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Chapter 2 
 

VIBRATIONAL PROPERTIES OF SOLIDS 
 

 
2.1  From chains to solids 

 
In Chapter 1 we examined the classical vibrational properties of one-dimensional chains of 
masses connected by springs.  How does this relate to the behavior of real, three-dimensional 
solid materials? The surprising answer to this question is that many of the features of vibrational 
waves on classical chains have a close counterpart in solids.  The reason is that the chemical 
bonds that hold atoms together in solids can be modeled very well by springs.  Bonds can be 
stretched, compressed or bent and, for small displacements of the atoms, the necessary force is 
proportional to the displacement – that is, chemical bonds obey Hooke’s law.    Still, there are 
also some new features that appear in 3-D solids: 

 
(1) The number of atoms (N) in a macroscopic crystal is very large – on the order of 1028 
per m3.  This means that there are an enormous number of modes, and their wavevector 
and frequency values are very closely spaced.  We can often treat kq and q as 
continuous variables, k and . 

 
(2) The “wavevector” k becomes a true, 3-D vector, , with components kx, ky and kz.  The 
Brillouin zone was a line segment in 1-D on the k-axis.  In 3-D it becomes a polyhedron 
enclosing a region of 3-D “k-space.” 

 
(3) For waves propagating in any particular direction, we now have to consider 3 
“polarizations”:  

 
(i) a longitudinal wave in which the atoms move in the direction of wave 
propagation (similar to the modes we have analyzed on chains); 

 
(ii) two transverse waves in which the atoms move perpendicularly to the 
direction of wave propagation.  There are two transverse modes because there are 
two orthogonal directions perpendicular to propagation.  For example, if a wave 
propagates in the z-direction, transverse motion could occur in both the x- and y-
directions.  

  
The lessons of the diatomic chain apply qualitatively to the vibrational modes of a binary 
compound.  This is illustrated by the dispersion relations for a crystal of potassium bromide, 
KBr, shown below.  As we discuss later, dispersion relations like these can be determined 
experimentally by scattering neutrons off a crystal.  
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Figure 2.X. Dispersion relations for KBr at 90 K, after Woods, Brockhouse, Cowley, 
and Cochran (1963). [From Kittel, need alternate figure??] 
 

For each polarization, longitudinal (L) and transverse (T), there is an acoustic branch (A) and an 
optic branch (O).  The two tranverse branches happen to be identical for KBr as a result of the 
cubic symmetry of this particular crystal structure.  This is not true in general. 

 
The experimental dispersion relations contain a lot of information and allow us to draw some 
basic conclusions about the springs-like chemical bonds that hold KBr together. For example, for 
any k-value, we see that the frequencies of the longitudinal waves are higher than those of the 
transverse waves.  Thus, the “springs” are stiffer (higher effective ) for compression or 
stretching than for flexing. 
 
Next, we can use the 1-D result to estimate the “spring constant” of the chemical bond.  Recall 
that the general result for the dispersion of acoustic and optic modes on a diatomic chain is given 
by 
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Taking the plus-sign, we find that the frequency of the optic mode at k = 0 is given by 
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We can also estimate the speed of sound (acoustic waves) in the crystal.  In the limit ka << 1, the 

dispersion relation becomes k
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We don’t really need expensive neutron scattering data to get information about interatomic 
interactions.  From direct measurements of the speed of sound in a crystal, we could do the 
calculation the other way round and find .  Still another possibility is to use continuum theory 

speed of sound = (bulk modulus/density)1/2      (XX) 
 

and obtain the speed of sound and, hence , from measurements of the bulk modulus and the 
density of the crystal. The point is that an understanding of the fundamental vibrational 
properties of a solid allows us to obtain microscopic, atomic scale information from 
measurements of macroscopic properties like the speed of sound or the bulk modulus. 
 
 
2.2  Phonons 
 
The normal mode vibrations of solids are referred to as phonons.  They plan an important role in 
determining many fundamental physical properties of solids: 
 

(i) Conduction of sound.  The long-wavelength propagating acoustic modes of atomic 
displacements are, in fact, what we call “sound” in solids. They provide the mechanism 

Discussion problem: 

For KBr, the experimental dispersion relation yields 




2
opt = 5 x 1012 Hz for 

longitudinal waves.  The masses are M = 79.9 g/mole (Br) and m = 39.1 
g/mole (K).  Use this information to estimate the effective longitudinal spring 
constant of the ionic bond in KBr. 

 
What is your estimate for the spring constant of the transverse modes? 

Discussion problem: 
Use your value for the longitudinal spring constant of KBr and the value  
a = 6.6 x 10-10 m for the lattice constant to estimate the speed of acoustic sound 
propagation in KBr. 
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for conduction of vibrational energy from one part of a solid to another.  We have seen 
that the velocity of sound propagation is directly related to the dispersion relation for the 
acoustic modes at low frequency/long wavelength.  

 
(ii) Elastic properties. Strain induced in a solid by external forces (compression, tension, 
shear) requires motions of atoms relative to their neighbors.  Wave-like vibrational 
excitations of a lattice also involve such atomic motion.  It is not surprising, therefore, 
that a bulk elastic property like the bulk modulus is closely related to a vibrational 
property (speed of sound) as in Eq. Xx. 
 
(iii) Thermal properties. Phonons are usually the largest reservoir of thermal energy in 
solids.  The exceptions occur at very low temperatures where the amplitudes of lattice 
vibrations have been reduced to the point where other forms of energy become dominant.  
Examples of such other forms include magnetic energy or the kinetic energy of electrons.  
At “ordinary temperatures” such as room temperature, phonons provide the mechanism 
for conduction of heat.  That is, when one side of a solid is hotter than the other, phonons 
provide a mechanism for transfer of heat from the hot side to the cold side.  Phonons are 
also the largest contributor to internal energy and, hence, the heat capacity. 
 
(iv) Interactions with other excitations. Phonons are the most important example of the  
“–ons,” the various fundamental carriers of energy a solid.  Other examples are electrons, 
magnons (magnetic excitations), and plasmons (combined electronic-ionic vibrational 
excitations).  Some very important physical properties depend on interactions between 
different “ –ons.” Superconductivity, for example, occurs in most cases because of 
interactions between electrons and phonons. 

 
2.2.1 What, exactly, is a phonon? 
 
A more detailed examination of the lattice vibrations of a solid requires us to consider the 
quantum mechanical properties of the lattice modes.  We will see that a quantum picture explains 
why we describe lattice vibrations with a word, phonon, that suggests a particle, i.e. something 
like an electron, proton, meson, photon, etc.  
 
Recall that the vibrational properties of the 2-mass coupled oscillator can be viewed in terms of 
two independent simple harmonic oscillators, one with frequency low and one with frequency 
high. They are independent in the sense that if only one normal mode is excited, there will be no 
transfer of energy into the other mode.  Similarly, the normal modes of a crystal lattice can be 
viewed as a set of (many) independent harmonic oscillators.   
 
A classical harmonic oscillator can be excited with any amount of energy -- up to a reasonable 
maximum where Hooke’s Law no longer applies, or the spring breaks, or the masses hit each 
other, etc.  If we initially give the masses a bigger push or larger displacement, the energy and 
amplitude will be larger, but any “reasonable” value is possible. 
The situation is different for the normal modes of a crystal lattice because they obey the rules of 
quantum mechanics.  This is because the “masses” (atoms) are so much lighter than those 
encountered in classical mechanical oscillators.   
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The energy of a quantum harmonic oscillator is “quantized” – only certain values of the energy 
are allowed.  For an oscillator with frequency , the rule is 
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where n is an integer (n = 0, 1, 2 , …) and  is (Planck’s constant)/2. In analogy with the 

particle description of electromagnetic radiation (photon), a little bundle of vibrational energy in 

a lattice can be viewed as a “particle” of energy  and momentum k


.   Such a “particle” is 

called a phonon. 
 
When a particular lattice mode is excited to a high energy (high n), we would say that there are 

many phonons of this particular  and k


.  If n is low, then there are few phonons of this type.  
Thus, for example, instead of describing the a particular motion as a superposition of a large 
amplitude low frequency vibration and a small amplitude high frequency vibration, we talk of a 
solid as having many low frequency phonons and a few high frequency phonons. We will see 
that the temperature of the crystal has a big influence on how many phonons are present and 
what their frequencies are. 

 
 

2.2.2 Interaction of phonons with light – optic modes 
 
The description of lattice vibrations in terms of phonons makes it easier to analyze processes in 
which other particles (photons, neutrons, electrons, etc.) interact with the crystal.  For example, if 
we pass light through a crystal, it is possible for photons to be destroyed and phonons created.  
Such a process must conserve energy and momentum: 
 

photonphonon

photonphonon

kk 
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In order for such a process to be effective, there must be an interaction or coupling between the 
photon and the lattice vibrations.  The coupling is very strong for the optic modes of an ionic 
solid like KBr. Because neighboring atoms have opposite electric charges, the electric field of 
the light moves K+ and Br ions in opposite directions. But this is exactly the anti-phase motion 
associated with the “optic modes”.  (This is, in fact, how these modes got their name.) So it is 
easy for the oscillating electric fields of light (photons) to create phonons of the optic modes in 
ionic crystals just so long as the conservation conditions are met.  
 
What is the wavelength of light that excites optic modes in ionic crystals?  Our dispersion 
relation for KBr shows, for example, that the frequency of the longitudinal optic mode near  
k = 0 is about 5 x 1012 Hz.   
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The wavelength of electromagnetic radiation of this frequency is 
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This wavelength corresponds to infrared light.  The optic modes of ionic compounds like KBr 
can be studied experimentally by infrared spectroscopy – as we scan the wavelength of light 
transmitted by such crystals, there are dips in the transmission (peaks in the absorption) when the 
energy and momentum of the photons match those of the optic modes. 
 
 
2.2.3 Interaction of phonons with other particles – neutrons and electrons 
 
When a beam of neutrons is passed through a crystal, the neutrons gain or lose energy and 
momentum by creating or destroying phonons.  By analyzing the outgoing neutrons and using 

the conservation conditions, it is possible to determine the energy and momenta ( and k


) of the 
phonons.  This is how the dispersion relation for KBr was determined. 

 
Phonons can also interact with electrons.   Phonons temporarily disrupt  the symmetries of an 
otherwise perfect crystal.  This disorder scatters electrons, limiting their motion, and is an 
important part of why materials have finite electrical resistance.  As the temperature increases, 
the lattice vibrates more strongly (there are more phonons), and thus the interaction with the 
electrons is stronger, and the resistance goes up.  This is very clear in a metal.  The same effect 
occurs in a semiconductor, but in this case, there is a competing effect – carrier generation – that 
overshadows it.  For semiconductors, resistivity goes down with temperature. 
 
 
2.3  Thermal properties of solids 

 
The lattice vibrations are usually the largest “reservoir” of thermal energy, i.e. the largest 
contributors to the internal energy of a solid.  Phonons are therefore very important for the heat 
capacity of solids.  In this section we will consider the contributions of phonons to the heat 
capacity of a solid 
 
 
2.3.1 Density of states and distributions functions 
 

The specific heat is defined at the change in energy per unit temperature: 

C 
Etot

T V or P
 

or, in different notation,   

Discussion question: 
Why do we use the frequency of the optic mode near k = 0? 
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C 
U

T V or P
. 

 
Thus a calculation of the heat capacity requires that we first calculate the total energy. We can 
then take the derivative with respect to temperature to obtain the heat capacity.   
 
To calculate the total energy of the system quantum particles (any quantum particles), we need 
three things: 
 

(i) the spectrum of energy states of the system, including any degeneracies; 
 

(ii) a distribution function  that tells us whether a particular state contributes to the total 
energy of the system, i.e. whether the state is occupied by one or more particles; 

 
(iii) a prescription for adding up the energies of the occupied states  –  a quantity called 
the density of energy states. 

 

We will eventually discuss the energy spectrum, the distribution function, and the density of 
states appropriate for phonons.  But first we will consider a simpler example drawn from 
elementary quantum mechanics, the one-dimensional infinite square well.  

 

The infinite square well potential in 1-D.   

 

The energy spectrum: 
 
Solving Schrödinger's equation (PH424) for an electron in a one-dimensional infinite square well 
gives us the energy spectrum 

En  n2 E0  
where n is an integer, n = 1, 2, 3, ……. 
 
Now, let's suppose that many electrons are in such a 1-D well, but they don’t “know” that the 
other electrons are there.  Stated more properly, this means that we are neglecting the 
electrostatic and magnetic interactions between electrons.  This sounds like an unreasonable 
assumption, especially when we consider the strong electrostatic mutual repulsion of electrons.  
Surprisingly, however, this actually works pretty well for metals!  The model of non-interacting 
electrons simply ensures that the potential energy well seen by any one electron is not modified 
by the presence of other electrons.  We will also assume, for simplicity, that our electrons have 
no spin.  The only rule is that an electron may not be characterized by the same quantum number 
as another (the Pauli Exclusion Principle).  In the present example, an electron is described by 
one of the state functions of the 1-D well – but only one such state may be assigned to each 
electron.  The states are assigned to the electrons using the “fairness principle” you learned about 
in PH423. 
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In a 1-D world of spin-less electrons, the electrons would then be characterized by quantum 
numbers 1 through 10, say, and the function that describes whether the state contributes to the 

total energy or not is Pn 
1 n  10

0 n  10
.  We will see shortly that use of this particular Pn amounts 

to assuming that our system is at absolute temperature T = 0.   
 
Now we simply add up the energies of the occupied states: 
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This is a very easy sum to do using the formula for the sum of the squares of the first m integers: 
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There are, however, many times when the sum is not so easy to perform, and it is mathematically 
simpler to approximate the sum by an integral.  What if we approximated the previous sum by an 
integral?  In that case, we would have 

Etot  E(n)P(n)dn
n0



  n2 E0dn
n0

10

 
1000

3
E0  333E0 . 

The integral approximation introduced an error (333E0 versus the exact result 385E0), but you 
can convince yourself that the error becomes ever smaller as the number of states involved 
increases.  In the spirit of the infinitesimals of calculus, e.g. dn, the approximation becomes 
better and better as the energy spacing between the states becomes a small fraction of the total 
energy involved.  This is almost always the case in solids where the number of atoms (and 
energy states) approaches 1023. 
 
The distribution function: 
 
The sum and integral we have been considering is not temperature dependent, because we picked 
a particular distribution function P(n) that corresponds to T = 0.  In general, the probability 
function Pn (or “occupation function” or “distribution function”) is different for different 
temperatures. In fact, most of the temperature dependence of the total energy usually comes from 
this function.  At T = 0, only the lowest available energy states are occupied, but at higher 
temperatures, higher energy states can be occupied, even if lower states are not.  This increases 
the entropy of the system.  
 
In the literature, the distribution function is usually given the symbol f, so we'll use that from 
now on.  Its dependence on the quantum state and temperature is denoted thus: f(n,T).  The 
distribution functions most frequently encountered are shown below: 
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The correct choice of distribution functions depends on the system under consideration. 
 
The Density of States: 
 
Often, the quantum number n isn't a convenient counter for the quantum states.  We may prefer 
to label states by their energy, or by their wave vector, or something else.  The label doesn't 
matter as long as we count all the states properly.  If we labeled states by their energies, could we 
simply write (remember we changed from P to f) 

Etot  E f (E,T )dE
E0



    ?  NO!!! 

Why not?  The answer is that the states are not equally distributed in energy space (not to 
mention that the dimensions are wrong!).  We have not considered how many states might exist 
in a given energy interval dn.  For example, consider our 1-D particle in a box for which the 
energy states are given by En  n2 E0 .  The allowed energies E0, 4E0 ,9E0,16E0,25E0..  become 
ever more widely separated as energy increases.  Thus it's not fair to weight every energy 
interval dE the same.  The correct expression is 

Etot  E f (E,T )D(E)dE
EElowest

Ehighest

  

where D(E), called the density of states, is the number of states per unit energy interval.  
Note that D(E) is a number per unit energy interval, not a spatial density.  You can easily see that 

for this 1-dimensional case, D(E) 
dn

dE
 but this does not hold in two or more dimensions!  We'll 

return to two and more dimensions later. 
 

Distribution functions: 
 
Maxwell-Boltzmann distribution function: fMB(n,T )  exp E(n) / kBT  
Fermi-Dirac distribution function: fFD(n,T ) 

1

exp E(n)  EF / kBT 1
 

Bose-Einstein distribution function: fBE(n,T ) 
1

exp E(n) / kBT 1
 


