CALCULUS OF GENERALIZED HYPERBOLIC TETRAHEDRON

REN GUO

Abstract. We calculate the Jacobian matrix of the dihedral angles of a generalized hyperbolic tetrahedron as functions of edge lengths and find the complete set of symmetries of this matrix.

1. Introduction

1.1. Tetrahedron. Motivated by studying the polyhedral geometry of triangulated 3-manifolds, Luo [Lu08] calculated the Jacobian matrix of the dihedral angles of a hyperbolic (Euclidean or spherical) tetrahedron as functions of edge lengths. This Jacobian matrix enjoys many symmetries. Some of the symmetries were discovered by Schl"afli, Wigner [Wi59], Taylor-Woodward [TW05]. Luo discovered the complete set of symmetries of the Jacobian matrix.

Denote by v_1, v_2, v_3, v_4 the vertexes of a hyperbolic (Euclidean or spherical) tetrahedron. Let a_{ij} and x_{ij} be the dihedral angles and the edge length at the edge v_iv_j. The angle a_{ij} for $i,j \in \{1, 2, 3, 4\}$ is a function of the lengths $x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}$.

Theorem (Luo).

$$P_{rs}^{ij} = \frac{1}{\sin a_{ij} \sin a_{rs}} \frac{\partial a_{ij}}{\partial x_{rs}}$$

satisfies

1. (Schl"afli) $P_{rs}^{ij} = P_{ij}^{rs}$.
2. (Wigner, Taylor-Woodward) $P_{kl}^{ij} = P_{ij}^{ik} = P_{ij}^{il}$ for $\{i, j, k, l\} = \{1, 2, 3, 4\}$.
3. $P_{ik}^{ij} = -P_{ki}^{ji}$ for $\{i, j, k, l\} = \{1, 2, 3, 4\}$.
4. $P_{ij}^{kl} = P_{kl}^{ij} w_{ij}$ for $\{i, j, k, l\} = \{1, 2, 3, 4\}$, where

$$w_{ij} = \frac{\cos a_{ij} \cos a_{ik} \cos a_{ki} + \cos a_{ij} \cos a_{jl} \cos a_{il} + \cos a_{ik} \cos a_{jl} + \cos a_{il} \cos a_{jk}}{\sin^2 a_{ij}}.$$

5. $P_{rs}^{ij} = P_{r's'}^{ij}$ for $\{i, j\} \neq \{r, s\}$ and $\{i, j, i', j'\} = \{r, s, r', s'\} = \{1, 2, 3, 4\}$.

Yakut, Savas and Kader [YSK09] calculated the Jacobian matrix for a hyperbolic or spherical tetrahedron and represented each entry of the matrix in terms of x_{ij}.

The symmetries of the Jacobian matrix are not obvious in their result.

2000 Mathematics Subject Classification. 51M10, 57M50.

Key words and phrases. generalized hyperbolic tetrahedron, Jacobian matrix, symmetry, derivative of the law of cosine.
1.2. **Generalized hyperbolic tetrahedron.** In this paper we calculate the Jacobian matrix of the dihedral angles of a *generalized hyperbolic tetrahedron* as functions of edge lengths. We find a uniform way to deal with the 15 types of generalized hyperbolic tetrahedra. The complete set of symmetries of the Jacobian matrix are discovered. It is a generalization of Luo’s result. Our main theorem is the following.

Let a_{ij} and x_{ij} be the dihedral angle and the edge length at the edge e_{ij} of a generalized hyperbolic tetrahedron. The angle a_{ij} for $i,j \in \{1,2,3,4\}$ is a function of the lengths $x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}$. Denote by G the Gram matrix of the generalized hyperbolic tetrahedron. Let G_{ij} be the matrix obtained by deleting the i–th row and j–th column of the Gram matrix G.

Theorem 1. The Jacobian matrix is

$$\frac{\partial(a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34})}{\partial(x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34})} = \sqrt{\frac{\det G_{11} \det G_{22} \det G_{33} \det G_{44}}{-(\det G)^3}} D M D,$$

where

$$D = \text{diag}(\sin a_{12}, \sin a_{13}, \sin a_{14}, \sin a_{23}, \sin a_{24}, \sin a_{34})$$

is a diagonal matrix and

$$M = \begin{pmatrix}
 w_{12} & - \cos a_{23} & - \cos a_{24} & - \cos a_{13} & - \cos a_{14} & 1 \\
 - \cos a_{23} & w_{13} & - \cos a_{34} & - \cos a_{12} & 1 & - \cos a_{14} \\
 - \cos a_{24} & - \cos a_{34} & w_{14} & 1 & - \cos a_{12} & - \cos a_{13} \\
 - \cos a_{13} & - \cos a_{12} & 1 & w_{23} & - \cos a_{34} & - \cos a_{24} \\
 - \cos a_{14} & 1 & - \cos a_{12} & - \cos a_{34} & w_{24} & - \cos a_{23} \\
 1 & - \cos a_{14} & - \cos a_{13} & - \cos a_{24} & - \cos a_{23} & w_{34}
\end{pmatrix},$$

where

$$w_{ij} = \frac{\cos a_{ij} \cos a_{jk} \cos a_{ki} + \cos a_{ij} \cos a_{jl} \cos a_{li} + \cos a_{ik} \cos a_{jl} + \cos a_{il} \cos a_{jk}}{\sin^2 a_{ij}}.$$

Note that the matrix $D M D$ is the same for the 15 types of generalized hyperbolic tetrahedra. What is different is the factor in front of the matrix $D M D$. This factor depends only on the Gram matrix G. Luo’s result about the symmetries of P_{rs}^{ij} can be interpreted as the symmetries of the matrix M as follows:

1. M is a symmetric matrix.
2. Any antidiagonal entry of M is 1.
3. The (ij, ik)–th entry of M is $- \cos a_{kj}$.
4. The (ij, ij)–th entry of M is w_{ij}.
5. Except the diagonal entries, M is symmetric about the antidiagonal axis.

Theorem 1 can be considered as a generalization from 2 dimensions to 3 dimensions of the derivative of cosine law of a generalized hyperbolic triangle which is studied systematically in [GL09] Lemma 3.5.

Heard [He05] calculated the Jacobian matrix of a generalized hyperbolic tetrahedron and represented each entry of the matrix in terms of $c_{ij} = (-1)^{i+j} \det G_{ij}$. The symmetries of the Jacobian matrix are not obvious in his result.

1.3. **Plan of the paper.** In section 2, we recall the definition of a generalized hyperbolic tetrahedron and some properties. In section 3, the derivative of the law of cosine for a link at a vertex of a generalized hyperbolic tetrahedron is summarized. In section 4, the derivative of the law of cosine for a face of a generalized hyperbolic
tetrahedron is summarized. In section 5, we calculate the determinant of the Gram matrix G. Theorem 1 is proved in section 6.

2. Definition and properties

The 4-dimensional Minkowski space is the real vector space \mathbb{R}^4 equipped the inner product:

$$\langle X, Y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4,$$

where $X = (x_1, x_2, x_3, x_4), Y = (y_1, y_2, y_3, y_4)$.

The 3-dimensional hyperbolic space is identified with the positive sheet of the horoball of two sheets:

$$\mathbb{H}^3 = \{ X \in \mathbb{R}^4 : \langle X, X \rangle = -1, x_4 > 0 \}.$$

The positive half of the light cone is

$$C^+ = \{ X \in \mathbb{R}^4 : \langle X, X \rangle = 0, x_4 > 0 \}$$

and the positive half of the unit sphere is

$$S^+ = \{ X \in \mathbb{R}^4 : \langle X, X \rangle = 1, x_4 > 0 \}.$$

For any point $v_i \in \mathbb{H}^3 \cup C^+ \cup S^+$, the type of the point is the number

$$\varepsilon_i = -\langle v_i, v_i \rangle = \begin{cases}
1, & \text{if } v_i \in \mathbb{H}^3, \\
0, & \text{if } v_i \in C^+, \\
-1, & \text{if } v_i \in S^+.
\end{cases}$$

For any point $v_i \in \mathbb{H}^3 \cup C^+ \cup S^+$, we associate v_i a geometric object in \mathbb{H}^3 denoted by $P_{\varepsilon_i}(v_i)$ as follows.

1. If $v_i \in \mathbb{H}^3$, then $P_{\varepsilon_i}(v_i) = P_1(v_i) = v_i$, i.e., the point itself.

2. If $v_i \in C^+$, then $P_{\varepsilon_i}(v_i) = P_0(v_i) = \{ X \in \mathbb{H}^3 : \langle X, u \rangle \geq -\frac{1}{2} \}$, i.e., a horoball in \mathbb{H}^3.

3. If $v_i \in S^+$, then $P_{\varepsilon_i}(v_i) = P_{-1}(v_i) = \{ X \in \mathbb{H}^3 : \langle X, u \rangle \geq 0 \}$, i.e., a half space of \mathbb{H}^3.

Given two points $v_i, v_j \in \mathbb{H}^3 \cup C^+ \cup S^+$, if $P_{\varepsilon_i}(v_i) \cap P_{\varepsilon_j}(v_j) = \emptyset$, there is a geodesic segment in \mathbb{H}^3 whose length realizes the distance between $P_{\varepsilon_i}(v_i)$ and $P_{\varepsilon_j}(v_j)$. It is denoted by e_{ij}.

Given three points $v_i, v_j, v_k \in \mathbb{H}^3 \cup C^+ \cup S^+$, if $P_{\varepsilon_i}(v_i)$, $P_{\varepsilon_j}(v_j)$ and $P_{\varepsilon_k}(v_k)$ are disjoint with each other, draw the three geodesic segments e_{ij}, e_{jk}, e_{ki}. There is a totally geodesic polygon in \mathbb{H}^3 bounded by e_{ij}, e_{jk}, e_{ki} and the boundary of $P_{\varepsilon_i}(v_i)$, $P_{\varepsilon_j}(v_j)$ and $P_{\varepsilon_k}(v_k)$. This polygon is denoted by $\triangle ijk$. In fact $\triangle ijk$ is a generalized hyperbolic triangle which is studied in [GL09].

Given four points $v_1, v_2, v_3, v_4 \in \mathbb{H}^3 \cup C^+ \cup S^+$ such that $P_{\varepsilon_1}(v_1), P_{\varepsilon_2}(v_2), P_{\varepsilon_3}(v_3)$ and $P_{\varepsilon_4}(v_4)$ are disjoint with each other, there are four polygons $\triangle 234, \triangle 134, \triangle 124, \triangle 123$.

If $P_{\varepsilon_i}(v_i)$ is a horoball, the intersections $\partial P_{\varepsilon_i}(v_i) \cap \triangle ijk$, $\partial P_{\varepsilon_i}(v_i) \cap \triangle ikl$, and $\partial P_{\varepsilon_i}(v_i) \cap \triangle ilj$ are three Euclidean line segments which bound a Euclidean triangle, i.e., the link at v_i, denoted by $LK(v_i)$.

If $P_{\varepsilon_i}(v_i)$ is a half space, the intersections $\partial P_{\varepsilon_i}(v_i) \cap \triangle ijk$, $\partial P_{\varepsilon_i}(v_i) \cap \triangle ikl$, and $\partial P_{\varepsilon_i}(v_i) \cap \triangle ilj$ are three hyperbolic geodesic segments which bound a hyperbolic triangle, i.e., the link at v_i, denoted by $LK(v_i)$.

If the polygons $\triangle 234, \triangle 134, \triangle 124, \triangle 123$ and the links $LK(v_i)$ with $v_i \in C^+ \cup S^+$ for $i \in \{1, 2, 3, 4\}$ bound an object in \mathbb{H}^3 with positive volume, this object is a \textit{generalized hyperbolic tetrahedron} which is denoted by T_{1234}. Its edges are the geodesic segments e_{ij} for $i, j \in \{1, 2, 3, 4\}$. And its faces are $\triangle 234, \triangle 134, \triangle 124, \triangle 123$.

If $v_i \in \mathbb{H}^3$, the link $LK(v_i)$ is a spherical triangle which is the intersection of T_{1234} and a sufficiently small sphere centered at v_i.

A generalized hyperbolic tetrahedron is uniquely determined by the four points v_1, v_2, v_3, v_4. According to different types of the points v_i, there are 15 types of generalized hyperbolic tetrahedra.

3. Link

A link $LK(v_i)$ is a spherical, Euclidean or hyperbolic triangle if $v_i \in \mathbb{H}^3, C^+$ or S^+ respectively. If $v_i \in \mathbb{H}^3 \cup S^+$, denote by $b_{kl}^i, b_{ij}^i, b_{jk}^i$ the length of edges of $Lk(v_i)$: $\partial P_{e_i}(v_i) \cap \triangle ikl, \partial P_{e_i}(v_i) \cap \triangle ilj$ and $\partial P_{e_i}(v_i) \cap \triangle ijk$. If $v_i \in C^+$, let $b_{kl}^i, b_{ij}^i, b_{jk}^i$ be TWICE of the length of edges of $Lk(v_i)$. Denoted by a_{ij} the dihedral angle between the face $\triangle ijk$ and $\triangle ilj$ for $\{i, j, k, l\} = \{1, 2, 3, 4\}$. The dihedral angles a_{ij}, a_{ik}, a_{il} become the opposite inner angles of $Lk(v_i)$.

We introduce a function of b_{jk}^i and its derivative as follows

$$\rho_{jk}^i = \int_0^{b_{jk}^i} \cos(\sqrt{\varepsilon}s)ds,$$

$$\rho_{jk}^i = \cos(\sqrt{\varepsilon}b_{jk}^i),$$

where ε is the type of v_i.

The \textit{amplitude} of the link $LK(v_i)$ is defined as $[Fe89]

$$A^i = \rho_{jk}^i \rho_{jl}^i \sin a_{ij},$$

which only depends on the link $Lk(v_i)$.

The derivative of the law of cosine of a spherical, Euclidean or hyperbolic triangle is derived in [CL03, Lu06] and has the uniform formula.

\textbf{Lemma 2.}

$$\frac{\partial a_{ij}}{\partial b_{kl}^i} = \frac{\rho_{kl}^i}{A^i},$$

$$\frac{\partial a_{ij}}{\partial b_{ij}^i} = \frac{\rho_{ij}^i}{A^i}(- \cos a_{ij}).$$

4. Face

Let x_{ij} be the length of the edge e_{ij}. We introduce a function of x_{ij} and its derivative as follows:

$$\tau_{ij} = \frac{1}{2} x_{ij} + \frac{1}{2} \varepsilon_i \varepsilon_j e^{-x_{ij}},$$

$$\tau'_{ij} = \frac{1}{2} x_{ij} + \frac{1}{2} \varepsilon_i \varepsilon_j e^{-x_{ij}}.$$

Each face $\triangle jkl$ of T_{1234} is a generalized hyperbolic triangle. It has the edge lengths x_{kl}, x_{ij}, x_{jk} and the opposite generalized angles $b_{kl}^i, b_{ij}^i, b_{jk}^i$.

The \textit{amplitude} of the face $\triangle jkl$ is defined as

$$A_{jkl} = \tau_{jk} \tau_{jl} \rho_{kl}^i.$$
which only depends on the face.

The derivative of the law of cosine of a generalized hyperbolic triangle is derived in [GL09] and has the uniform formula.

Lemma 3 ([GL09] Lemma 3.5).

\[
\frac{\partial b_{jkl}}{\partial x_{kl}} = \frac{\tau_{kl}}{A_{jkl}},
\]

\[
\frac{\partial b_{jkl}}{\partial x_{lj}} = \frac{\tau_{kl}(-\rho'_{jk})}{A_{jkl}}.
\]

5. **GRAM MATRIX**

Given four points \(v_1, v_2, v_3, v_4 \in \mathbb{H}^3 \cup C^+ \cup S^+\), the Gram matrix of \(T_{1234}\) determined by \(v_1, v_2, v_3, v_4\) is defined as

\[
G = (\langle v_i, v_j \rangle)_{4\times4}.
\]

Lemma 4. If \(i \neq j\), then \(\langle v_i, v_j \rangle = -\tau'_{ij}\).

Proof. When \(\varepsilon_i \varepsilon_j \neq 0\), it is well-known. See, for example, [Ra06] pp 62-72. When \(\varepsilon_i \varepsilon_j = 0\), see [He05] pp 7-9. When \(\varepsilon_i = \varepsilon_j = 0\), the formula was obtained in [Pe87]. Note that we use a different convention in the definition of a horoball from the convention in [He05]. Due to our convention, we have the following.

If \(X \in C^+, Y \in \mathbb{H}^3 \cup S^+\), then \(\langle X, Y \rangle = -\frac{1}{2}e^d\) where \(d\) is the distance between the horoball associated to \(X\) and the vertex or the half space associated to \(Y\).

If \(X, Y \in C^+\), then \(\langle X, Y \rangle = -\frac{1}{2}e^d\) where \(d\) is the distance between the two horoballs associated to \(X\) and \(Y\). \(\square\)

Therefore the Gram matrix can be written as

\[
G = \begin{pmatrix}
-\varepsilon_1 & -\tau'_{12} & -\tau'_{13} & -\tau'_{14} \\
-\tau'_{12} & -\varepsilon_2 & -\tau'_{23} & -\tau'_{24} \\
-\tau'_{13} & -\tau'_{23} & -\varepsilon_3 & -\tau'_{34} \\
-\tau'_{14} & -\tau'_{24} & -\tau'_{34} & -\varepsilon_4
\end{pmatrix}.
\]

Before calculating \(\det G\), we recall an analogy in 2 dimensions. Recall that \(G_{ij}\) is the matrix obtained by deleting the \(i\)-th row and \(j\)-th column of the Gram matrix \(G\).

Lemma 5 ([GL09] Lemma 3.3). \(G_{ii}\) is the Gram matrix of the face \(\triangle jkl\) and

\[
\sqrt{-\det G_{ii}} = A_{jkl}
\]

where \(A_{jkl}\) is the amplitude of the face \(\triangle jkl\) (6).

Lemma 6.

\[
\sqrt{-\det G} = \tau_{ij} \tau_{ik} \tau_{il} A^i,
\]

where \(A^i\) is the amplitude of the link \(LK(v_i)\) (3).
Proof. Case 1. If one of vertex is not in C^+, say $\varepsilon_1 = \pm 1$. Then

$$\det G = \frac{1}{\varepsilon_1} \det \begin{pmatrix} \varepsilon_1 & \tau'_{12} & \tau'_{13} & \tau'_{14} \\ \varepsilon_1 \tau_{12} & \varepsilon_1 \varepsilon_2 & \varepsilon_1 \tau_{13} & \varepsilon_1 \tau_{14} \\ \varepsilon_1 \tau'_{13} & \varepsilon_1 \tau_{13} & \varepsilon_1 \varepsilon_3 & \varepsilon_1 \tau'_{14} \\ \varepsilon_1 \tau'_{14} & \varepsilon_1 \tau_{14} & \varepsilon_1 \varepsilon_4 & \varepsilon_1 \tau'_{13} \end{pmatrix}$$

$$= \frac{1}{\varepsilon_1} \det \begin{pmatrix} \varepsilon_1 & \tau'_{12} & \tau'_{13} & \tau'_{14} \\ 0 & \varepsilon_1 \varepsilon_2 - (\tau'_{12})^2 & \varepsilon_1 \tau_{12} \tau_{13} - \tau'_{12} \tau'_{13} & \varepsilon_1 \tau_{12} \tau_{14} - \tau'_{12} \tau'_{14} \\ 0 & \varepsilon_1 \tau_{13} - \tau'_{12} \tau_{13} & \varepsilon_1 \varepsilon_3 - (\tau'_{13})^2 & \varepsilon_1 \tau_{13} \tau_{14} - \tau'_{13} \tau'_{14} \\ 0 & \varepsilon_1 \tau_{14} - \tau'_{12} \tau_{14} & \varepsilon_1 \varepsilon_4 - (\tau'_{14})^2 \\ & & & \end{pmatrix}$$

$$= \det \begin{pmatrix} \varepsilon_1 \varepsilon_2 - (\tau'_{12})^2 & \varepsilon_1 \tau_{12} \tau_{13} - \tau'_{12} \tau'_{13} & \varepsilon_1 \tau_{12} \tau_{14} - \tau'_{12} \tau'_{14} \\ \varepsilon_1 \tau_{13} - \tau'_{12} \tau_{13} & \varepsilon_1 \varepsilon_3 - (\tau'_{13})^2 & \varepsilon_1 \tau_{13} \tau_{14} - \tau'_{13} \tau'_{14} \\ \varepsilon_1 \tau_{14} - \tau'_{12} \tau_{14} & \varepsilon_1 \varepsilon_4 - (\tau'_{14})^2 & \end{pmatrix}$$

$$= (\tau_{12} \tau_{13} \tau_{14})^2 \det \begin{pmatrix} -1 & -\rho_{23}^1 & -\rho_{24}^1 \\ -\rho_{23}^1 & -1 & -\rho_{34}^1 \\ -\rho_{24}^1 & -\rho_{34}^1 & -1 \end{pmatrix}$$

$$= (\tau_{12} \tau_{13} \tau_{14})^2 (\rho_{23}^1)^2.$$

In the step (a) we use the fact $\varepsilon_i \varepsilon_j - (\tau'_{ij})^2 = -(\tau_{ij})^2$ which is easily verified using the definition (4) and (5). We also use the law of cosine for a generalized hyperbolic triangle([GL09] Lemma 3.1):

$$\rho_{kl}^j = \frac{\varepsilon_j \tau'_{kl} + \tau'_{jk} \tau'_{jl}}{\tau_{jk} \tau_{jl}}.$$

In the step (b) we use the law of cosine for a spherical or hyperbolic triangle.

For details of calculations, see [Fe89] pp 167-171.

Case 2. If all vertexes are on C^+, i.e., $\varepsilon_i = 0$ for $i = 1, 2, 3, 4$, then, by definition (5),

$$\det G = \frac{1}{16} \det \begin{pmatrix} e^{x_{12}} & e^{x_{13}} & e^{x_{14}} \\ e^{x_{12}} & 0 & e^{x_{23}} \\ e^{x_{13}} & e^{x_{23}} & 0 \\ e^{x_{14}} & e^{x_{24}} & e^{x_{34}} \end{pmatrix}$$

$$= \frac{1}{16} \left(e^{2x_{12} + 2x_{23} + 2x_{34}} + e^{2x_{13} + 2x_{24} + 2x_{34}} + e^{2x_{14} + 2x_{23}} - 2e^{x_{12} + x_{23} + x_{13} + x_{24}} - 2e^{x_{13} + x_{24} + x_{14} + x_{23}} - 2e^{x_{14} + x_{23} + x_{12} + x_{34}} \right)$$

$$= \frac{1}{16} \left(\frac{1}{16} (b_{14}^1)^4 + \frac{1}{16} (b_{24}^1)^4 + \frac{1}{16} (b_{23}^1)^4 - 2 \frac{1}{16} (b_{34}^1 b_{23}^1)^2 - 2 \frac{1}{16} (b_{23}^1 b_{24}^1)^2 - 2 \frac{1}{16} (b_{14}^1 b_{24}^1)^2 \right)$$

$$= \left(\frac{e^{x_{12} e^{x_{13}}} e^{x_{14}}}{2} \right)^2 (-A^1)^2.$$
In the step (c) we use the law of cosine for an ideal hyperbolic triangle ([GL09] Appendix A):
\[
\frac{(b_{jk})^2}{4} = e^{x_{jk} - x_{ij} - x_{ik}}.
\]

In the step (d) we use the law of cosine for a Euclidean triangle. In fact, it is Heron’s formula of the area of a Euclidean triangle. □

6. JACOBIAN MATRIX

First, a generalized hyperbolic tetrahedron is determined by its edge lengths uniquely up to isometries. Therefore the dihedral angle a_{ij} for $i, j \in \{1, 2, 3, 4\}$ is a function of the lengths $x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}$.

Proof of Theorem 1. To prove of the theorem, we need to calculate $\frac{\partial a_{ij}}{\partial x_{kl}}, \frac{\partial a_{ij}}{\partial x_{ik}}$ and $\frac{\partial a_{ij}}{\partial x_{ij}}$.

\[
\begin{align*}
\frac{\partial a_{ij}}{\partial x_{kl}} &= \frac{\partial a_{ij}}{\partial b_{kl}^i} \cdot \frac{\partial b_{kl}^i}{\partial x_{kl}} \\
&= \frac{\rho_{kl}^i}{A^i} \cdot \frac{\tau_{kl}}{A_{ikl}} \\
&= \frac{\tau_{kl}}{\tau_{il} \tau_{ik} A^i} \cdot \frac{1}{\sin a_{ij} \sin a_{kl}} \cdot \sin a_{ij} \sin a_{kl} \\
&= \frac{\tau_{kl}}{\tau_{il} \tau_{ik} A^i} \cdot \frac{\rho_{il}^i \rho_{ij}^j \rho_{jk}^k}{A^j A^k} \cdot \sin a_{ij} \sin a_{kl} \\
&= \sqrt{- \det G_{ii} \det G_{jj} \det G_{kk} \det G_{ll} \det G_{ij} \det G_{kl} \det G_{lj} \det G_{ik} - \det G_{ij}^3} \cdot \sin a_{ij} \sin a_{kl}.
\end{align*}
\]

In the step (e), Lemma 2 and Lemma 3 are used.
In the step (f), the definition (6) is used.
In the step (g), the definition (3) is used.
In the step (h), the definition (6) and Lemma 5 are used.
In the step (i), Lemma 6 is used.
\[
\frac{\partial a_{ij}}{\partial x_{ik}} = \frac{\partial a_{ij}}{\partial b_{jk}^i} \cdot \frac{\partial b_{jk}^i}{\partial x_{ik}}
\]
\[
= \rho_{kl}^j \left(- \cos a_{ik} \right) \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{1}{\sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right)}
\]
\[
(\ j) \quad \rho_{kl}^j \left(- \cos a_{ik} \right) \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{1}{\sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right)}
\]
\[
\begin{aligned}
&= \sqrt{- \det G_{ii} \cdot \det G_{jj} \cdot \det G_{kk} \cdot \det G_{ll}} \cdot \frac{1}{\left(- \det G \right)^3} \cdot \sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right) \\
&\quad \cdot \sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right) \\
\end{aligned}
\]
\[
\frac{\partial a_{ij}}{\partial x_{ij}} = \frac{\partial a_{ij}}{\partial b_{jk}^i} \cdot \frac{\partial b_{jk}^i}{\partial x_{ij}} + \frac{\partial a_{ij}}{\partial b_{jl}^i} \cdot \frac{\partial b_{jl}^i}{\partial x_{ij}}
\]

By the symmetry of \(k \) and \(l \), we only need to calculate the first term.

\[
\begin{aligned}
\frac{\partial a_{ij}}{\partial b_{jk}^i} \cdot \frac{\partial b_{jk}^i}{\partial x_{ij}} &= \rho_{kl}^j \left(- \cos a_{ik} \right) \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{\tau_{jk}}{\sqrt{- \det G_{ll}}} \cdot \frac{1}{\sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right)} \\
&= \sqrt{- \det G_{ii} \cdot \det G_{jj} \cdot \det G_{kk} \cdot \det G_{ll}} \cdot \frac{1}{\left(- \det G \right)^3} \cdot \sin a_{ij} \sin a_{ik} \cdot \left(- \cos a_{jk} \right) \\
\end{aligned}
\]

In the step \((k)\), the law of cosine for a hyperbolic or spherical triangle is used. For a Euclidean triangle, we use the fact:

\[
1 = \cos a_{ij} + \cos a_{ij} \cos a_{jk} \sin a_{ij} \sin a_{jk}
\]

In the step \((l)\), compare what we need to compute with the result of the step \((j)\) in the last formula. They are the same if we switch \(i \) and \(j \). Hence the step \((l)\) holds.
Therefore
\[
\frac{\partial a_{ij}}{\partial x_{ij}} = \sqrt{\det G_{ii} \det G_{jj} \det G_{kk} \det G_{ll} - (\det G)^3} \cdot (\cos a_{ik} \cos a_{jl} + \cos a_{ik} \cos a_{ij} \cos a_{jk} + \cos a_{il} \cos a_{ij} \cos a_{jl})
\]
\[
= \sqrt{\det G_{ii} \det G_{jj} \det G_{kk} \det G_{ll} - (\det G)^3} \cdot \sin^2 a_{ij} \cdot w_{ij}.
\]

\[\Box\]

ACKNOWLEDGMENT

The author would like to thank Feng Luo for encouragement and valuable suggestion. He thanks Tian Yang for helpful discussion.

REFERENCES

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN, 55455
E-mail address: guoxx170@umn.edu