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RC Circuits 
 

Concepts 
The addition of a simple capacitor to a circuit of resistors allows two related phenomena 

to occur.  The observation that the time-dependence of a complex waveform is altered by the 
circuit is referred to as a time-domain analysis.  On the other hand, observation that a 
single-frequency wave undergoes an amplitude and phase shift upon passage through the circuit 
is referred to as a frequency-domain analysis. 

 
Time-Domain Analysis of the RC Circuit 

The behavior of this "RC" circuit can be analyzed in the time-domain by solving an 
appropriate differential equation with the appropriate boundary conditions.  Begin with 
Kirchoff's Potential Law, which is a consequence of conservation of energy: 

  
V0 =VR +VC = IR + Q

C
= R dQ

dt
+ Q

C . 
Consider the case in which initially the capacitor is charged to   V0  through the horizontal 

switch while the vertical switch is open.  The boundary or initial condition is that at   t = 0  

  Q0 =V0 / C .  Now the horizontal switch is opened and the vertical switch is closed.  Charge 
flows from one side of the capacitor to the other, and the differential equation to solve is simply 

  
VR +VC = R dQ

dt
+ Q

C
= 0 ⇒ R

dQ t( )
dt

= −
Q t( )

C . 
The solution is 

  
Q t( ) = Q0e

− t
RC with Q0 =V0C . 

The quantity  τ = RC  is the time constant or characteristic time or 1/e time, and it is the time 
for the charge to decay from   Q0  to   Q0 / e .  The potentials across the resistor and capacitor are  

  
VR t( ) = I t( )R = R dQ

dt
= −V0e

− t
RC

 
and 

  
VC t( ) = Q t( ) / C =V0e

− t
RC . 

Now consider the case in which initially RC is grounded through closure of the vertical 
switch.  When this switch is opened and the horizontal switched is closed, current begins to 
flow and the capacitor begins to charge.  The initial or boundary condition is that at   t = 0 , 

  VR +VC =V0 , and the equation to solve is 

R

CV0
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V0 =VR +VC = IR + Q

C
= R dQ

dt
+ Q

C . 
The solution is the solution above (the solution to the homogeneous equation) plus whatever is 
necessary to satisfy the initial condition.  Thus, the solution is 

  
Q t( ) = Q0 1− e

− t
RC

⎛

⎝⎜
⎞

⎠⎟
with Q0 =V0C

. 
In time  τ = RC ,  Q  rises from 0 to 

  
Q0 1−1/ e( ) .  Notice that the current decreases with time 

as 

  
I t( ) = dQ

dt
=

V0

R
e
− t

RC

. 
The potentials across the resistor and capacitor are 

  
VR t( ) = I t( )R = R dQ

dt
=V0e

− t
RC , 

and 

  
VC t( ) = Q t( ) / C =V0 1− e

− t
RC

⎛

⎝⎜
⎞

⎠⎟
. 

Instead of using manual switches, it is easier to use a square wave from a function 
generator to alternate the applied potential between 0 and   V0 .  This circuit and the resulting 

 
Vout t( ) =VC t( )  measured across the output terminals for a low frequency square wave are shown 
in the figure below. 

 
As the frequency of the applied square wave increases, the output waveform is 

diminished because there is insufficient time for the capacitor to charge to the applied voltage.  
Examining the expression for  

VC t( )  at times t small compared to τ, we find 

   
VC t( ) =V0 1− e

− t
RC

⎛

⎝⎜
⎞

⎠⎟
!V0 1− 1− t

RC
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
=V0

t
RC

 

using the expansion 

   
ex = xn

n!n=0

∞

∑ ! 1+ x . 

Thus  
VC t( ) is linear in t with a slope   1 RC .  At high frequencies, the RC circuit acts as an 

integrator of a square wave, as shown below. 

R

C

Vin(t) Vout(t)
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Time-Domain Analysis of the CR Circuit 

 
If we swap the positions of the resistor and capacitor, we have a CR circuit, where we 

measure the output voltage across the resistor.  The Kirchoff loop analysis from above is still 
valid here, the only change being that  Vout =VR .  Using the results from above, the output 
signal response to a square wave input is shown below.  In this case, the input frequency is low 
and the circuit behaves as a differentiator. 
 

 
Frequency Domain Analysis 

The behavior of these circuits in the frequency-domain can be determined by solving the 
same differential equation using a single-frequency applied potential 

  
Vin t( ) =V0e

iωt .  As 
pictured below, the resulting 

 
Vout t( )  has a smaller amplitude and is shifted in phase. 

R

A

B

CVin(t)
Vout(t)

R

A

C

B

R

C

Vin(t)
Vout(t)

C

Vin(t) Vout(t)

R



 4 

 
The analysis begins with 

  
Vin t( ) =VR t( ) +VC t( ) = I t( )R +

Q t( )
C

= R dQ
dt

+
Q t( )

C
.  

In steady state,  
Q t( )  oscillates at the same frequency ω  as the applied signal but with a 

different phase: 
  
Q t( ) = Q0e

i ωt+α( ) .  Thus, 

  
Voe

iωt = iωR + 1
C

⎛
⎝⎜

⎞
⎠⎟

Q0e
i ωt+α( )  

or 

  
V0 = iωR + 1

C
⎛
⎝⎜

⎞
⎠⎟

Q0e
iα  

  V0  is the amplitude of the input potential at frequency ω , and   Q0 / C  is the amplitude of the 
output signal across the capacitor at frequency ω .  At this point, we have two unknowns,   Q0  
and α ,but only one equation.  However, there are actually two equations here.    V0  is a real 
number and must be equal to the real part of the right hand side of the equation, and the 
imaginary part of the right hand side must be zero.  Rewriting this expression as 

  

V0C
Q0

= 1+ iωRC( )eiα = 1+ω 2R2C 2 ei tan−1ωRCeiα

= 1+ω 2R2C 2 e
i α+tan−1ωRC( )

, 

the fact that the imaginary part of the right hand side must be zero yields 

  α = −tan−1ωRC.  
Then, 

  

V0C
Q0

= 1+ω 2R2C 2 → Q0 =
V0C

1+ω 2R2C 2
 

The final result for the output signal across the capactitor is 

  
VC ω( ) = V0 ω( )

1+ω 2R2C 2
e− i tan−1ωRC  

The frequency-dependent transmission function or response function for this circuit is  

  
A ω( ) = Vout ω( )

Vin ω( ) =
VC ω( )
V0 ω( ) =

1

1+ω 2R2C 2
e− i tan−1ωRC . 

We define the corner, or 3dB, frequency as 

  
ω c =

1
RC

, 

yielding the response function 

  

A ω( ) = 1

1+ ω ω c( )
e− i tan−1 ω ωc( ) . 

Notice that the phase difference  α → 0  as  ω → 0  and  α → −π / 2  for   ω ≫ω c  and that the 
amplitude 

 
A ω( )  is 1 at low frequency but tends to zero at high frequency.  The conclusion is 
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that this circuit is a low-pass filter, meaning that it does not transmit high frequencies very well. 
 
Concept of Impedance 

The current-potential relationship across the capacitor is interesting.  The current in the 
circuit is 

  
I t( ) = dQ

dt
= iωQ0e

i ωt+α( )  

so, in the frequency domain, 

  
I ω( ) =ωQ0 ω( )ei α+π /2( )

.
 

The interesting result is that 

  

VC ω( )
I ω( ) = 1

iωC
.
 

Thus, the potential across a capacitor is  

 
V ω( ) = I ω( )Z ω( )  

where the impedance of the capacitor is  

  
Z ω( ) = 1

iωC
 

The expression  
V ω( ) = I ω( )Z ω( )  looks like Ohm's law, but it is not.  It simply states that 

there is a linear relationship between the frequency-dependent complex potential and the 
frequency-dependent complex current.  Capacitors are non-dissipative elements, so the 
time-average power 

  
Re V t( ) I t( ) = 0 .  For a resistor, the impedance is  

Z ω( ) = R , a real 
quantity independent of frequency. 

It is important to understand the physical significance of the impedance  
Z ω( )  of a 

capacitor.  At low frequencies, the impedance  Z →∞  and the capacitor acts as an open 
circuit.  At high frequencies, the impedance   Z → 0  and the capacitor acts as an short circuit.  
These two limiting behaviors are useful in determining the behavior of a circuit without 
performing a detailed analysis. 
Concept of Impedance 

With this definition of the complex impedance of a capacitor, it is now easy to analyze an 
RC circuit in the frequency domain.  The expression for a potential divider can be used to 
determine the potential across the capacitor in the RC circuit: 

  

VC ω( ) =V0 ω( ) ZC ω( )
ZC ω( ) + R

=V0 ω( ) 1 iωC
1 iωC + R

=V0 ω( ) 1
1+ iωRC

=V0 ω( ) 1

1+ω 2R2C 2
e− i tan−1ωRC

 

This expression is consistent with the previous conclusion that the RC circuit is a low-pass filter. 
For the CR circuit, the potential divider expression yields the voltage across the resistor: 
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VR ω( ) =V0 ω( ) R
ZC ω( ) + R

=V0 ω( ) R
1 iωC + R

=V0 ω( ) 1

1− i 1
ωRC

=V0 ω( ) 1

1+ 1
ω 2R2C 2

e
i tan−1 1

ωRC
 

 


