FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

> Bruce G. Miller Project Kick-Off Meeting Grant No. DE-FG26-00NT40809 U.S. DOE National Energy Technology Laboratory

Pittsburgh, PA October 24, 2000

PENN<u>State</u>

The Energy Institute

PROJECT OBJECTIVE

Perform a feasibility analysis on installing a state-of-the-art CFB boiler and ceramic filter emission control device for cofiring multiple biofuels and other wastes with coal or coal refuse.

 Develop a test program to evaluate cofiring multiple biofuels and coal-based feedstocks.

PROJECT PARTICIPANTS

Penn State University

—The Energy Institute

—Office of Physical Plant

-College of Agricultural Sciences

-Farm Operations

-Agricultural & Biological

Engineering Department

-Horticulture Department

Foster Wheeler

Cofiring Alternatives

CFB BOILER SYSTEM WILL BE UNIQUE:

- 1) be compact vs. traditional design
- 2) include modules for ceramic filters
- contain an advanced instrumentation package including temperature and pressure sensors, deposition and slagging probes, heat flux meters, and corrosion/erosion panels
- 4) contain multi-fuel capabilities
- 5) be a commercial facility in a rural, agricultural setting that contains an engineering and agricultural-based university

THE STATE-OF-THE-ART CFB BOILER SYSTEM WILL ALLOW THE UNIVERSITY TO:

- more economically supply heat to the University Park Campus
- reduce the amount of air-borne pollutants (NO_x, SO₂, fine PM, and potentially trace elements), thus helping to reduce the overall emissions from the University's central heating plant
- reduce the amount of agricultural and other waste products produced by the University
- help reduce the amount of CO₂ emissions by combusting waste biofuels
- serve as a commercial demonstration-size test facility for federally and other outside sourcefunded R&D projects

THE FEASIBILITY ANALYSIS WILL ASSESS:

- the economics of producing steam
- the economics of off-sets such as utilizing multiple biomass and other wastes
- the value of a unique CFB test facility to perform research for industry and government agencies
- the environmental aspects of the CFB boiler
- the availability of funding from multiple sources including University, state, and federal sources

The feasibility study will also include developing a multi-year program to test biofuels in a boiler system that is heavily instrumented and able to handle multiple fuels.

MILESTONE SCHEDULE

SUMMARY OF ACTIVITIES

Task 1. Information and Sample Collection

- Assemble system requirements and infrastructure requirements
- Collect representative samples of biofuel, coal, and coal refuse

Task 2. Characterize Biofuels and Biofuel/Coal Combinations

- Analyze samples
- Assess issues such as materials handling, deposition, and emissions
- Task 3. Develop Conceptual Design
 - Design a state-of-the-art CFB boiler system to address objectives

SUMMARY OF ACTIVITIES (continued)

Task 4. Develop Preliminary Test Program/Budget

 Develop and cost a 3-5 year test program to use the CFB boiler system

Task 5. Determine System/Program Economics

- Determine capital and operating costs
- Assess availability of funding for the system and test program

Task 6. Complete Feasibility Study

Integrate results from Tasks 1 through 5

PROJECT STATUS

- Contract signed 06/15/00
- Subcontract executed with Cofiring Alternatives 09/25/00
- Subcontract still being negotiated with Foster Wheeler
- Assessment of the types and quantities of potential feedstocks has started
- Preliminary list of potential feedstocks developed

PROJECT STATUS (continued)

Sample collection and analyses have started

- Waste Water Treatment Plant Sludge Dairy Tie-Stall Manure
- WWTP Digester Effluent
- Pine Chips
- Pine Shavings
- **Red Oak Shavings**
- Stoker boiler fly ash
- Stoker boiler bottom ash
- Hard Plastic (Horticulture Dept.)
- Plastic Bags
- Miscellaneous Manure from Covered Manure Barn

- Dairy Free-Stall Manure
- Mulch Hay
- Mulch Leaves
- Bale Tarp
- Silo Bunker Cover
- <mark>– Sh</mark>eep Manure
- Beef Barn Manure
- Swine Waste

PROJECT ORGANIZATIONAL CHART

STATE-OF-THE-ART ACFB BOILER

CONCEPTUAL DESIGN

POTENTIAL CFB FEEDSTOCKS

Material Qu	antity (tons/yr)
Biomass/Biomass Waste at Un	iversity Park
Animal Wastes:	•
Dairy manure (tie stall and free s	tall
mixed with leaves)	13,200
Manure from covered manure ba	rn
(poultry litter, horse barn, misc.)	1,180
Beef manure	1,033
Sheep manure	265
Swine waste	2,505
	(@ 2.2% solids)
Woodwaste/brush	150
Pallets	92
Reed Canary Grass	600
Other Wastes at University Par	k
Seware sludge	2 708
Sewage sludge	(@ 12% solids)
Bottom ash	(@ 12/0 Solids) 6 990
Fly ash	1.445
Plastics - total	2.1
Horticulture hard plastics	0.2
Horticulture plastic bags	1.0
Bale tarps	0.5
Silo bunker covers	0.4
Used oil	14
Tires	5
Biomass from Surrounding Po	aion

20,000

Wood products (chips/shavings)

WASTE AND BY-PRODUCT STREAMS THAT WERE PRODUCED AT THE UNIVERSITY PARK CAMPUS DURING 1998

Material	Quantity (tons)	
Biomass Waste/ By-Products		
Bedding/ manure	10,000	
Wood waste/ brush	150	
Leaves – Penn State	150	
Pallets	92	
Spoiled hay	small amount	
Spoiled feed	small amount	
Grass clippings	small amount	
Excess lumber	unknown small amount	
Woodchips/ sawdust	unknown small amount	
Chicken litter	unknown small amount	
Other Wastes		
Garbage	6,719	
Bottom ash	6,394	
Fly ash	1,400	
Paper	736	
Cardboard	472	
Sewage sludge	360	
Newspaper	200	
Dead animals	95	
Food waste	93	
Used oil	14	
Tires	5	
Agricultural plastics – animal feet	d bags 5	
Agricultural plastics – horticultur	e use 2	