
 Print This Page Close This Window

For office use only

T1 ________________

T2 ________________

T3 ________________

T4 ________________

Team Control Number

3825

Problem Chosen

B

For office use only

F1 ________________

F2 ________________

F3 ________________

F4 ________________

2008 Mathematical Contest in Modeling (MCM) Summary Sheet

(Attach a copy of this page to each copy of your solution paper.)

Type a summary of your results on this page. Do not include

the name of your school, advisor, or team members on this page.

	Text1: The objectives of this problem are fourfold:
- First, create an algorithm that generates Sudoku puzzles
- Second, Sudokus generated must be of varying difficulty
- Third, there must be a well-defined difficulty rating metric
- Lastly, the algorithm must be as simple as possible

 To develop our Sudoku-generating algorithm, we first created a logically sound difficulty metric. The simplest Sudoku generators use the sparseness of the Sudoku grid to define difficulty; if one puzzle has fewer initial entries than another, it is more difficult. This metric is however flawed, as it is easy to find counterexamples to the above reasoning. There exist a number of logically easy puzzles with few initial entries and a number of logically difficult puzzles with relatively many initial entries. We have created a more accurate metric that does away with these problems.
 Our metric views a given puzzle as more difficult if it requires the use of more complicated methods to solve it. Although many different Sudoku-solving methods exist, virtually all are readily programmable. They are then ranked from easy (Naked Singles, Hidden Singles), to medium (Locked Candidates, Naked Pairs), to difficult (Swordfish, Forcing Chains), all the way to methods that deviate from "pure logic" and rely on trial-and-error methods (Nishio). This metric gives a very explicit meaning to each given difficulty level, and the level of logic necessary to solve a puzzle.
 Our Sudoku generator is a modification of a MATLAB code which uses an algorithm known as "Dancing Links" to solve any Sudoku, regardless of whether the solutions is unique. The Dancing Links algorithm is capable of solving any exact-cover problem, a class of problems of which Sudoku is but one example. Within our algorithm, Dancing Links serves two purposes. First, Dancing Links is capable of solving for all solutions of a given board and is consequently capable of checking for a given board's uniqueness. Second, since Dancing Links can solve any board, it can generate boards, as we did, by solving a puzzle with only the top row completed.
 With this board generator and uniqueness check, our algorithm's implementation is straightforward. Our algorithm inputs a given difficulty level and outputs a puzzle of that difficulty. To do this, it generates a full Sudoku board and deletes single entries until the board is of desired difficulty.
 One of the strengths of our algorithm is that not only can it generate a Sudoku puzzle, but that it can generate a Sudoku puzzle of any desired difficulty. It can also, rate puzzles put into it. Other strength's of our algorithm include its simplicity, relative objectivity, and adaptability to include additional solving methods and consequently additional difficulty levels based on the difficulty of those introduced methods.

