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Inductors and Time-Dependent Signals

Concept

The purpose is to learn about time-dependent (AC) analysis of RL circuits using a function genera-
tor and an oscilloscope. The transient response of an RL circuit will be studied in the time-domain
using the combination of square-wave from a function generator and an oscilloscope. Frequency-
domain behavior will be measured as well, and the response function of RL circuits will be deter-
mined. Complex impedance of inductors will be introduced, and Fourier analysis of complicated
waveforms will be presented.

An inductor has very little DC resistance, but can have a large AC impedance. This is a
consequence of Faraday’s Law of Induction, which relates the rate of change of the magnetic field
within the coil to an electric field. Hence, the relationship between the rate of change of current
through the coil and the potential across it is ∆Φ = LdI/dt, where L is the inductance in Henrys.
From the complex amplitude analysis of these circuits, the complex impedance of an ideal inductor
when the frequency of the applied signal is ω is Z = iωL.

Helpful hints and warnings

The ”ground symbol” in a circuit implies that the grounds (outer conductors or shields) of the
signal generator and the oscilloscope are connected to the circuit at this point. Unlike the DMM,
the signal generator and oscilloscopes grounds can be connected only to the circuit ground. Thus,
in the high-pass RL circuit, the oscilloscope can be used only to measure the potential across
the inductor. Conversely, in the low-pass LR circuit, the scope can be used only to measure the
potential across the resistor.

To read the inductance on the encapsulated inductors, look for three numbers such as 151.
The first two digits are the real first two digits of the inductance. The third digit is the order of
magnitude or power of ten. So, 151 means an inductance of 150 something. To figure out what
”something” is, the type and size of the inductor needs to be considered. For the encapsulated
inductors in the laboratory, the unit is microHenry or µH. So, 150 µH = 0.15 mH. Measure both
the inductance and resistance of your inductor using the LRC meter.

For measurements, be sure to vary the frequency of the applied signal over a wide range, such
as 100 Hz to 1MHz, to make sure that you are working in the right range for your choice of R and
L.
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Experimental Instructions

1. Inductor demonstrations

a. Listen to the TA describe different types of inductors.

b. Watch the demonstrations, and perform the simple, qualitative experiments described by the
TA.

2. Time-dependent analysis of RL circuits

a. Square waves and the RL circuit:

R

LVin(t)

VR(t) = Vin(t) − VL(t)

VL(t)

(a) Construct an RL circuit, choosing the theoretical time constant τ = L/R to be about
0.0001 seconds.

(b) Apply a 100 Hz square wave signal and view the output using channel 1 of the oscil-
loscope. With the scope input switch for channel 1 set to ”gnd” (ground), adjust the
vertical position of the trace so that it is centered vertically. Switch to the ”DC” posi-
tion to view the signal. Be sure the triggering is set correctly. Ask for help if you are
uncertain.

(c) Measure τ by determining the time for the output to drop to 1/e of the maximum and
to rise to 1− 1/e of the maximum. Are these two values of τ equal? Does either equal
t0 L/R? Explain any differences you observe.

(d) Vary the frequency from 0 to 1 MHz and determine the frequency range over which the
behavior of the circuit is similar to the 100 Hz behavior.

(e) Apply different waveforms, such as triangle and sine waves. Describe the behavior of
this circuit over the range of frequencies applied.

b. Square waves and the LR circuit:

R

L

Vin(t) VR(t)

VL(t) = Vin(t) − VR(t)

c©2006 W. M. Hetherington, Oregon State University2 17 October 2006



PH 411/511 Version 2 Electronics

(a) Repeat the same measurements for the LR circuit.

3. Frequency response of both configurations

R

LVin(t) Vout(t)

Amplitude and phase change

a. Apply a sine-wave signal to each configuration and sweep the frequency from 0 to 1 MHz.
Make at least 20 measurements. Since you will be plotting your data versus the log ν, make
at least two measurements per decade of frequency. Determine the transmission function
A(ω) by dividing the output amplitude by the input amplitude. Be sure to measure the
input amplitude from the function generator at each frequency, since the combination of your
circuit and the limitations of the generator will lead to a signal that will generally decrease
in amplitude with frequency. The applied frequency should be determined by taking the
reciprocal of the period measured on the scope. Measure the phase difference between the
output and input signals. A good point on the waveform to use for such measurements is the
point at which the trace crosses the 0 Volts line. If the period of the input signal is T and
the displacement of the output signal is t, then the phase difference is φ = 2πt/T .

b. For each configuration, plot the data and theoretical curves for phase and amplitude together
as 20 log A(ν) vs. log ν. Determine the breakpoint or characteristic frequency from the data
plot by identifying the -3dB point, and compare this to the theoretical value. Draw conclusions
about the behavior of both circuits.

Measured and Calculated Transmission Function
 of RL High Pass Filter
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