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Mixer Design Overview

q Noise Figure – impacts receiver sensitivity
q Linearity (IIP3) – impacts receiver blocking performance
q Conversion gain – lowers noise impact of following stages
q Power match – want maximize voltage gain rather than power match for 

integrated designs
q Power – want low power dissipation
q Isolation – want to minimize interaction between the RF, IF, and LO ports
q Sensitivity to process/temp variations – need to make it manufacturable

in high volume



Prof. C. Patrick Yue         Slide 2

Types of Mixer

q Multiplication through device non-linearity
q Multiplication through switching

� Active mixers
� Passive mixers
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Ideal Mixer Behavior
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Non-Ideality in Mixers

q Image problem
q LO feedthrough
q Self mixing due to reverse LO feedthrough
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Mixer Based on Non-Linearity

q Drain current of an MOSFET exhibits a square dependence on gate 
overdrive

q Collector current of an BJT exhibits a exponential dependence on base-
emitter voltage drive
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Single-Device Mixer Using MOSFET (Square-Law Mixer)
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Practical Configuration for Single-Device Mixer
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Single-Device Mixer Using BJT
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Design Considerations for Mixer Based on Device Non-Linearity 

q Design simplicity
q Noise Figure

� The square law MOSFET mixer can be designed to have very low noise figure

q Linearity
� By operating the square law MOSFET mixer in the square law region the 

linearity of the mixer can be improved considerably
� BJT mixer is less linear as it produces a host of non-linear components due 

to the exponential nature of the BJT mixer

q Power Dissipation
� Very low power dissipation due to single device operation

q Power Gain
� Reasonable power gain can be achieved

q Isolation
� Poor isolation from LO to RF port – by far the biggest short coming
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Mixing Through Switching



Prof. C. Patrick Yue         Slide 11

Spectral Components Due to Mixing
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Simple Switching Mixer (Single-Balanced Mixer)

q M1 acts as a transconductance to convert the RF voltage signal to a current 
q M2 and M3 commute the current between the two output branches.
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The Issue of Balance in Mixers

bias
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Achieving Balanced LO Signal with DC Baising
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Single-Balanced Mixer
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LO Feedthrough in Single-Balanced Mixers
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Ideal Double-Balanced Mixer
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Achieving Balanced RF Signal with Biasing
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Double-Balanced Mixer Implementation
I1+I4 I2+I3
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Gilbert Cell (Four Quadrant) Mixer
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Mixer Voltage Conversion Gain

q Voltage conversion gain of a mixer depends on several factors
� Input transconductance
� Multiplication factor
� Load resistance
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Common-Source Transconductance Stage in Mixer
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CS Transconductance Stage with Degeneration
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Transconductor Stage in Mixer
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Common-Gate Transconductance Stage in Mixer
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Mixer Multiplication Factor
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Mixer Voltage Conversion Gain

q If the sinusoidal LO swing is sufficiently large to completely switch the 
current, we can approximate the LO by a square wave

q Consider only the fundamental term in LO 

]})cos[(
4

])cos[(
4

{
2
1

)cos(
4

)cos(

titi

ttii

LORFRFLORFRF

LORFRFout

ωω
π

ωω
π

ω
π

ω

++−=

×=

])cos[(
2

])cos[(
2

_ tvg

tii

LORFRFeffm

LORFRFout

ωω
π

ωω
π

−=

−=

q After the low-pass filter,

outeffmoutout RgRiGain _
2
π

==⇒



Prof. C. Patrick Yue         Slide 28

Mixer Noise Analysis

q Three contributors to mixer noise
� Transconductance stage
� Switching pairs
� Load resistance
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Design Consideration for Minimizing Mixer NF

q Design the transducer for minimum noise figure
q Noise from M2 and M3 can be minimized through fast switching of M2 & 

M3 by
� making LO amplitude large to ensure complete (> 90%) current commuting 
� making M2 and M3 as small as possible (i.e. increasing fTof M2 and M3)
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NF Expression for Double-Balanced Mixer [1]

where
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Mixer NF for Single-Sideband Systems
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Mixer NF Double Sideband Systems
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Design Consideration for Mixer Linearity
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Design Consideration for Mixer Linearity
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Measured IIP3 for a 0.8-µm SB Mixer [2]

q At high bias current, the switching pair nonlinearity dominates
q At low bias current, the transconductance stage nonlinearity dominates

� For short channel devices, the transconductance stage nonlinearity dominates
� IIP3 is proportional to (VRF_DC – Vth)
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Measured IIP3 for a 0.8-µm SB Mixer [2]

q At high frequencies, excessively large LO amplitude degrades IIP3 due to 
parasitic capacitive coupling which is nonlinear

q For low-voltage design (< 2V), this is usually not a big concern 
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Passive Mixers

q Very high linearity (assuming the current are completely commuted)
� 20–30 dBm of IIP3 achievable

q High noise figure (noise due to the the switching devices)
� 20–30 dB of NF

q Voltage conversion loss

(Biasing not shown)
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Passive Mixers with Biasing Shown
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