
Saint-Venant Equations

We consider the following two equations:

B
∂y

∂t
+
∂Q

∂x
= 0, x ∈ [a, b], t ∈ [t0, t1] (1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂y

∂x
+ Sf − S0

)
= 0, x ∈ [a, b], t ∈ [t0, t1],(2)

where y is a depth, Q is a streamflow, B is a width of the channel, g is an
accelaration due to gravity, A is a cross-sectional area of the flow, Sf is a
friction slope, S0 is a channel bottom slope, assumed given constant and
considered positive sloping downwards, (b − a) is a length of the channel.
y and Q are two unknowns. We prescribe initial conditions

y(x, 0) = y0(x), x ∈ [a, b] (3)

Q(x, 0) = Q0(x), x ∈ [a, b]. (4)

We assume that we deal with the subcritical flow, so we need to prescribe
only two boundary conditions: one on the left end and one on the right
end

y(b, t) = yb(t), t ∈ [t0, t1] (5)

Q(a, t) = Qa(t), t ∈ [t0, t1]. (6)

The formulas describing the relationship between the mentioned variables
are given below:

Q = V A, Discharge formula (7)

A = By, only for rectangular channels (8)

Sf =
n2|Q|Q
k2A2R4/3

, Manning formula (9)

where V is a cross-sectional average velocity of the flow, R =
A

P
is a

hydraulic radius, P = 2y + B is a wetted perimeter, k is a conversion
factor, n is the Gauckler-Manning coefficient.

For B � y, we can approximate R ≈ y, so in terms of Q and y we have

Sf ≈
n2|Q|Q
k2B2y10/3

.
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In terms of y and flow velocity V equations (1) and (2) can be rewritten
as

∂y

∂t
+ V

∂y

∂x
+ y

∂V

∂x
= 0, x ∈ [a, b], t ∈ [t0, t1] (10)

∂V

∂t
+ V

∂V

∂x
+ g

∂y

∂x
+ g(Sf − S0) = 0, x ∈ [a, b], t ∈ [t0, t1]. (11)

The criteria for the subcritical, supercritical or critical flow is the Froude

number, Fr =
V

c
, where c is the celerity of a gravity wave defined as

c =

√
g
A

B
=
√
gy. (12)

In terms of Q and y the Froude number can be written as

Fr =
V

c
=

Q

A
√
gy

=
Q

By
√
gy

=
Q

B
√
gy3

. (13)

If Fr < 1 we deal with the subcritical flow, if Fr = 1 or > 1 we have critical
or supercritical flow, respectively.

Numerical scheme

Preissman scheme

In this scheme the partial derivatives and other variables are approximated
as follows(

∂f

∂t

) ∣∣∣
(xi,yk)

=
(fk+1

i + fk+1
i+1 )− (fki + fki+1)

2∆t
(14)(

∂f

∂x

) ∣∣∣
(xi,yk)

=
θ(fk+1

i+1 − fk+1
i )

∆x
+

(1− θ)(fki+1 − fki )

∆x
(15)

f̄ |(xi,yk) =
1

2
θ(fk+1

i+1 + fk+1
i ) +

1

2
(1− θ)(fki+1 + fki ), (16)

where θ is a weighting coefficient. The scheme is unconditionally stable if
0.55 < θ ≤ 1.
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Then the discretized equations can be written for i = 1, N − 1

B
(yk+1

i + yk+1
i+1 )− (yki + yki+1)

2∆t
+

+
θ(Qk+1

i+1 −Qk+1
i )

∆x
+

(1− θ)(Qk
i+1 −Qk

i )

∆x
= 0,(17)

(Qk+1
i +Qk+1

i+1 )− (Qk
i +Qk

i+1)

2∆t
+

+

θ

[(
Q2

By

)k+1

i+1
−
(

Q2

By

)k+1

i

]
∆x

+

(1− θ)
[(

Q2

By

)k
i+1
−
(

Q2

By

)k
i

]
∆x

+

+gBȳki

(
θ(yk+1

i+1 − yk+1
i )

∆x
+

(1− θ)(yki+1 − yki )

∆x
+ S̄k

f,i − S̄k
0,i

)
= 0.(18)

The simplification leads to

(yk+1
i + yk+1

i+1 ) +
2∆tθ

B∆x
(Qk+1

i+1 −Qk+1
i ) −

−(yki + yki+1) +
2∆t(1− θ)
B∆x

(Qk
i+1 −Qk

i ) = 0,(19)

(Qk+1
i +Qk+1

i+1 ) +
2∆tθ

B∆x

[(
Q2

By

)k+1

i+1

−
(
Q2

By

)k+1

i

]
−

−(Qk
i +Qk

i+1) +
2∆t(1− θ)
B∆x

[(
Q2

By

)k

i+1

−
(
Q2

By

)k

i

]
+

+gB∆tȳki

(
θ(yk+1

i+1 − yk+1
i )

∆x
+

(1− θ)(yki+1 − yki )

∆x
+ S̄k

f,i − S̄k
0,i

)
= 0.(20)

Boundary conditions give us 2 additional equations:

yk+1
N = yb(tk+1), (21)

Qk+1
1 = Qa(tk+1). (22)
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Numerical simulations
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