
COMAP 2008
Mathematical Contest in

Modeling

Team 3825
Problem B: Creating Sudoku Puzzles

February 18, 2008

Team #3825 2 of 13

Contents

1 Introduction 3

2 Definitions 3
2.1 Basic Definitions . 3
2.2 Methods . 3

2.2.1 Naked Singles . 4
2.2.2 Hidden Singles . 4
2.2.3 Locked Candidates . 4
2.2.4 Naked Pairs . 5
2.2.5 Hidden Pairs . 6
2.2.6 Naked/Hidden Triples, Naked/Hidden Quads 6
2.2.7 Expert Methods . 6
2.2.8 Trial and Error Methods 7

3 Difficulty Metrics 8
3.1 Sparseness . 8
3.2 Elapsed time of Expert . 8
3.3 Weighted sum of methods used 8
3.4 Level of Required Skill . 9

4 Our Approach 9
4.1 Difficulty Hierarchy . 9

4.1.1 Difficulty Level 1 . 9
4.1.2 Difficulty Level 2 . 10
4.1.3 Difficulty Level 3 . 10
4.1.4 Difficulty Level 4 . 10
4.1.5 Difficulty Level 5 . 10

4.2 Preliminaries for Algorithm Implementation 10
4.3 Sudoku Generation Algorithm . 10
4.4 Error Analysis . 11

5 Conclusion 11

References 13

Team #3825 3 of 13

1 Introduction

To make a Sudoku-generating algorithm that also produces a puzzle of specified
difficulty, we first determined how our metric would be accurately rate diffi-
culty. It was immediately obvious that the sparseness of a Sudoku puzzle does
not necessarily determine its logical difficulty. We then researched the various
methods used to solve Sudokus and were able to identify how advanced each
method was based on their logical complexity in comparison with one another.

After ranking the complexity of the methods, we researched and found a
code by the name of ’Dancing Links’ that was capable of generating a Sudoku
and determining its uniqueness. By combining our methods with the Dancing
Links algorithm, we produced a generator that could generate a Sudoku that
was guaranteed to be both unique and of a given difficulty level. This was
achieved by having our ”hybrid” algorithm generate a puzzle, and remove cells
one by one, each time check if the puzzled maintained uniqueness, or if the
difficulty had yet exceeded that which was selected.

In this way, we found a metric by which we could generate and rate Sudoku
puzzles, that was not only simple, but gives ratings representative of the level
of logic need to solve them.

2 Definitions

This terminology will be used throughout the paper.

2.1 Basic Definitions

• A board (also: Sudoku, puzzle) is a 9 x 9 grid containing initially filled
cells which imply a unique solution

• A solution (also: Completed Puzzle) is a completely filled board

• A non-unique puzzle is a puzzle with more than one solution. They will
inherently require trial-and-error (with lack of error) methods to solve.

• A cell is one of 81 small grid elements

• A filled cell is a cell with a presumably correct value in it

• A value (also: an entry) is the number in a filled cell

• A candidate is a possible digit that may be placed into a cell. Usually
denoted by ‘small numbers.’

• A grouping is a collection of 9 cells, which upon puzzle completion, con-
tain 1-9 inclusive. There are three kinds of groupings on a standard Su-
doku board: by row, by column and by box.

Team #3825 4 of 13

• A row is one of nine 1 x 9 rectangular horizontal groupings

• A column is one of nine 9 x 1 rectangular vertical groupings

• A box (also: square) is one of nine 3 x 3 square groupings

• A method is a logic based strategy used to solve a puzzle

• A cancelation is the removal of a candidate from a cell.

• Elimination is the process of removing cells from a solution to create a
puzzle. All examples of elimination in this project avoid removing cells
that would cause a puzzle non-unique.

• A Max Eliminated puzzled is one such that upon removal of any filled
cells, the resulting puzzle is non-unique.

2.2 Methods

Sudoku solvers employ a wide variety of methods when solving puzzles. A num-
ber are listed below; most with examples. We will be discussing these methods
throughout the project as they are fundamental to our generator algorithm and
difficulty metric.

2.2.1 Naked Singles

Any given cell where there exists only one candidate is filled in with that can-
didate.

Figure 1: An example of a Naked Single. Here the circled 9 is the only candidate
for the given cell.

Team #3825 5 of 13

2.2.2 Hidden Singles

If any cell within a given grouping is the only possible location for a given
candidate, then that cell is filled in with that candidate.

Figure 2: An example of a Hidden Single. Here the circled 6 is the only candidate
6 within the given grouping.

2.2.3 Locked Candidates

There are two ways Locked Candidates can occur.

• When a candidate for a given box appears only in a single row/column, the
candidate(s) outside the box and inside the row/column can be eliminated.

Figure 3: An example of a type 1 Locked Candidate. Here the candidate 2’s
of the rightmost box appear only in the bottom row (circled). Therefore, no
candidate 2’s can exist outside the rightmost box when in the bottom row.

• When a candidate for a given row/column appears only in a single box, the
candidate(s) outside the row/column and inside the box can be eliminated.

Team #3825 6 of 13

Figure 4: An example of a type 2 Locked Candidate. Here the candidate 9’s of
the top row appear only in the middle box (circled). Therefore, no candidate
9’s can exist outside the top row inside the middle box.

2.2.4 Naked Pairs

When two unfilled cells within a single grouping contain the same two (and
only two) candidates, no other cells within that grouping can contain those
candidates.

Figure 5: An example of a Naked Pair. Here, the circled 6’s and 8’s appear
naked in this grouping. Therefore, candidate 6’s and 8’s cannot exist elsewhere
in this grouping.

2.2.5 Hidden Pairs

When two unfilled cells within the same grouping contain contain the only two
instances of two given candidates within that grouping, all other candidates in
the two cells can be eliminated.

Team #3825 7 of 13

Figure 6: An example of a Hidden Pair. Here the candidate 1’s and 9’s appear
in only two cells of this grouping (circled). Therefore, no other candidates can
exist in these two cells.

2.2.6 Naked/Hidden Triples, Naked/Hidden Quads

These are straightforward generalizations of the single and pair strategies listed
above.

2.2.7 Expert Methods

Several more advanced strategies exist which look at complex relations between
elements across many different groupings. Some of these strategies include Fish
methods. Though there are more advanced methods still, we feel these methods
are representative of the most used. Fish methods work on this principle:

Identify N columns (2 for X-wing, 3 for the Swordfish, 4 for a Jelly-
fish, 5 for a Squirmbag) with two to N candidate cells for a specific
value (the defining cells). If the defining cells fall on exactly N rows,
then in all N rows, the candidates are canceled from any cell that
isn’t one of the defining cells. These methods can also be done with
rows and columns interchanged. [1]

Team #3825 8 of 13

Figure 7: A demonstration of the Swordfish method (N=3). All candidates
other than 5’s have been hidden, and candidate 5 cells have been shaded blue.
Here, N=3 rows all contain two to N candidate 5’s (for this case, all contain
two). Because these defining cells fall into N=3 columns, all 5’s in these columns
not in a defining cell are canceled.

2.2.8 Trial and Error Methods

There are a lot of names for these methods, such as Nishio, Bifurcation and
Ariadne’s Thread, but they all have the same principle [7]. If other methods
have been exhausted, then there may be no other choice than to assign a cell
a value and continue on this assumption until a contradiction is reached or the
puzzle is solved. All possibilities are explored until the solution is found.

3 Difficulty Metrics

3.1 Sparseness

This rating metric, common among computer generated puzzles, uses the initial
number of vacant to rank its difficulty [3, 4]. Although simple, it does not rec-

Team #3825 9 of 13

ognize that difficulty and sparseness of initially filled cells are often independent
of one another. While sparser puzzles may require more steps to complete, they
are not necessarily more difficult. This is demonstrated by Fig. 8(a), which
while being thinly populated, can be solved using only Naked and Hidden Sin-
gles. It is also possible to have more populated puzzles which are impossible
to solve without more difficult methods such Locked Candidates and Hidden
Pairs, such as in Fig. 8(b). Puzzles generated in this manner cannot be tailored
to higher level methods.

(a) A sparse but easy puzzle. (b) A populated but relatively difficult
puzzle.

Figure 8: Examples showing incorrectness of using sparseness as a difficulty
metric.

3.2 Elapsed time of Expert

Difficulty could potentially be measured by a completion times averaged over
a number of experts. Ideally, this number would be large enough to eliminate
subjectivity. Computers can only roughly approximate the thought process of
an expert and this process is by no means simple, as experts oftentimes deviate
from recursive strategies, and it difficult to equate computer solving time with
expert solving time. Thus, expert time is an impractical approach for generator
that employs a user specified difficulty.

3.3 Weighted sum of methods used

Another metric attempts to quantify the effort employed when solving a puzzle.
A puzzle which uses a more difficult method multiple times will inherently take
more effort than a puzzle that uses it only once. A possible system of rank-
ing difficulty addresses this by assigning a number of points to each method.
Whenever a method is used, its points are added to a counter. When the puzzle
is solved, the total is assigned a difficulty based on the range it falls in. This
idea has been advanced to assigning the first use of a method more points than

Team #3825 10 of 13

subsequent uses to add a ’humanness’ factor [6]. Although sensible, this algo-
rithm is complicated. Like the previous method, it also has serious issues with
subjectivity. Without concrete research into the time or effort expended by the
average Sudoku player when executing a method, points cannot be assigned
without some degree of arbitration.

3.4 Level of Required Skill

The fourth possible way of determining difficulty is simply what methods are
necessary to solve the puzzle. The higher the difficulty of the methods required,
the higher the difficulty of the puzzle. This metric maintains objectivity more
so than the previous by saying ‘this method is more difficult’ rather than ‘this
method is x times more difficult. Additionally it is much simpler than the other
two methods that let level required solving logic have some say in how difficult
it is.

This is the metric we chose. We grouped varying methods based on how
subtle or difficult to learn the methods are, and rated puzzles based on the
highest level methods necessary to solve them. The application of this metric
will be discussed in the next section.

4 Our Approach

To implement our difficulty metric, it is necessary to rank the strategies we have
listed in Section 2 by their complexity. Once this is done, a puzzle is assigned
a difficulty based on the strategies required to solve it. This, with some trial
and error when generating solutions, gives us all we need to generate a puzzle
of any requested difficulty.

4.1 Difficulty Hierarchy

The methods are divided into a hierarchy of 5 levels based on how difficult they
are to use and/or learn.

4.1.1 Difficulty Level 1

The most basic methods are Naked Singles and Hidden Singles. These simple
methods use the inherent exclusion principles to determine if the number con-
tained within the cell in question can only have one value, or if a particular cell
is the only location in which a certain value can be placed.

4.1.2 Difficulty Level 2

The 2nd Level of puzzles require Locked Candidates to be solved. This method
moves beyond finding cancelations resulting from observations of explicit infor-

Team #3825 11 of 13

mation (deductive logic) to finding cancelations that are not immediately visible
(inductive logic).

4.1.3 Difficulty Level 3

Level 3 methods are the Naked and Hidden Pairs, Triples and Quads. Because
these methods (more commonly than second level methods) do not result in a
cell being solved, they are grouped as Level 3. Triples and Quads, while not as
simple as Pairs, are reasonable logic extensions thereof and are thus included in
the 3rd level as well.

4.1.4 Difficulty Level 4

Even more complicated are the Fish and other Expert methods, which often
use the entire board to eliminate candidates. Further still, they do not usually
result in a filled cell.

4.1.5 Difficulty Level 5

The 5th level of Sudoku are those that cannot be solved using any of the meth-
ods described above. They must be completed using trial and error-methods,
and due to the nature of the algorithm, are always Max Eliminated. A limita-
tion of our algorithm is that does not know what solutions which, when Max
Eliminated, require trial-and-error methods. As a result the algorithm could
potentially start over with a number of times before it reaches a puzzle that is
5th level.

4.2 Preliminaries for Algorithm Implementation

Our algorithm requires a solver that will be able to tell us whether or not a given
Sudoku board can be solved uniquely. To do this we could, for example, use the
Dancing Links Algorithm as it was coded by Per-Anders Ekstr̈’om [3]. Dancing
Links is an application of Donald Knuth’s Algorithm X, which is capable of
solving any exact cover problem [5]. An exact cover problem asks for a partition
of a set, if one exists. As it is an exact cover problem, Sudoku can be solved
using the Dancing Links algorithm. We refer to the Dancing Links solver as
dlxsolve() in the description below.

4.3 Sudoku Generation Algorithm

The user specifies the difficulty level with the command >>sudoku(level).
This chooses a particular recursive solving algorithm.

The solution is generated first. This ensures every puzzle is consistent. The
first row is randomly assigned values 1 thru 9 inclusive. The rest of the solution
is generated randomly through use of dlxsolve().

Team #3825 12 of 13

Puzzles are then generated by randomly choosing a cell and eliminating it
if in-so-doing the puzzle remains unique. In parallel, indices of successful and
attempted eliminations are removed from vector stillin. Elimination contin-
ues until the chosen algorithm is incapable of solving. If stillin is emptied
before the chosen algorithm is unable to solve it, a new solution is generated
in its place and stillin is reset. The second to last iteration (still solvable
by the specified algorithm) is supplied as the puzzle and is thusly of maximum
difficulty whilst remaining within the desired level. Level 5 puzzles are simply
Max Eliminated puzzles that cannot be solved by the Level 4 algorithm.

4.4 Error Analysis

Although an error analysis could not be conducted within the timeframe of
this project, it could be done with relative ease. In order to test our metric
for errors, we would run a large sample of published puzzles from newspapers
and books through our algorithm and determine their with respect to our metric.

Because the rating standards employed by publishers are more stringent
than those by used the majority of online generators (which most often use
sparseness as a metric), their ratings are much more accurate. We could statis-
tically analyze how closely our ratings compare against the ratings produced by
professional sources.

5 Conclusion

The presented problem was to create an algorithm capable of generating a
unique sudoku puzzle and to determining the puzzle’s difficulty from a range of
at least four classifications, while keeping the algorithm as simple as possible.
Using the Dancing Links algorithm coded by Per-Anders Ekström as a Sudoku
generator, we developed code that would be able to produce a Sudoku of any
one of five difficulty levels, which are determined by the methods necessary to
solve the puzzle.

The algorithm we conceived uses well-known methods of solving Sudokus,
ordered according to logical complexity, to determine how hard a given Sudoku
is. By using this metric in combination with the Dancing Links algorithm, we
are able to recursively determine if a possible puzzle is of the desired difficulty
before the generation process is finished. The process can then either continue
the generation if the puzzle is within the proper difficulty or backtrack if the
puzzle exceed the bounds.

The various other metrics for determining difficulty were discarded, either
because they were too simple, too complex, or overly arbitrary and subjective.
The Sparseness metric, while it gives the impression of difficulty through the

Team #3825 13 of 13

amount of time and effort spent searching for clues, cannot guarantee the gen-
eration of a truly more difficult Sudoku. The Expert Time metric is overly
complex and too difficult to measure accurately. The Sum of Weighted Meth-
ods metric is the most likely candidate, behind the one we actually chose, but
the points assigned to the various methods are arbitrary and subjective, leaving
the values of these methods up to the personal preferences of the rater.

Our chosen metric is able to define a puzzle’s difficulty based on how ad-
vanced a Sudoku player’s methods must be in order to solve it. While the
ranking of the methods may seem somewhat arbitrary, the reasoning behind
our assignations is very logical.

Determining a Sudoku’s difficulty by what methods are needed to solve it
proves to be the most logical choice when attempting to rate a Sudoku with
a clear, simple, and accurate metric. Additionally, our metric can easily be
extended to include methods and levels of difficulty not described in this project.
Our metric, along with Dancing Links and our own algorithm described in
Section 3.3, provides a simple method for generating a Sudoku puzzle of any
desired difficulty.

Team #3825 14 of 13

References

[1] Sudoku Solver by Andrew Stuart. Stuart, Andrew.
http://scanraid.com/sudoku.htm. 2008.

[2] Solving Sudoku. Johnson, Angus.
http://www.angusj.com/sudoku/hints.php. 2005.

[3] Sudoku (Dancing Links Solver). Ekström, Per-Anders.
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do
?objectId=14073&objectType=File. 2/23/2007.
Code acquired from MATLAB Central File Exchange.

[4] Sudoku lite. Fasino, Dario. http://www.mathworks.com/matlabcentral
/fileexchange/loadFile.do?objectId=9462&objectType=File.
12/27/2005.
Code acquired from MATLAB Central File Exchange.

[5] Dancing Links. Knuth, Donald. Millenial Perspectives in Computer Science.
187-214. 2000.

[6] Sudoku Programmers Forum Discussion. Various.
http://www.setbb.com/phpbb/viewtopic.php?t=142&mforum=sudoku
2005.

[7] Sudopedia. Various.
http://www.sudopedia.org/wiki/Main Page. 2007.

