Saint-Venant Equations

We consider the following two equations:
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where y is a depth, @) is a streamflow, B is a width of the channel, ¢ is an
accelaration due to gravity, A is a cross-sectional area of the flow, Sy is a
friction slope, Sy is a channel bottom slope, assumed given constant and
considered positive sloping downwards, (b — a) is a length of the channel.
y and @) are two unknowns. We prescribe initial conditions

y(ZE‘, O) - yo(l'), xr € [CL, b] (3)
Q(%,O) - QO(x)’ T € [CL, b] (4>
We assume that we deal with the subcritical flow, so we need to prescribe

only two boundary conditions: one on the left end and one on the right
end

=0, xe€ [a,b],t c [to,tl] (1)

y(b, t) - yb(t)ﬂ te [t07t1] (5)
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The formulas describing the relationship between the mentioned variables
are given below:

QQ = VA, Discharge formula (7)
A = By, only for rectangular channels (8)
g, — n1QlQ Mannine formul 9)
;= s anning formula
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where V' is a cross-sectional average velocity of the flow, R = — is a

hydraulic radius, P = 2y + B is a wetted perimeter, k is a conversion
factor, n is the Gauckler-Manning coefficient.

For B > y, we can approximate R = y, so in terms of ) and y we have
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In terms of y and flow velocity V' equations and can be rewritten
as
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o Vo Ve =0 x € [a,b],t € [to,t]  (10)
A% oV 0
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The criteria for the subcritical, supercritical or critical flow is the Froude

v
number, F, = —, where c is the celerity of a gravity wave defined as
c

c:\/%:\/g_y. (12)

In terms of ) and y the Froude number can be written as
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If F, < 1 we deal with the subcritical flow, if F,, = 1 or > 1 we have critical
or supercritical flow, respectively.
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Numerical scheme

Preissman scheme

In this scheme the partial derivatives and other variables are approximated
as follows
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where 0 is a weighting coefficient. The scheme is unconditionally stable if
0.55 <0 < 1.



Then the discretized equations can be written for2 =1, N — 1
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The simplification leads to
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Boundary conditions give us 2 additional equations:

yNtt = (i), (21)
QY = Qultir). (22)



Numerical simulations



