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Abstract

The stability properties, and the phase error
present in higher order (in space) staggered finite dif-
ference schemes for Maxwell’s equations coupled with
a Debye polarization model are analyzed. We present
a novel expansion of the symbol of finite difference
approximations, of arbitrary (even) order, of the first
order spatial derivative operator. This representa-
tion allows the derivation of a closed-form analytical
stability condition for all (even) order schemes, in-
cluding the limiting (infinite order) case. We further
derive a concise formula for the numerical dispersion
relation.

Introduction

Computational simulations of the propagation and
scattering of transient electromagnetic waves in dis-
persive dielectrics can be studied by numerically solv-
ing the time-dependent Maxwell’s equations coupled
to equations that describe the evolution of the in-
duced macroscopic polarization [1]. The latter incor-
porates the physical dispersion of the medium and
its response to the electromagnetic pulse.

We consider Maxwell’s equations in Debye disper-
sive media using the auxilliary differential equation
(ADE) approach, and analyze high order (in space)
staggered (Yee) FDTD-like methods for the numeri-
cal discretization of the augmented Maxwell system.
Our focus in this paper is the derivation of closed
form analytical stability criteria for high order stag-
gered finite difference methods including the limiting
infinite order method. In addition we also derive nu-
merical dispersion relations for these schemes.

1 Model Formulation

We consider the Maxwell curl equations, which
govern the electric field E, and the magnetic field
H in a domain Ω with no free charges in the time
interval (0, T ), given as

∂D

∂t
− 1

µ0
∇×B = 0 in (0, T )× Ω, (1.1a)

∂B

∂t
+∇×E = 0 in (0, T )× Ω, (1.1b)

along with initial conditions. The fields D,B are
the electric, and magnetic flux densities, respectively.
All the fields in (1.1) are functions of position x =
(x, y, z) and time t. Here we neglect the effects of
boundary conditions.

We will consider the case of a dispersive dielec-
tric medium in which magnetic effects are negligible.
Thus, within the dielectric medium we have consti-
tutive relations that relate the flux densities D,B to
the electric, and magnetic fields, respectively, as

D = ε0εrE + P, B = µ0H. (1.2)

The parameters ε0, and µ0, are the permittivity, and
permeability, respectively, of free space. The field
vector P is called the macroscopic electric polariza-
tion, and the parameter εr is the relative permittivity
of the dielectric. The constitutive relations (1.2) de-
scribe the response of a material to the electromag-
netic fields.

In this abstract we concentrate our analyses on the
single pole Debye polarization model, although the
methods can be easily extended to Lorentz (see [1])
and multi-pole models.

1.1 Orientational Polarization: The Debye Model

A (single-pole) Debye model can be represented in
(macroscopic) differential form as

ε0ε∞τ
∂E

∂t
+ ε0εsE = τ

∂D

∂t
+ D. (1.3)

In equation (1.3), the parameter εs is the static rela-
tive permittivity. The presence of instantaneous po-
larization is accounted for by the coefficient εr = ε∞,
the infinite frequency permittivity, in the electric flux
equation in (1.2) and in the Debye model (1.3). The
difference between these permittivities is commonly
written εd := εs−ε∞. The electric polarization driven
by the electric field, less the part included in the in-
stantaneous polarization, can be understood to be a
decaying exponential with relaxation parameter τ .

2 Reduction to One Dimension

We consider the one dimensional case in which the
electric field is assumed to be polarized to oscillate



in the y direction and propagates in the z direction.
Thus, we are only concerned with the scalar values
E(t, z), D(t, z), and B(t, z).

In this case Maxwell’s equations (1.1) in the inte-
rior of the domain Ω become

∂B

∂t
=
∂E

∂z
,
∂D

∂t
=

1

µ0

∂B

∂z
. (2.1)

3 2M Order Spatial Approximations

In this section we describe the construction of
higher order approximations to the first order deriva-
tive operator ∂/∂z.

3.1 Staggered `2 Normed Spaces

We introduce the following staggered `2 normed
spaces that will aid in obtaining the basic properties
of the high order approximations. We define the pri-
mary grid, Gp, of R, and the dual grid, Gd, of R both
with space step size h to be

Gp = {`h | ` ∈ Z}, (3.1)

Gd =

{(
`+

1

2

)
h | ` ∈ Z

}
, (3.2)

respectively. For any function v, we denote v` =
v(`h) and v`+ 1

2
= v((` + 1

2)h). We define stag-

gered `2 normed spaces on Gp and Gd, respectively,
as V0 = {(v`), ` ∈ Z| h

∑
`∈Z |v`|2 ≤ ∞}, and

V 1
2

=
{(
v`+ 1

2

)
, ` ∈ Z| h

∑
`∈Z |v`+ 1

2
|2 ≤ ∞

}
, with

scalar products (·, ·)0 and (·, ·) 1
2

derived from the

norms ||v||20 = h
∑
|v`|2 and ||v||21

2

= h
∑
|v`+ 1

2
|2.

Next, we define the discrete operators D(2)
p,h : V0 →

V 1
2

and D̃(2)
p,h : V 1

2
→ V0 by(

D(2)
p,hu

)
`+ 1

2

=
u`+p − u`−p+1

(2p− 1)h
, (3.3a)(

D̃(2)
p,hu

)
`

=
u`+p− 1

2
− u`−p+ 1

2

(2p− 1)h
. (3.3b)

These are second-order discrete approximations of
the operator ∂/∂z computed with stepsize (2p− 1)h.

3.2 Two Different Ways of Constructing Finite Dif-
ference Approximations

We construct finite difference approximations of
order 2M of the first order operator ∂/∂z, where
M ∈ N is arbitrary. These approximations will be
denoted as

D(2M)
1,h : V0 → V 1

2
; D̃(2M)

1,h : V 1
2
→ V0. (3.4)

The operators in (3.4) can be considered from two
different points of view [2]

(V1) as linear combinations of second order ap-
proximations to ∂/∂z of the form (3.3) computed
with different space steps, and

(V2) as a result of the truncation of an appropriate
series expansion of the symbol of ∂/∂z.

3.2.1 Series Expansion of the Symbol of ∂/∂z

With respect to the second point of view, (V2),

we can interpret the operators D(2M)
1,h and D̃(2M)

1,h via
their symbols. We define the symbol of a differential
operator, as well as its finite difference approxima-
tion, via its application to harmonic plane waves [2].
Thus, if v(z) = eikz then ∂v/∂z = ikv(z), and

F (∂/∂z) = ik, (3.5)

where F (∂/∂z) denotes the symbol of the differential
operator ∂/∂z. We can show that the symbol of the

finite difference operator D̃(2M)
1,h (or D(2M)

1,h ) can be
written as

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
j=1

λ2M
2j−1

2j − 1
sin(kh(2j− 1)/2), (3.6)

where for 1 ≤ p ≤M ,

λ2M
2p−1 =

2(−1)p−1[(2M − 1)!!]2

(2M + 2p− 2)!!(2M − 2p)!!(2p− 1)
, (3.7)

and the double factorial is defined as

n!! =


n · (n− 2) · (n− 4) . . . 5 · 3 · 1 n > 0, odd

n · (n− 2) · (n− 4) . . . 6 · 4 · 2 n > 0, even

1, n = −1, 0.

We now introduce the following alternative formula-

tion of the symbol of the operator D̃(2M)
1,h .

Theorem 1 ([1]) The symbol of the operator D̃(2M)
1,h

can be rewritten in the form

F
(
D̃(2M)

1,h

)
=

2i

h

M∑
p=1

γ2p−1 sin2p−1(kh/2), (3.8)

where the coefficients γ2p−1 are strictly positive, inde-
pendent of M , and are given by the explicit formula

γ2p−1 =
[(2p− 3)!!]2

(2p− 1)!
. (3.9)

The coefficients γ2p−1, defined in (3.9), are the coeffi-
cients in the Taylor expansion of the function sin−1 x
around zero.



Lemma 1 The series
∑∞

p=1 γ2p−1 is convergent and
its sum is π/2.

In Table 1 we provide the coefficients γ2p−1 for vari-
ous values of p.

Table 1: The first four coefficients γ2p−1

γ1 γ3 γ5 γ7

1 1
6

3
40

5
112

4 High Order Numerical Methods for Debye
Dispersive Media

In this section we construct a family of finite differ-
ence schemes for Maxwell’s equations in Debye dis-
persive media in 1D. These schemes are based on the
discrete higher order (2M, M ∈ N) approximations
to the first order operator that were constructed in
Section 3. For the time discretization we employ the
standard leap-frog scheme which is second order ac-
curate in time. We will denote the resulting schemes
as (2, 2M) schemes. When M = 1, the corresponding
(2, 2) schemes are extensions of the Yee scheme, or
FDTD scheme, for Maxwell’s equations to dispersive
media.

The (2, 2M) discretized schemes for Maxwell’s
equations (2.1) in 1D are

B
n+ 1

2

j+ 1
2

−Bn− 1
2

j+ 1
2

∆t
=

M∑
p=1

λ2M
2p−1

(
D(2)
p,∆zE

)
j+ 1

2

, (4.1a)

Dn+1
j −Dn

j

∆t
=

1

µ0

M∑
p=1

λ2M
2p−1

(
D̃(2)
p,∆zB

)
j
, (4.1b)

where, λ2M
2p−1 is defined in (3.7), and the discrete op-

erators D(2)
p,∆z and D̃(2)

p,∆z are defined in (3.3) with
h = ∆z.

4.1 (2, 2M) Numerical Methods for Debye Media

For a Debye media we add the discretized (in time)
version of the equation (1.3) given as

ε0ε∞τ
En+1
j − Enj

∆t
+ ε0εs

En+1
j + Enj

2

= τ
Dn+1
j −Dn

j

∆t
+
Dn+1
j +Dn

j

2
, (4.1c)

to the system defined in (4.1a) and (4.1b).

5 von Neumann Stability Analysis

We look for plane wave solutions of (a scaled
version of) (2.1) with (1.3) as numerically evalu-
ated at the discrete space-time point (tn, zj), or
(tn+1/2, zj+1/2). We assume a spatial dependence of
the form, e.g.,

B
n+ 1

2

j+ 1
2

= B̂n+ 1
2 (k)e

ikz
j+1

2 ; Enj = Ên(k)eikzj (5.1)

in the field quantities, with k defined to be
the wavenumber. Define the vector Un :=
[c∞B̂

n− 1
2 , Ên, 1

ε0ε∞
D̂n]T , where c2

∞ := 1/(ε0µ0ε∞).
Substituting the forms (5.1) into the higher order
schemes (4.1), and canceling out common terms we
obtain the system Un+1 = AUn. The characteristic
polynomial of A is given by

PD
(2,2M)(ζ) = ζ3 +

(
qε∞(2 + hτ )− (6ε∞ + hτ εs)

2ε∞ + hτ εs

)
ζ2

+

(
qε∞(hτ − 2) + (6ε∞ − hτ εs)

2ε∞ + hτ εs

)
ζ −

(
2ε∞ − hτ εs
2ε∞ + hτ εs

)
where hτ := ∆t/τ, εq := εs/ε∞, q := |σ|2 and

σ := −η∆zF
(
D̃(2M)

1,∆z

)
. (5.2)

The parameter η is the Courant (stability) number
η := (c∞∆t)/∆z , where c∞ is the maximum speed
of light in the Debye medium.

Theorem 2 ([1]) A necessary and sufficient stabil-
ity condition for the (2, 2M) scheme in (4.1) is that

4η2

 M∑
p=1

γ2p−1 sin2p−1

(
k∆z

2

)2

< 4, ∀k, (5.3)

which implies that η
(∑M

p=1 γ2p−1

)
< 1, or that

∆t <
∆z(∑M

p=1

[(2p− 3)!!]2

(2p− 1)!

)
c∞

. (5.4)

In the limiting case (as M → ∞), we may evaluate
the infinite series using Lemma 1. Therefore,

M =∞, η
(π

2

)
< 1⇐⇒ ∆t <

2∆z

π c∞
. (5.5)

The positivity of the coefficients γ2p−1 gives that the
constraint on ∆t in (5.5) is a lower bound on all con-
straints for any M ∈ N. Therefore this constraint
guarantees stability for all orders.



6 Dispersion Analysis

We assume plane wave solutions of the form

ei(k
D
FD,M j∆z−ωn∆t), where kD

FD,M represents the nu-
merical wave number. By considering plane wave
solutions for all the discrete variables in the (2, 2M)
finite difference schemes for Debye media given in
(4.1), we can derive the numerical dispersion rela-
tion of this scheme. First, we define the following
quantity which relates the order of the method to
the resulting numerical wavenumber kD

FD,M ,

KD
FD,M (ω) :=

2

∆z

M∑
p=1

γ2p−1 sin2p−1

(
kD

FD,M (ω)∆z

2

)
,

where the coefficients γ2p−1 are those defined in The-
orem 1. Thus, the numerical dispersion relations of
the (2, 2M) schemes for the Debye model, which im-
plicitly give kD

FD,M as a function of discretization pa-
rameters and ω, can be succinctly written as

KD
FD,M (ω) =

ω∆

c

√
εDr,FD; εDr,FD :=

εs,∆λ∆ − iω∆ε∞,∆
λ∆ − iω∆

,

where the parameters εs,∆ := εs; ε∞,∆ :=
ε∞; λ∆ := λ cos(ω∆t/2), are discrete representa-
tions of the corresponding continuous model param-
eters. In addition the parameter ω∆, which is a dis-
crete representation of the frequency, is defined as

ω∆ := ω
sin (ω∆t/2)

ω∆t/2
.

We define the phase error Φ to be

Φ =

∣∣∣∣∣kEX − kD
FD,M

kEX

∣∣∣∣∣ , (6.1)

where the numerical wave number kD
FD,M is implic-

itly determined by the corresponding dispersion rela-
tion and kEX is the exact wave number for the Debye
model. We wish to examine the phase error as a
function of ω∆t in the range [0, π].

In Figure 1 we depict the phase error Φ defined in
(6.1), versus ω∆t, for (spatial) orders 2M = 2, 4, 6, 8
and the limiting (M = ∞) case, with the parame-
ters: ε∞ = 1; εs = 78.2; τ = 8.1 × 10−12 sec.
These are appropriate constants for modeling water
and are representative of a large class of Debye type
materials. In [1] we provide comparisons of different
order methods by considering these dispersion plots
for different values of hτ and η.
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Figure 1: Phase error φ using hτ = 0.1 with η set
to the maximum stable value for the order.

7 Conclusions

For each order of scheme we have given a necessary
and sufficient stability condition which is explicitly
dependent on the material parameters and the order
of the method. Additionally, we have found a bound
for stability for all orders by computing the limit-
ing (infinite order) case. Further, we have derived
a concise representation of the numerical dispersion
relation for each scheme of arbitrary order, which
allows an efficient method for predicting the numeri-
cal characteristics of a simulation of electromagnetic
wave propagation in a dispersive material.
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