Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$
What is the main plan of attack?

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

Second, find the voltage drop over R_{1} to find the voltage drops across the I_{2} and I_{3} branches

Then use the resistances on those branches to determine I_{2} and I_{3}

Check, using $I_{1}=I_{2}+I_{3}$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
R_{34}=R_{3}+R_{4}=6 \Omega
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
R_{34}=R_{3}+R_{4}=6 \Omega
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
\begin{aligned}
& R_{34}=R_{3}+R_{4}=6 \Omega \\
& R_{234}=\frac{R_{2} R_{34}}{R_{2}+R_{34}}=\frac{3 \times 6}{3+6} \Omega=2 \Omega
\end{aligned}
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
\begin{aligned}
& R_{34}=R_{3}+R_{4}=6 \Omega \\
& R_{234}=\frac{R_{2} R_{34}}{R_{2}+R_{34}}=\frac{3 \times 6}{3+6} \Omega=2 \Omega
\end{aligned}
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
\begin{aligned}
& R_{34}=R_{3}+R_{4}=6 \Omega \\
& R_{234}=\frac{R_{2} R_{34}}{R_{2}+R_{34}}=\frac{3 \times 6}{3+6} \Omega=2 \Omega \\
& R_{1234}=2 \Omega+2 \Omega=4 \Omega
\end{aligned}
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
\begin{aligned}
& R_{34}=R_{3}+R_{4}=6 \Omega \\
& R_{234}=\frac{R_{2} R_{34}}{R_{2}+R_{34}}=\frac{3 \times 6}{3+6} \Omega=2 \Omega \\
& R_{1234}=2 \Omega+2 \Omega=4 \Omega
\end{aligned}
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega$

First find the equivalent resistance to find the current thru the battery

$$
\begin{aligned}
& R_{34}=R_{3}+R_{4}=6 \Omega \\
& R_{234}=\frac{R_{2} R_{34}}{R_{2}+R_{34}}=\frac{3 \times 6}{3+6} \Omega=2 \Omega \\
& R_{1234}=2 \Omega+2 \Omega=4 \Omega \\
& I_{1}=\frac{12 V}{4 \Omega}=3 A
\end{aligned}
$$

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega \quad I_{1}=3 A$
Now, what is the voltage drop across R_{1} ?

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega \quad I_{1}=3 A$
Now, what is the voltage drop across R_{1} ?

$$
\Delta V_{1}=I_{1} R_{1}=3 \mathrm{~A} \times 2 \Omega=6 \mathrm{~V}
$$

So what is the voltage drop across the parallel branches?

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega \quad I_{1}=3 A$
Now, what is the voltage drop across R_{1} ?

$$
\Delta V_{1}=I_{1} R_{1}=3 \mathrm{~A} \times 2 \Omega=6 \mathrm{~V}
$$

So what is the voltage drop across the parallel branches?

$$
\Delta V_{2}=\Delta V_{34}=12 \mathrm{~V}-6 \mathrm{~V}=6 \mathrm{~V}
$$

Now find the other currents

Electric circuits

Find the currents in this circuit:
$\mathcal{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega \quad I_{1}=3 A$
Now, what is the voltage drop across R_{1} ?

$$
\Delta V_{1}=I_{1} R_{1}=3 \mathrm{~A} \times 2 \Omega=6 \mathrm{~V}
$$

So what is the voltage drop across the parallel branches?

$$
\Delta V_{2}=\Delta V_{34}=12 \mathrm{~V}-6 \mathrm{~V}=6 \mathrm{~V}
$$

Now find the other currents

$$
I_{2}=\frac{6 V}{3 \Omega}=2 A \quad I_{3}=\frac{6 V}{6 \Omega}=1 A \quad I_{1}=I_{2}+I_{3} \quad \text { checks }!
$$

