parallel LC resonant circuit as a Fourier analyzer

A square wave can be described as a sum of sine waves of different frequencies. In fact, a square wave
at frequency ω◦ can be approximated by a finite sum over sine waves at frequencies ω◦, 3ω◦, 5ω◦, . . .. The
parallel LC circuit can be used to determine the relative contributions of the different frequency components.

The laboratory components are not sufficient to perform a true experimental Fourier analysis, which
requires variable capacitors and inductors in order to tune LC tanks to these specific frequencies. However,
it is possible to perform a qualitative Fourier analysis by using a fixed-frequency LC tank and determining
the frequencies for which there are local peaks in the transmission function A(ω). Suppose you build a circuit
such that ν◦ = ω◦/2π = 1 MHz. You should find that, for a square wave input at 500 kHz, A(500 kHz) = 0
because that square wave cannot contain a sine-wave component at 1 MHz. Nonzero values of A(ν) should
be found only 1.5 MHz, 2.5 MHz, etc., that is, only at odd harmonics. So, when the frequency ν of a square
wave is varied from 0 to 1 MHz, A(ν) will be nonzero only when (2m + 1)ν = 1 MHz, for m = 0, 1, 2, · · · .

a. Build a parallel RLC circuit with ν◦ = 1 MHz. Apply a square wave at exactly the resonant frequency
and record |A|.

b. Decrease the frequence continuously, noting that A decreases and then reaches another maximum.
Record the frequency of this maximum, which should be ω◦/3, and A at this frequency. Find as many
more maxima as as possible and record A and ω for each.

c. Discuss how your data relates to discrete Fourier analysis of square waves.
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