We will look at extracting different kinds of information from these spectra.

1. Find the molecular formula. First, estimate the number of carbons from the intensity of the $(\mathrm{M}+1)^{+}$ peak. Subtract the mass of that many carbons from the M^{+}peak mass. Then figure out the possible number of H's and O's.

2. Molecular formula: atoms with multiple isotopes. First, identify the "unusual" element. Subtract its mass from the $\mathrm{M}+$ peak mass. Then employ the same procedure as in \#1 to find the number of C's, and the possible numbers of H's or O's.

3. Fragmentations.

A. Figure out the composition of the fragment at $\mathrm{m} / \mathrm{z}=59$.
\#C's = \qquad
Possible \#H's = \qquad
\qquad Are both reasonable?

Number of O's = \qquad
B. Figure out what neutral radical got lost: $88-59=$ \qquad
Possible formula $=$ \qquad
C. Total molecular formula for $\mathrm{m} / \mathrm{z}=88$:

Show some possible structures for this molecular formula that have the neutral radical fragment that got lost.
4. Vitamin A has a molar absorptivity in ethanol of $45,700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at $\lambda_{\max }=326 \mathrm{~nm}$.
a. Circle the chromophore in the structure of Vitamin A below:

Vitamin A

b. Using Beer's Law ($\mathrm{A}=\varepsilon \mathrm{bc}$), calculate the absorbance you should see if $286 \mu \mathrm{~g}$ are dissolved in 1 L ethanol. (Hint: the molecular weight of $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}$ is $286 \mathrm{~g} / \mathrm{mol}$.)
5. The following multistep reaction sequence was performed. Spectra for the product are given; identify it and assign as many of the peaks in each spectrum as possible.

1. $\mathrm{Ac}_{2} \mathrm{O}$
2. $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

3. Excess $\mathrm{Br}_{2}, \mathrm{FeBr}_{3}$
4. $\mathrm{H}_{2} \mathrm{SO}_{4}$
5. KOH

IR:

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

Integrals:
7.35: 2
6.47: 1
4.4: 2
141.93
131.71
119.33
108.83

