
SPECT Reconstruction Using the Expectation
Maximization Algorithm and an Exact Inversion

Formula

Kyle Champley
Oregon State University

December 2004

Abstract

We develop the theory behind the Expectation Maximization algorithm and an
exact inversion formula for the attenuated Radon transform, two reconstruction
methods used in SPECT. We also implement both methods and present a few
numerical experiments.

1

Contents

1 Introduction 3

2 Expectation Maximization 4

2.1 Model . 4
2.2 Theory . 6

3 Inversion Formula 13

3.1 Model . 13
3.2 Theory . 14

4 Implementation 25

5 Numerical Results 27

5.1 Inversion Formula . 27
5.2 EM Algorithm . 28

6 Conclusions 28

7 MATLAB Code 29

List of Figures

1 Line parameterized by x · θ = s. 14
2 Geometry of the convergence of z to t0. 16
3 Inversion formula reconstructions for experiment 1. 43
4 Cross section plots for inversion formula, experiment 1. 44
5 Inversion formula reconstructions for experiment 2. 45
6 Cross section plots for inversion formula, experiment 2. 46
7 Inversion formula reconstructions with added noise for experiment 2. 47
8 EM algorithm reconstructions for experiment 2. 48
9 Cross section plots for the EM algorithm, experiment 2. 49
10 EM algorithm reconstructions with added noise for experiment 2. . . 50
11 Cross section plots for the EM algorithm with added noise, experi-

ment 2. 51

2

1 Introduction

Single Photon Emission Computed Tomography (SPECT) is a medical imaging
modality used to measure activity levels of certain regions of the body. After the
activity distribution is recovered, a colored image is created from its level sets.
The brain, throat, heart, and lungs are the most common regions of the body
that SPECT scans are used on. For instance, one might use a SPECT scan to
find clogged arteries on a patient with heart disease. Clogged arteries would show
up as dark spots in the image, giving the physician information on the source of
the problem. Often times SPECT scans are compared to the more well-known
CAT scan. Mathematically speaking, the reconstruction methods used in creating
CAT scan images are simplified versions of those that create SPECT scan images.
Although there are some similarities between SPECT and CAT scans, they are
quite different in their use in the field of medical diagnosis. While SPECT scans
try to retrieve information relating to the functionality of the body, CAT scans try
to retrieve the physical makeup of the body.

These images are produced by first introducing a radiopharmaceutical into the
area of interest in the body. This radiopharmaceutical gives off radiation in the
form of photons emitted from the source of radioactive decay. These photons are
measured by detectors outside the body over a certain period of time. Since the
amount of radiation activity is proportional to the concentration of the radiophar-
maceutical, one can determine the concentration from measuring the number of
photons detected outside the body. This radiation is measured by a gamma camera
that encircles the patient in a ring. The face of the gamma camera is covered with
collimators, so that it only measures photons traveling essentially parallel to the
collimators. Thus when a photon is measured we know that it was emitted from a
source somewhere along a certain line in space. An image of this activity distribu-
tion can then be reconstructed in a tomographic fashion with various algorithms,
two of which we will discuss in this paper. Since we measure the radiation over a
period of time, we may even create images of the flow of the radioactive isotope
over time, giving a rare glimpse into how the body works in a way that cannot even
be seen through surgery.

Most of the photons never make it through the collimators to the gamma camera.
This makes an accurate recovery of the activity distribution much more difficult.
In other words, much of the data is lost. Since the radiation detectors only lie in
a ring around the patient, only photons traveling in the plane of the camera and
essentially parallel to a collimator can be measured. Another problem in SPECT
imaging lies with the interaction between photons and the body tissue in which
they pass through. Photons may be absorbed or their trajectory may get deflected
(e.g. Compton Scattering) by the tissue they travel through. For example, when
using Tc-99m for the radiotracer, only about 20% of photons will reach the detector
after passing through 10 cm of soft tissue and about 20% of those photons are de-
tected in the wrong location due to scatter. When a photon is scattered the energy
level of that photon is reduced. Since all the photons of a certain radioactive iso-
tope have the same energy levels, the gamma camera can (with varying accuracy)
discount photons whose measurements do not have this expected energy level. We
discount these measurements so that we can assume that all measured photons orig-
inated from some point along a certain line. This modeling assumption is essential
in tomography. Fortunately, the probabilities in which these events occur (called

3

attenuation) are well known and can be determined by a CAT scan. Thus a trans-
mission scan (e.g. a CAT scan) is used in many SPECT activity reconstructions to
recover the attenuation map of the tissue. With this, one can try to compensate for
the lost or attenuated data.

Another obstacle in accurate activity reconstruction is the statistical nature of
Emission Tomography. Although these radioactive isotopes have a constant half-life,
radioactive decay is naturally statistical because measurements of the radioactive
decay of the radioisotopes over identical periods of time vary. This variation in the
sampling of the radioactive decay comes from the intrinsic probabilistic nature of
radioactive decay. Although decay events can fluctuate randomly, from the averag-
ing of many values, the true radiation activity distribution can been deduced. Thus
the accuracy increases with larger numbers of events. Unfortunately, the number of
measured events in SPECT is relatively small, so accurate reconstructions must take
into account these statistical characteristics. Therefore stochastic methods have so
far been shown to be more useful in practice. These stochastic models are com-
pletely discrete and are solved with iterative techniques. The most popular (and
the one that has been used for the past twenty years in most medical scanners) is
the Expectation Maximization (EM) algorithm developed by Shepp and Vardi in
1982.

SPECT can also be modeled explicitly with the attenuated Radon transform
(see section 3). In the past three years there have been many developments in this
area. Including three different inversion formulae. With these new formulae, we
may implement a new reconstruction algorithm that could possibly create images
that are more accurate than those created by the EM algorithm. Currently the EM
algorithm is still used in practice, but it is certainly a much slower algorithm than
the inversion formula and produces images that lack in smoothness.

In this paper we will develop the EM algorithm (section 2) and an exact inversion
formula for the attenuated Radon Transform (in 2-D) (section 3) that was first found
by Novikov, but we will develop the inversion formula found by Natterer[7]. Then
in section 4 we discuss the implementation of both of these reconstruction methods.
Finally in section 5 we discuss some numerical results of MATLAB experiments
with elliptical phantoms. The last section includes all the MATLAB code used to
perform the numerical experiments.

2 Expectation Maximization

2.1 Model

For the Expectation Maximization algorithm we first subdivide the reconstruction
region into pixels and enumerate these pixels 0 ≤ j ≤ m. We also enumerate the
detectors 0 ≤ i ≤ n. Radioactive decay events over a fixed time interval [0, τ] are
most accurately modeled by Poisson random variables. We will often exploit the
fact that the sum of Poisson random variables is also a Poisson random variable and
the expectation of the Poisson random variable is equal to its parameter.

Let P(·) and E(·) be the probability and expectation functions, respectively.
The following random variables are measurements over a fixed time interval and all
random variables are assumed to be independent identically distributed (iid). Let Nj

be Poisson random variables with expectation vj that model the measurement of the

4

number of photons emitted from pixel j per unit area. Let pij = P(photon emitted
from pixel j is detected in detector i). The pij are derived from the geometry of the
scanner and the attenuation map of the tissue. We will explain the determination
of these later. Now let Nij be Poisson random variables with expectation vjpij that
model the number of detected events in detector i from activity in pixel j per unit
area. Let N j be Poisson random variables with expectation fj = vj

∑n
i=1 pij that

model the number of photons emitted from pixel j per unit area that are detected
by some detector. Finally let gi be the realization of the Poisson random variables
γi =

∑m
j=1 Nij with expectation

∑m
j=1 vjpij that denote the number of photons

detected in detector i. It is reasonable to assume that
∑m

j=1 vjpij > 0 for all i. This
is equivalent to assuming that the ith detector has measured some radiation from
some region of the body. We may also just remove the ith detector from the model
if it so happens that

∑m
j=1 vjpij = 0.

Then we see that gi and pij are known measurements. We seek to find vj =
(v1, v2, . . . , vm)T . Clearly, we can get vj from fj. Thus we will develop a scheme to
find the fj from which we can find the vj .

Let A = (aij), where

aij =
pij∑n
l=1 plj

.

Then

E[γi] =
m∑

j=1

vjpij =
m∑

j=1

fj∑n
l=1 plj

pij =
m∑

j=1

fjaij ,

so
E[γ] = Af.

The values of the pij can be modeled as follows. Let S be the area of a pixel,
rij be the ratio of the maximum range of angles of trajectories for an event in pixel
j to be measured at detector i with 2π, xj be the position of the jth pixel, θi be
the angle of the collimator of the ith detector, µ be the attenuation function of the
tissue, and Dµ(·, ·) be the divergent beam transform (see section 3). Then

pij = rijSe−Dµ(xj ,θi).

The exponential term may seem curious at this time. Its purpose in the model is
described at the beginning of section 3.

Since the elements of A are probabilities, g are measurements of photon activ-
ity, and f are expectations of the photon activity measurements, A, g, and f are
element-wise nonnegative. Moreover, from above we see that (Af)i > 0 for all i and∑n

i=1 aij = 1 for all j. Then we determine f by maximizing the likelihood function
which is described as follows.

For iid r.v.’s Λ1, Λ2,...Λn with unknown parameter η and probability mass func-
tion p(·; η), the likelihood function is given by

L(η;λ) = p(λ1; η)p(λ2; η) · · · p(λn; η).

In other words the likelihood function is a function of the unknown parameter, η,
of the iid r.v.’s Λ1, Λ2,...Λn which gives the probability (or likelihood) that a given
event will happen for that parameter. Thus if a maximum of the likelihood does
exist in a certain instance we can find the most likely parameter for the r.v.’s.

5

Since we use a Poisson r.v. in our likelihood function, the parameter of the r.v.
is equal to its expectation. Thus if we maximize the likelihood function, we can find
the fj that has the greatest probability to have the measured events gi occur. Let

p be the probability mass function of the poisson r.v. γ. Thus p(k) = e−(Af) (Af)k

k! .
Then

L(f) ≡ L((Af); g) =
n∏

i=1

p(gi; (Af)i) =
n∏

i=1

(Af)gi

i

(gi)!
e−(Af)i .

Since maximizing L(f) is the same as maximizing log(L(f)), we maximize the func-
tion

log(L(f)) = log

(
n∏

i=1

(Af)gi

i

(gi)!
e−(Af)i)

)

=
n∑

i=1

[gi log(Af)i − (Af)i − log(gi)!] .

We may also omit the log(gi)! term in the sum. Then we arrive at the log likelihood
function

l(f) ≡
n∑

i=1

[gi log(Af)i − (Af)i] . (1)

The EM algorithm seeks to find an f that maximizes this function. Now we
will develop an iterative formula and prove that it converges to a unique maximum
point of l(f).

2.2 Theory

Lemma 2.1. Let H be the hessian matrix of l(f). Then (x,Hx) ≤ 0 for xi ≥ 0 i.e.
H is negative semidefinite for xi ≥ 0.

Proof. Now H =
(

∂2l
∂fi∂fj

)
. Then

∂l

∂fi
=

∂

∂fi

n∑

k=1

gk log(Af)k − (Af)k

=
n∑

k=1

gkaki∑m
q=1 akqfq

− aki (2)

and thus

∂2l

∂fi∂fj
=

∂

∂fj

n∑

k=1

gkaki∑m
q=1 akqfq

− aki

=
n∑

k=1

gkaki

−akj
(∑m

q=1 akqfq

)2

= −
n∑

k=1

gkakiakj(∑m
q=1 akqfq

)2 .

Then since (H)ij ≤ 0, (x,Hx) ≤ 0 for xi ≥ 0.

6

Since H is negative semidefinite, l is concave. Thus the local maxima of l(f) (for
fi ≥ 0) are also global ones and f is a global maximum if and only if the Kuhn-Tucker
conditions

∂l

∂fj
(f) = 0 for fj > 0,

∂l

∂fj
(f) ≤ 0 for fj = 0

are satisfied. From (2) we see that

∇l(f) = AT

(
g

Af
− 1

)
,

where 1 is a vector of ones and all arithmetic operations between vectors are com-
ponentwise. Then each global maximum f ≥ 0 of l satisfies

fAT

(
g

Af
− 1

)
= 0.

Since AT 1 = 1,

f = fAT g

Af
. (3)

Now we define the EM algorithm as the iterative method that solves (3):

fk+1 = fkAT g

Afk
, k = 0, 1, 2, ... (4)

Theorem 2.2. Let f0
j > 0 for 0 ≤ j ≤ m. Then (4) converges to a maximizer of

l(f).

Proof. For the proof we follow an outline by [8]. We also follow [11] in step 2 of our
proof. We use the fact that f0

j > 0 for all j, so that we don’t have any problems
with dividing by zero and to show that (4) converges to a maximizer of l(f) in the
last step of our proof. We make use of the Kullback-Leiber distance

KL(x, y) =
n∑

i=1

(
xi log

(
xi

yi

)
+ yi − xi

)
,

where x, y ∈ Rn, x ≥ 0, and y > 0 component-wise. We will use the convention that
0 log 0 = 0. Note that since KL(x, y) is not symmetric and the triangle inequality
does not apply, it is not a metric. Then since

∂KL

∂xi
(x, y) = log

(
xi

yi

)

and
∂KL

∂yi
(x, y) =

−xi

yi
+ 1 =

yi − xi

yi
,

KL(x, y) assumes its minimum at x = y and KL(x, x) = 0. Then KL(x, y) ≥ 0. It
is also obviously true that KL(x, y) → KL(x, x) if and only if y → x.

7

We also make use of the equality

n∑

i=1

(Afk)i =
m∑

j=1

fk
j =

n∑

i=1

gi, for k ≥ 1. (5)

The first equality is true, since

n∑

i=1

(Afk)i =
n∑

i=1

m∑

j=1

aijf
k
j

=
m∑

j=1

fk
j

n∑

i=1

aij

=
m∑

j=1

fk
j .

For the second equality we use (4). Then

m∑

j=1

fk
j =

m∑

j=1

fk−1
j

n∑

i=1

aij
gi

(Afk−1)i

=
n∑

i=1

gi

(Afk−1)i

m∑

j=1

aijf
k−1
j

=
n∑

i=1

gi

(Afk−1)i
(Afk−1)i

=
n∑

i=1

gi.

In the first step of our proof, we will show that

l(fk+1) ≥ l(fk), k = 1, 2, ... (6)

We will use the identity

n∑

i=1

gi log(Af)i =
n∑

i=1

gi

m∑

j=1

aijhj

(Ah)i

[
log(aijfj) − log

(
aijfj

(Af)i

)]
, (7)

which holds for h, f ∈ Rn and h, f > 0. Then from (5) we have

l(fk+1) − l(fk) =
n∑

i=1

gi log(Afk+1)i −
n∑

i=1

gi log(Afk)i.

8

And from (7) we have

l(fk+1) − l(fk) =
n∑

i=1

gi

m∑

j=1

aijfk
j

(Afk)i

[

log(aijf
k+1
j) − log

(
aijf

k+1
j

(Afk+1)i

)]

−
n∑

i=1

gi

m∑

j=1

aijfk
j

(Afk)i

[

log(aijf
k
j) − log

(
aijfk

j

(Afk)i

)]

=
n∑

i=1

gi

m∑

j=1

aijfk
j

(Afk)i

[

log

(
fk+1

j

fk
j

)

− log

(
fk+1

j (Afk)i

fk
j (Afk+1)i

)]

=
m∑

j=1

log

(
fk+1

j

fk
j

)
n∑

i=1

fk
j aij

gi

(Afk)i

−
n∑

i=1

gi

m∑

j=1

aijfk
j

(Afk)i
log

(
fk+1

j (Afk)i

fk
j (Afk+1)i

)

.

Now we have that
n∑

i=1

fk
j aij

gi

(Afk)i
= fk+1

j .

And since
m∑

j=1

aijfk
j

(Afk)i
= 1,

∀i such that 1 ≤ i ≤ n and log is a concave function, we may apply Jensen’s
inequality to get that

m∑

j=1

aijfk
j

(Afk)i
log

(
fk+1

j (Afk)i

fk
j (Afk+1)i

)

≤ log
m∑

j=1

aijfk
j

(Afk)i

(
fk+1

j (Afk)i

fk
j (Afk+1)i

)

= log
m∑

j=1

aijf
k+1
j

(Afk+1)i
.

Then

l(fk+1) − l(fk) ≥
m∑

j=1

fk+1
j log

(
fk+1

j

fk
j

)

−
n∑

i=1

gi log
n∑

j=1

aijf
k+1
j

(Afk+1)i

= KL(fk+1, fk) +
m∑

j=1

(fk+1
j − fk

j) −
n∑

i=1

gi log 1.

By (5) we see that
m∑

j=1

(fk+1
j − fk

j) = 0.

Thus

l(fk+1) − l(fk) ≥ KL(fk+1, fk) ≥ 0. (8)

And we have our first step.

9

Now we will address our possible divide by zero and log(0) problems. The
instances where we have fk+1

j log(fk+1
j /fk

j) are covered by the fact that fk
j = 0

implies that fk+1
j = 0 and that we use the convention 0/0 = 0 and 0 log 0 = 0. Our

remaining problems are with the (Afk)i as a denominator. Apply A to both sides
of (4), the iteration of the EM Algorithm. Then we have Afk+1 = AfkAT g

Ak . Since
A and f are element-wise nonnegative and g is element-wise positive, by an easy
inductive argument we see that

(Afk+1)i ≥
gi
∑m

j=1 a2
ijf

k
j∑m

j=1 aijfk
j

> 0

for i = 1, . . . , n. Thus (Afk)i > 0 for all k ≥ 0, 1 ≤ i ≤ n.
For our second step, we will show that each accumulation point f∗ of the se-

quence
{
fk
}

is a fixed point of (4). Such an accumulation point does exist, since
0 ≤ ||fk||1 = ||g||1 ∀k ≥ 2. Let B(fk) = l(fk+1) − l(fk). Since l(fk) is mono-
tonically nondecreasing and bounded above (l is concave), l(fk) has a limit. Let
l∗ = limk→∞ l(fk). Hence B(fk) → 0. Let f∗ be an accumulation point of

{
fk
}
.

Then there exists a subsequence fks such that fks → f∗. Since l(·) is a continuous
function, B(fks) → B(f∗). But B(fk) → 0, so B(f∗) = 0. Now let f∗′ = f∗AT g

Af∗ .

Then from (8) B(f∗) = l(f∗′) − l(f∗) ≥ KL(f∗′ , f∗) ≥ 0. Since B(f∗) = 0,
KL(f∗′ , f∗) = 0. Then KL(f∗′ , f∗) = 0 implies that f∗′ = f∗ i.e. f∗ is a fixed
point of (4).

For our third step, we will show that

KL(f∗, fk+1) ≤ KL(f∗, fk), k = 1, 2, ..., (9)

where f∗ is an accumulation point. Let

xj
i =

aijgi/(Af∗)i
(AT (g/Af∗))j

, yj
i =

aijgi/(Afk)i
(AT (g/Afk))j

, i = 1, ..., n.

Then
∑n

i=1 xi =
∑n

i=1 yi = 1. The following sums are over those j such that f∗
j > 0.

Then we have

0 ≤
m∑

j=1

f∗
j KL(xj, yj)

=
m∑

j=1

f∗
j

n∑

i=1

xj
i log

xj
i

yj
i

=
m∑

j=1

f∗
j

n∑

i=1

aijgi/(Af∗)i
(AT (g/Af∗))j

log
(Afk)i(AT (g/Afk))j
(Af∗)i(AT (g/Af∗))j

.

10

Now by (4) and the fact that f∗ is a fixed point of (4) we have

0 ≤
m∑

j=1

f∗
j

n∑

i=1

aijgi/(Af∗)i
(AT (g/Af∗))j

log
(Afk)if

k+1
j f∗

j

(Af∗)if∗
j fk

j

=
m∑

j=1

f∗
j

n∑

i=1

aijgi/(Af∗)i
(AT (g/Af∗))j

log
(Afk)if

k+1
j

(Af∗)ifk
j

=
m∑

j=1

f∗
j

n∑

i=1

aij
gi

(Af∗)i
log

(Afk)if
k+1
j

(Af∗)ifk
j

=
m∑

j=1

f∗
j

n∑

i=1

aij
gi

(Af∗)i

(

log
(Afk)i
(Af∗)i

+ log
fk+1

j

fk
j

)

=
m∑

i=1

gi

(Af∗)i
log

(Afk)i
(Af∗)i

n∑

j=1

f∗
j aij +

m∑

j=1

f∗
j log

fk+1
j

fk
j

n∑

i=1

aij
gi

(Af∗)i

=
n∑

i=1

gi log
(Afk)i
(Af∗)i

+
m∑

j=1

f∗
j log

fk+1
j

fk
j

.

We see that

0 ≤
n∑

i=1

gi log
(Afk)i
(Af∗)i

+
m∑

j=1

f∗
j log

fk+1
j

fk
j

even when we let the j sum extend over those such that f∗
j = 0. Then by (4) we

have
n∑

i=1

fk
i =

n∑

i=1

fk+1
i =

n∑

i=1

f∗
i

and thus

KL(f∗, fk) =
m∑

j=1

f∗
j log

f∗
j

fk
j

+ fk
j − f∗

j =
m∑

j=1

f∗
j log

f∗
j

fk
j

.

Then we have
n∑

i=1

gi log
(Afk)i
(Af∗)i

= l(fk) − l(f∗) +
n∑

i=1

((Afk)i − (Af∗)i)

= l(fk) − l(f∗)

and

m∑

j=1

f∗
j log

fk+1
j

fk
j

=
m∑

j=1

f∗
j log fk+1

j −
m∑

j=1

f∗
j log fk

j

=
m∑

j=1

f∗
j log fk+1

j −
m∑

j=1

f∗
j log f∗

j +
m∑

j=1

f∗
j log f∗

j −
m∑

j=1

f∗
j log fk

j

=
m∑

j=1

f∗
j log

fk+1
j

f∗
j

+
m∑

j=1

f∗
j log

f∗
j

fk
j

= KL(f∗, fk) − KL(f∗, fk+1).

11

Thus we have

0 ≤ l(fk) − l(f∗) + KL(f∗, fk) − KL(f∗, fk+1)

and since l(fk+1) ≥ l(fk) implies l(f∗) ≥ l(fk),

KL(f∗, fk+1) ≤ KL(f∗, fk).

Now we are ready to prove our theorem. Since
{
fk
}

is bounded, there exists
a convergent subsequence. Take f∗ as the limit of the subsequence

{
fks

}
. It

follows that KL(f∗, fks) → KL(f∗, f∗) = 0 as s → ∞. But since KL(f∗, fk) is
nonincreasing, KL(f∗, fk) → 0 as k → ∞. Hence fk → f∗. Now that we have
proved convergence we must show that the Kuhn-Tucker conditions are satisfied. If
f∗

j > 0, then 1 = (AT g
(Af∗))j by (4). Then the Kuhn-Tucker conditions are satisfied

for f∗
j > 0. Now for f∗

j = 0, we have

fk+1
j = f0

j

(
AT g

Af0

)

j

· · ·
(

AT g

Afk

)

j

→ f∗
j = 0.

Since f0
j > 0, we see that (AT g/Afk)j → (AT g/Af∗)j. But for this to converge we

must have (AT g/Af∗)j ≤ 1. Thus

∂l

∂fj
(f∗) =

(
AT g

Af∗

)

j

− 1 ≤ 1 − 1 = 0.

We have proven more than convergence in the proof above. From (8) we see
that the iterate fk gets closer to the maximum likelihood with every iteration.

The problems with the EM algorithm are the slow computation time for (4)
and the lack of smoothness of the solution. The smoothness can be increased by
adding a penalty term to the iteration of (4) in the form of a Bayesian function.
The computations can be accelerated by splitting A and g into submatrices Aj and
gj for j = 1, ...p, such that

A =

A1
...

Ap

 , g =

g1
...
gp

 ,

Aj : Rm → Rnj , gj ∈ Rnj ,

and performing (4) on each submatrix. Here we assume that a = AT
j 1 for all j.

Then we get

fk,0 = fk,

fk,j = fk,j−11

a
AT

j

gj

Ajfk,j−1
, j = 1, ..., p,

fk+1 = fk,p.

This is called the ordered subset EM (OSEM) algorithm. The convergence of OSEM
has not yet been proven.

12

3 Inversion Formula

3.1 Model

For the inversion formula we model the activity distribution by an integral equation.
Let a : R2 → R and f : R2 → R be sufficiently smooth functions with compact
support, where a is the density and f is the concentration of the radiopharmaceutical

along a plane in the body. Let θ =

(
cosϕ
sinϕ

)
, θ⊥ =

(
− sinϕ
cosϕ

)
, and x ∈ R2. Let

Iθ⊥,x(y) be the sum of the photons (intensity) measured over a fixed time interval

[0, τ] emitted from a point x, traveling in direction θ⊥, and at the point y that have
not interacted with the body. Note that y = x + tθ⊥ for some t ≥ 0. Then from
the physics of the absorbtion and deflection rates of the photons in relation to the
attenuation factor we have the relation

Iθ⊥,x(x + (t + ∆t)θ⊥) − Iθ⊥,x(x + tθ⊥) = −a(x + tθ⊥)Iθ⊥,x(x + tθ⊥)∆t

for small ∆t. Then if we take ∆t → 0 and rearrange terms, we have that

dIθ⊥,x(x + tθ⊥)

Iθ⊥,x(x + tθ⊥)
= −a(x + tθ⊥) dt.

By integrating both sides from t = 0 to ∞ we get that

ln(Iθ⊥,x(x + tθ⊥))
∣∣∣
∞

0
= −

∫ ∞

0
a(x + tθ⊥) dt.

The infinity term is slightly misleading. In practice, the function a has compact
support, so integrating all the way to infinity makes no difference. Then we define
Im(θ⊥, x) to be the measured intensities of the photons that were emitted from a
point x and traveled in the direction θ⊥. We define the divergent beam transform
by

(Da)(x, θ⊥) =

∫ ∞

0
a(x + tθ⊥) dt.

Then we get that

Im(θ⊥, x) = Iθ⊥,x(x)e−Da(x,θ⊥).

In practice, we do not know the values of Iθ⊥,x(x) because all photons emitted along
a straight line emanating from a detector are measured all at once without knowing
where the photons originated on that line. Thus the detectors actually measure the
sum of the Im(θ⊥, x) with x varying over the lines emanating from the detector and
parallel to θ⊥. This restriction can be expressed as x · θ = s (see figure 1). These
measurements are simply the line integrals

IM (θ, s) ≡
∫

x·θ=s
Iθ⊥,x(x)e−Da(x,θ⊥) dx.

Now since f is proportional to I and we assume that photons are given off in an
isotropic manner, there exists c such that Iθ⊥,x(x) = cf(x). Let g(θ, s) = 1

c IM(θ, s).
Thus we have

Raf(θ, s) ≡ g(θ, s) =

∫

x·θ=s
f(x)e−Da(x,θ⊥) dx.

13

s

θ

θ

ϕ

Figure 1: Line Parameterized by x · θ = s.

The integral transform, Raf , is referred to as the attenuated Radon transform and

Rf(θ, s) ≡ R0f(θ, s) =

∫

x·θ=s

f(x) dx

is the Radon transform. In this paper we assume that a is known (in practice a is
determined by a transmission scan) and g are the photon intensities measured by
the gamma camera. We will then develop an inversion formula for f that was first
found by Novikov, but we will follow a derivation by Natterer[7].

3.2 Theory

We will use the following function throughout this discussion. Let h = 1
2(I+iH)(Ra)

where I is the identity transformation and H is the Hilbert transform given by,

(Hg)(s) =
1

π
p.v.

∫

R1

g(t)

s − t
dt

acting on the second argument of Ra. From here on we will omit the ”p.v.”. If the
integral does not exist in the traditional sense it should always be interpreted as the
principle value.

Necessary and sufficient conditions on the functions f and a such that the in-
version formula holds have not yet been found. That is why we simply stated above
that a and f are ”sufficiently smooth”. Thus we will consider a, f ∈ C∞

0 (R2) in the
following discussion.

Lemma 3.1. Let

G(z) =
1

2πi

∫

L

g(t)

t − z
dt,

where L is an oriented (counterclockwise) simple smooth closed curve (with a finite
number of arcs) and g satisfies the Holder condition on L

|g(t) − g(t0)| ≤ A|t − t0|µ ∀t, t0 ∈ L A,µ > 0.

Then G is analytic on C\L. Moreover, if t0 ∈ L, then the limit from the left (inside)
of L exists and is given by

G+(t0) =
1

2
g(t0) +

1

2πi
p.v.

∫

L

g(t)

t − t0
dt

14

and the limit from the right (outside) of L exists and is given by

G−(t0) = −
1

2
g(t0) +

1

2πi
p.v.

∫

L

g(t)

t − t0
dt.

This is just a generalization the Plemelj-Sokhozki formulae. See [9] for the proof
of L as a C1 oriented simple path (L not necessarily closed).

Proof. This proof comes from a collection of theorems and lemmas in [9]. Note that
the function g here has no connection to the function g in the description of the
inversion formula model. Now clearly G exists and is analytic on C\L. Now we will
show that G(t0) exists for t0 ∈ L.

Let l be the part of L that has length 2ε1 and center t0. Denote the ends of l
by t′ and t′′. Then

∫

L−l

g(t)

t − t0
dt =

∫

L−l

g(t) − g(t0)

t − t0
dt + g(t0)

∫

L−l

dt

t − t0
.

Then the last integral is
∫

L−l

dt

t − t0
= log(t − t0)|t

′′

t′

= log(t′′ − t0) − log(t′ − t0)

= log

(
|t′′ − t0|
|t′ − t0|

)
+ i(arg(t′′ − t0) − arg(t′ − t0)).

Here, log(t − t0) is a branch which continuously changes on the arc and thus

∫

L

dt

t − t0
= lim

ε→0
log

(
|t′′ − t0|
|t′ − t0|

)
+ i(arg(t′′ − t0) − arg(t′ − t0)) = iπ, (10)

since L is smooth. Then for the other integral
∣∣∣∣

∫

L−l

g(t) − g(t0)

t − t0
dt

∣∣∣∣ ≤ A

∫

L−l
|t − t0|µ−1 |dt| < ∞. (11)

Therefore the principle value of the integral exists and is given by

G(t0) =
1

2πi

∫

L

g(t)

t − t0
dt

=
1

2
g(t0) +

1

2πi

∫

L

g(t) − g(t0)

t − t0
dt.

Moreover, we see from (11) that G is bounded on L.
Let ε2 > 0 and 0 < β0 ≤ π

2 be given and let z approach t0 in such a way that
the non-obtuse angle β between the tangent to L at the point t0 and the segment
t0z is greater than or equal to β0. Then we will show that

F (z) =
1

2πi

∫

L

g(t) − g(t0)

t − z
dt

converges uniformly to

F (t0) =
1

2πi

∫

L

g(t) − g(t0)

t − t0
dt.

15

We will then use this uniform convergence to show that F (z) → F (t0) for z → t0
with the only restriction that z stays either on this inside or outside of L.

Parameterize L by x = x(s), y = y(s) such that [x′(s)]2 + [y′(s)]2 = 1. Then
the arc length of the arc t1t2, where ti = (x(si), y(si)) is |s2 − s1|. Let γ be a circle
with center t0 and radius ρ taken so small that γ intersects L at exactly two points,
say t1 and t2, and the non-obtuse angle between the chord joining any two points
on the arc t1t2 and the tangent at t1 does not exceed α0, for 0 ≤ α0 < β0 ≤ π/2.
Now let r = r(t) be the distance between t0 and t ∈ t1t2 and α be the acute angle
between the chord t0t and the tangent at the point t. We will show that

dr

ds
= ± cosα.

The ”+” refers to the part s > s0 and the ”-” refers to s < s0. Without loss of
generality, suppose that t0 = (x(s0), y(s0)) = (0, 0). Let τ = −(x′(s), y′(s)) and
ξ = −(x(s), y(s)). Note that ||ξ|| = r and ||τ || = 1. Then for s > s0

dr

ds
=

1

r
(ξ, τ) =

1

r
||ξ|| ||τ || cos α = cosα.

Then since 0 ≤ α ≤ α0 < π/2, cosα ≥ cosα0 = 1/K > 0 and thus |ds| ≤ K|dr|.
We see that since L has only a finite number of arcs, we may also take ρ so small
that t1t2 consists of a single arc. We will refer to the arc t1t2 with this restriction as
the standard arc. Now since L is compact, we see that L can be decomposed into
a finite number of standard arcs.

|t-z|

z t
0

ω

t

δ

Figure 2: Geometry of the Convergence of z to t0.

Consider the difference

F (z) − F (t0) =
z − t0
2πi

∫

L

g(t) − g(t0)

(t − t0)(t − z)
dt.

Now split |F (z) − F (t0)| = |I1 + I2| ≤ |I1| + |I2|, where

I1 =
z − t0
2πi

∫

t1t2

g(t) − g(t0)

(t − t0)(t − z)
dt, I2 =

z − t0
2πi

∫

L−t1t2

g(t) − g(t0)

(t − t0)(t − z)
dt.

16

First we will consider I1. Since dr
ds = ± cosα, one obtains |dt| = |ds| ≤ K|dr|.

Then

|I1| ≤
|z − t0|

2π

∫

t1t2

|g(t) − g(t0)|
|t − t0||t − z|

dt

≤
A|z − t0|

2π

∫

t1t2

|t − t0|µ−1

|t − z|
dt

≤
δ2AK

2π

∫

t1t2

rµ−1

|t − z|
|dr|,

where δ2 = |z−t0|. Now let ω be the non-obtuse angle between the segments t0t and
t0z. If |t−z| ≥ δ2, then |t−z| ≥ δ2 sin(ω). Otherwise, ω is an interior angle of the z,
t0, t triangle and we also have |t−z| ≥ δ2 sin(ω). Then |t−z| ≥ δ2 sin(ω) ≥ δ2 sin(ω0),
where ω0 is a constant such that 0 < ω0 ≤ ω ≤ π/2. Such a ω0 does exist, since z
approaches t0 in such a way that the non-obtuse angle β between the tangent to L
at t0 and the segment t0z is greater than or equal to 0 < β0 ≤ π/2. Explicitly, we
have ω0 = β0 − α0 > 0. Thus

|I1| ≤
AK

2π sin(ω0)

∫

t1t2

rµ−1 |dr| ≤
AK

π sin(ω0)

∫ ρ

0
rµ−1 dr =

AKρµ

πµ sin(ω0)
.

Take ρ so small that |I1| < ε2/2. Notice that the choice of ρ may be taken
independent of the position of t0 on L and of the position of z. Now let δ2 ≤ ρ/2.
Then for t on L − t1t2, i.e., outside of the circle γ, |t − t0| ≥ ρ and |t − z| ≥
|t − t0|− |z − t0| ≥ ρ− ρ/2 = ρ/2 and thus

|I2| ≤
|z − t0|

2π

∫

L−t1t2

|g(t) − g(t0)|
|t − t0||t − z|

dt

≤
δ2
2π

∫

L−t1t2

|g(t) − g(t0)|
ρ(ρ/2)

dt

≤
δ2
πρ2

∫

L−t1t2

|g(t) − g(t0)| dt

≤
δ2M

πρ2
,

where M is a constant which depends neither on the position of t0 on L nor the
position of z. Hence for sufficiently small δ2, |I2| < ε2/2. Therefore |F (z)−F (t0)| <
ε2, i.e. F (z) converges uniformly to F (t0) for the above set of trajectories.

Let Ut0 denote the set of those z ∈ C\L such that the non-obtuse angle β between
the tangent to L at t0 and the segment t0z is greater that or equal to β0. In other
words, Ut0 is a double cone-shaped region with vertex t0. If z → t0 while z stays
in Ut0 , then we have shown above that F (z) converges uniformly to F (t0). Now we
will show that F (z) → F (t0) as z → t0 for any path. To do this we will first show
that F (t) is continuous for t ∈ L.

Let ε3 > 0 be given. Then ∃δ3 > 0 such that |z− t| < δ3 and z ∈ Ut implies that
|F (z)−F (t)| < ε3/2 for all t ∈ L because of the uniformity of the convergence. Let
t0 ∈ L be given. Let z′n → t0 such that the segment z′nt0 is perpendicular to the
tangent of L at t0 for all n ≥ 0. Clearly z′n ∈ Ut0 for all n ≥ 0. Then there exists
N1 ∈ N such that |z′n − t0| < δ3 for all n ≥ N1. Now let 0 < δ3 < δ3/2 be taken so
small that z′N1

∈ Ut for all t ∈ Bδ3
(t0) ∩ L. Now let t′ ∈ Bδ3

(t0) ∩ L. Then

|z′N1
− t′| ≤ |z′N1

− t0| + |t0 − t′| <
δ3
2

+
δ3
2

= δ3.

17

Hence |F (z′N1
) − F (t′)| < ε3/2. Then

|F (t0)−F (t′)| ≤ |F (t0)−F (z′N1
)|+ |F (z′N1

)−F (t′)| < ε3 ∀t′ ∈ L with |t0−t′| < δ3.

Thus F (t) is continuous on L.
Now let ab be a standard arc on L. Let Π be the family of parallel lines which

make with the tangents to ab a non-obtuse angle not less than β0. Then we see that
each straight line ∆ of the family Π which lies between ∆a and ∆b (the straight
lines through a and b, respectively) cuts the arc ab in one and only one point. We
also note that if z → t0 ∈ ab and z varies over the straight line in Π that cuts L at
t0, then F (z) → F (t0) uniformly. Now let {zn} be a sequence such that zn → t0
along any path that stays entirely to the left (or right) of L. Then for each n ∈ N

∃tn ∈ ab and ∃∆n ∈ Π with zn, tn ∈ ∆n. Let ψn be the non-obtuse angle between
tnt0 and tnzn. Then since ∆n makes an angle no less than β0 with the tangent at
t0, ∃ψ0 such that 0 < ψ0 ≤ ψn ≤ π/2. Now consider the zntnt0 triangle with inner
angle ψn. Then we see that

|tn − t0| ≤
|zn − t0|
sinψn

≤
|zn − t0|
sinψ0

and |zn − tn| ≤
|zn − t0|
sinψn

≤
|zn − t0|
sinψ0

.

Thus we may make |tn − t0| and |zn − tn| arbitrarily small. Let ε4 > 0 be given.
Now choose δ4 > 0 so small that |tn − t0| < δ4 implies that |F (tn) − F (t0)| < ε4/2
and |zn − tn| < δ4 implies that |F (zn) − F (tn)| < ε4/2. Take N2 ∈ N so large that
|zn − tn| < δ4 and |tn − t0| < δ4 for all n ≥ N2. Then

|F (zn) − F (t0)| ≤ |F (zn) − F (tn)| + |F (tn) − F (t0)| <
ε4
2

+
ε4
2

= ε4

for all n ≥ N2. Therefore F (z) → F (t0) for all t0 ∈ L.
Now we have that

G(z) =
g(t0)

2πi

∫

L

dt

t − z
+ F (z).

Then by using (10) and the fact that

1

2πi

∫

L

dt

t − z
=

{
0, z is outside of L,

1, z is inside of L,

we have

G+(t0) = g(t0) + F (t0)

= g(t0) +
1

2πi

∫

L

g(t) − g(t0)

t − t0
dt

=
1

2
g(t0) +

1

2πi

∫

L

g(t)

t − t0
dt

and

G−(t0) = F (t0)

=
1

2πi

∫

L

g(t) − g(t0)

t − t0
dt

= −
1

2
g(t0) +

1

2πi

∫

L

g(t)

t − t0
dt.

18

For the rest of this discussion let L be the unit circle oriented counterclockwise.

Corollary 3.2. Let G and g be as in the previous lemma. Then for θ ∈ L,

G+(−θ⊥) − G+(θ⊥) =
1

2
(g(−θ⊥) − g(θ⊥)) +

1

2πi

∫

S1

g(ω)

ω · θ
dω.

Proof. The proof of this corollary was outlined in [4]. Let ξ = eiσ, where θ =
(cos σ, sinσ) and v = eiψ, for ω = (cosψ, sinψ). Then θ⊥ = iξ and thus

G+(−θ⊥) − G+(θ⊥) = G+(−iξ) − G+(iξ)

=
1

2
(g(−iξ) − g(iξ)) +

1

2πi

∫

L

(
1

v + iξ
−

1

v − iξ

)
g(v) dv

=
1

2
(g(−iξ) − g(iξ)) +

1

2πi

∫

L

(
−2iξ

v2 + ξ2

)
g(v) dv.

Since dv = iv dψ,

G+(−iξ) − G+(iξ) =
1

2
(g(−iξ) − g(iξ)) +

1

2πi

∫ 2π

0

2vξ

v2 + ξ2
g(eiψ) dψ.

But

1

2
(ξ̄v + v̄ξ) =

1

2
(cos σ cosψ + sinσ sinψ + i(− sinσ cosψ + cos σ sinψ)

+ cos σ cosψ + sinσ sinψ + i(− cos σ sinψ + sinσ cosψ))

= cos σ cosψ + sinσ sinψ

= ω · θ

and

(ξ̄v + v̄ξ)vξ = |ξ|2v2 + |v|2ξ2 = v2 + ξ2,

so

ω · θ =
1

2
(ξ̄v + v̄ξ) =

v2 + ξ2

2vξ
.

Therefore we have
∫ 2π

0

2vξ

v2 + ξ2
g(eiψ) dψ =

∫

S1

1

ω · θ
g(ω) dω,

which concludes our proof.

Lemma 3.3. Let u(x, θ) = h(θ, x · θ)− (Da)(x, θ⊥), where h = 1
2(I + iH)Ra. Now

let gx(θ⊥) = Da(x, θ⊥). If we replace the function g in lemma 3.1 with this gx we
get that u(x, θ) = Gx,+(−θ⊥) − Gx,+(θ⊥), where x is a fixed parameter.

Proof. We will follow an outline for this proof given in [4]. Since Ra(θ, x · θ) =
Da(x,−θ⊥) + Da(x, θ⊥),

u(x, θ) =
1

2
Ra(θ, x · θ) +

i

2
HRa(θ, x · θ) − (Da)(x, θ⊥)

=
1

2

(
Da(x,−θ⊥) − Da(x, θ⊥)

)
−

1

2i
HRa(θ, x · θ).

19

Now we will show that

(HRa)(θ, x · θ) = −
1

π

∫

S1

Da(x,ω)

θ · ω
dω.

Then

(HRa)(θ, x · θ) =
1

π

∫

R

Ra(θ, t)

x · θ − t
dt

=
1

π

∫

R

∫

R

a(tθ + vθ⊥)

x · θ − t
dv dt

= −
1

π

∫

R

∫

R

a((x · θ − t)θ + vθ⊥)

t
dv dt

= −
1

π

∫

R

∫

R

a((x · θ + t)θ + vθ⊥)

t
dv dt

= −
1

π

∫

R

∫

R

a(x − (x · θ⊥)θ⊥ + tθ + vθ⊥)

t
dv dt

= −
1

π

∫

R

∫

R

a(x + tθ + vθ⊥)

t
dv dt.

Now let y = tθ + vθ⊥. Then

−
1

π

∫

R

∫

R

a(x + tθ + vθ⊥)

t
dv dt = −

1

π

∫

R2

a(x + y)

y · θ
dy.

Then let y = rω for ω ∈ S1, r ∈ R. Then we have

−
1

π

∫

R2

a(x + y)

y · θ
dy = −

1

π

∫

S1

∫ ∞

0

a(x + rω)

ω · θ
dr dω

= −
1

π

∫

S1

Da(x,ω)

θ · ω
dω.

Now recall the functions G and g from our previous lemma. Now let gx(θ⊥) =
Da(x, θ⊥), where x is a fixed parameter. Since a ∈ C∞

0 (R2), Da(x, θ) certainly
satisfies the Holder condition in θ. Then u(x, θ) = Gx,+(−θ⊥) − Gx,+(θ⊥).

Lemma 3.4. Let ω⊥ = x⊥

|x| = (cosψ, sinψ)T and θ = (cosϕ, sinϕ)T . Then

∫ 2π

0

θ

x · θ
eilϕdϕ =

0, l odd,

2πx/|x|2, l = 0,

−sgn(l)2πieilψx⊥/|x|2, l even.

The integral is to be understood as the principle value.

Proof. Then ∫ 2π

0

θ

x · θ
eilϕ dϕ =

1

|x|

∫

S1

θl+1

ω · θ
dθ.

Let g(z) = zl+1 for l ∈ Z. Clearly g satisfies that hypothesis in lemma 3.1. From
lemma 3.2

∫

S1

g(θ)

ω · θ
dθ = 2πi

[
G(−ω⊥) − G(ω⊥)

]
− πi

[
g(−ω⊥) − g(ω⊥)

]
.

20

Then

G(z) =
1

2πi

∫

S1

tl+1

t − z
dt =

{
Resz(

tl+1

t−z) = zl+1 = g(z), if l ≥ -1,

Resz(
tl+1

t−z) + Res0(
tl+1

t−z) = zl+1 − zl+1 = 0, if l ≤ -2.

Thus G(ω⊥) = limr→1− g(reiψ) = g(ω⊥) and G(−ω⊥) = g(−ω⊥) for l ≥ −1. Then

∫

S1

g(θ)

ω · θ
dθ =

{
πi[g(−ω⊥) − g(ω⊥)], l ≥ -1,

−πi[g(−ω⊥) − g(ω⊥)], l ≤ -2.

Then

πi[g(−ω⊥) − g(ω⊥)] = πi[(−1)l+1ei(l+1)ψ − ei(l+1)ψ]

= −πieilψeiψ[(−1)l + 1]

= −πieilψω⊥[(−1)l + 1].

and thus ∫

S1

g(θ)

ω · θ
dθ = −sgn(l)πieilψω⊥[(−1)l + 1]

for l ,= 0. Then for l ∈ Z

∫

S1

g(θ)

ω · θ
dθ = πi

[
−ω⊥(−1)leilψ − ω⊥eilψ

]
= π(−iω⊥)eilψ[(−1)l + 1]

=

0 l odd,

2πω l = 0,

−sgn(l)2πieilψω⊥ l even.

This concludes our proof.

Lemma 3.5. Let u and h be as in lemma 3.3. Then

Re

∫

S1

θ

(x − y) · θ
eu(y,θ)−u(x,θ)dθ = 2π

x − y

|x − y|2
.

Proof. We again follow an outline in [7] for the proof of this lemma. Now observe
that e(u(y,θ)−u(x,θ)) = cosh(u(y, θ) − u(x, θ)) + sinh(u(y, θ) − u(x, θ)). From lemma
3.3 we have u(y, θ)−u(x, θ) = (Gy,+(−θ⊥)−Gy,+(θ⊥))− (Gx,+(−θ⊥)−Gx,+(θ⊥)).

Since ez is an entire analytic function and Gx(z) is analytic for |z| < 1,

e(Gy(−z)−Gy(z))−(Gx(−z)−Gx(z))

is analytic for |z| < 1. Then ∃ul(x, y) such that

e(Gy(−z)−Gy(z))−(Gx(−z)−Gx(z)) =
∑

l≥0

ul(x, y)zl

for |z| < 1. It follows that

e(Gy(−reiφ)−Gy(reiφ))−(Gx(−reiφ)−Gx(reiφ)) =
∑

l≥0

ul(x, y)rleilφ

21

for 0 ≤ r < 1. Let θ⊥ =

(
cosφ
sinφ

)
. Since ez = cosh(z) + sinh(z) and cosh(z) is even,

cosh[(Gy(−z) − Gy(z)) − (Gx(−z) − Gx(z))] =
∑

l≥0 even

ul(x, y)zl.

Now we will calculate the Fourier coefficients of cosh(u(y, θ) − u(x, θ)). Then

1

2π

∫ 2π

0
cosh(u(y, θ) − u(x, θ))eilφ dφ

=
1

2π

∫ 2π

0
cosh[(Gy,+(−θ⊥) − Gy,+(θ⊥)) − (Gx,+(−θ⊥) − Gx,+(θ⊥))]eilφ dφ

= lim
r→1−

1

2π

∫ 2π

0
cosh[(Gy(−reiϕ) − Gy(re

iϕ)) − (Gx(−reiϕ) − Gx(reiϕ))]eilφ dφ

= lim
r→1−

ul(x, y)rl

= ul(x, y).

Since G(z) is bounded for z inside the unit disk and cosh(z) is a continuous function,
we may indeed exchange the limit and integration as we have done above. We also
have that u0(x, y) = cosh[(Gy(−0) − Gy(0)) − (Gx(−0) − Gx(0))] = cosh(0) = 1.
Then

cosh(u(y, θ) − u(x, θ)) = 1 +
∑

l>0 even

ul(x, y)eilϕ,

sinh(u(y, θ) − u(x, θ)) =
∑

l>0 odd

ul(x, y)eilϕ.

Since a ∈ C∞
0 (R2), u(y, θ) − u(x, θ) is an absolutely continuous function in θ and

thus the Fourier series above converge pointwise.
Let

D ≡

{

h ∈ L2(S1) : h(θ) =
n∑

l=−n

ale
ilϕ, n ∈ N

}

.

Consider Kx : D → D defined by

Kx(h) =

∫

S1

θ

x · θ
h(θ) dθ,

where x is a parameter. Clearly Kx is linear and D is a dense subset of L2(S1).
From lemma 3.4 we see that ‖Kx‖ ≤ 2π/|x|. Since Kx is uniformly continuous
and D is dense in L2(S1), there exists a unique continuous extension of Kx to all
of L2(S1). Let Kx be this unique extension. By Parseval’s Theorem, L2(S1) is
isomorphic to l2. Thus we may uniquely describe any h ∈ L2(S1) by its Fourier
coefficients. Then we see that Kx(h) multiplies the Fourier coefficients of h by the

22

values given in lemma 3.4. Then using the continuity of Kx−y we have

Kx−y(cosh(u(y, θ) − u(x, θ)))

= Kx−y

(

1 + lim
n→∞

n∑

l=0

u2l(x, y)e2liφ

)

= 2π
x − y

|x − y|2
+

∞∑

l=0

u2l(x, y)
−2πi(x − y)⊥

|x − y|2
e2liψ

= 2π
x − y

|x − y|2
− 2πi

(x − y)⊥

|x − y|2
(cosh(u(y,ω) − u(x,ω)) − 1)

and

Kx−y(sinh(u(y, θ) − u(x, θ))) = Kx−y

(

lim
n→∞

n∑

l=0

u2l+1(x, y)e(2l+1)iφ

)

=
∞∑

l=0

u2l+1(x, y)0

= 0.

Since (x − y) · ω = 0, x · ω = y · ω and thus h(ω, x · ω) = h(ω, y · ω). Then

u(y,ω) − u(x,ω) = −(Da)(y,ω⊥) + (Da)(x,ω⊥) = −
∫ x

y
a ds

i.e. u(y,ω) − u(x,ω) is real. Hence

Re

∫

S1

θ

(x − y) · θ
eu(y,θ)−u(x,θ)dθ = 2π

x − y

|x − y|2
.

Lemma 3.6. For x ∈ R2, we have

div
x

|x|2
= 2πδ(x),

where δ is the Dirac delta function.

Proof. Let x =

[
x1

x2

]
. Then

∇(log |x|) =

[
x1

x2
1
+x2

2
x2

x2
1
+x2

2

]

=
x

|x|2
.

Hence ∇ ·
(

x
|x|2

)
= ∇ ·∇(log |x|) = ∆(log |x|). Now we will show that

∫

R2

∆ log |x| v(x) dx = 2πv(0)

for v ∈ C∞
0 (R2).

23

First we will switch to polar coordinates. Thus

∆v(r(x1, x2), θ(x1, x2)) =
∂

∂x1
[vrrx1

+ vθθx1
] +

∂

∂x2
[vrrx2

+ vθθx2
]

= vrr

[
r2
x1

+ r2
x2

]
+ 2vrθ [rx1

θx1
+ rx2

θx2
] + vθθ

[
θ2
x1

+ θ2
x2

]

+ vr [rx1x1
+ rx2x2

] + vθ [θx1x1
+ θx2x2

]

= vrr +
1

r
vr +

1

r2
vθθ.

Then
∫

R2

∆ log |x| v(x) dx =

∫

R2

log |x|∆v(x) dx

=

∫ 2π

0

∫ ∞

0
r log(r)

[
1

r
vr(r, θ) + vrr(r, θ) +

1

r2
vθθ(r, θ)

]
dr dθ

=

∫ 2π

0

[∫ ∞

0
log(r)vr(r, θ) dr +r log(r)vr(r, θ)|∞0

−
∫ ∞

0
(log(r) + 1)vr(r, θ) dr

]
dθ +

∫ ∞

0

1

r
log(r)

[∫ 2π

0
vθθ(r, θ) dθ

]
dr

=

∫ 2π

0

∫ ∞

0
−vr(r, θ) dr dθ

=

∫ 2π

0
−v(r, θ)|∞0 dθ

=

∫ 2π

0
v(0, θ) dθ

= 2πv(0).

Theorem 3.7. Let g = Raf and h and u be as above. Then

f(x) =
1

4π
Re div

∫

S1

θe(Da)(x,θ⊥)(e−hHehg)(θ, x · θ) dθ, (12)

where H acts on the second argument.

Proof. This is the main result of this section and we follow an outline of the proof
of this theorem developed in [7]. Then

(Hehg)(θ, s) =
1

π

∫

R

eh(θ,t)

s − t

[∫

y·θ=t
e−(Da)(y,θ⊥)f(y) dy

]
dt.

Now let y = tθ + rθ⊥. Then we have that

(Hehg)(θ, s) =
1

π

∫

R

eh(θ,t)

s − t

[∫

R

e−(Da)(tθ+rθ⊥,θ⊥)f(tθ + rθ⊥) dr

]
dt

=
1

π

∫

R2

f(y)

s − y · θ
e−(Da)(y,θ⊥)+h(θ,y·θ)dy

=
1

π

∫

R2

f(y)

s − y · θ
eu(y,θ)dy.

24

Therefore

1

4π
Re div

∫

S1

θe(Da)(x,θ⊥)(e−hHehg)(θ, x · θ) dθ

=
1

4π
Re div

∫

S1

θe(Da)(x,θ⊥)e−h(θ,x·θ)

[
1

π

∫

R2

f(y)

(x − y) · θ
eu(y,θ)dy

]
dθ

=
1

4π2
Re div

∫

S1

θe−u(x,θ)

[∫

R2

f(y)

(x − y) · θ
eu(y,θ)dy

]
dθ

=
1

4π2
div

∫

R2

f(y)

[
Re

∫

S1

θ

(x − y) · θ
eu(y,θ)−u(x,θ)dθ

]
dy

=
1

4π2
div

∫

R2

f(y) 2π
x − y

|x − y|2
dy

=
1

2π
div

∫

R2

f(y)
x − y

|x − y|2
dy

=

∫

R2

f(y)δ(x − y) dy

= f(x).

4 Implementation

We will implement the exact inversion formula (12) due to Natterer[7] for the
parallel-beam geometry. For those interested in the fan-beam case, see [1]. The
implementation will be divided into two parts. Let

ga = Ree−hHehg, h =
1

2
(I + iH)Ra.

The first part will be the computation of this ga. Then we will compute

f(x) =
1

4π
div

∫

S1

θe(Da)(x,θ⊥)ga(θ, x · θ) dθ.

Notice that this last formula is very similar to the filtered backprojection and thus
the reconstruction proceeds similarly. Now we will write out ga explicitly. Let
h = h1 + ih2, where h1 = 1

2Ra and h2 = 1
2H Ra. Then

Re [e−hHehg] = Re [e−h1e−ih2Heh1eih2g]

= Re [e−h1(cos(h2) − i sin(h2))Heh1(cos(h2) + i sin(h2))g]

= e−h1[cos(h2)Heh1 cos(h2)g + sin(h2)Heh1 sin(h2)g].

We will compute the Hilbert transform by convolution. The formulation of this
convolution is given below in the following propositions which apply to functions
in the Schwartz space on R. We shall denote the Schwartz space by S. This is
the linear space of smooth functions, v, such that supx∈R |xkDlv(x)| is finite for all
multi-indices k, l ∈ N. The Schwartz space is used because the Fourier transform is
an isomorphism of S onto itself.

25

Proposition 4.1. If v ∈ S(R) , then (̂Hv)(σ) = sgn(σ)
i v̂(σ).

For the proof, see [6], section VII.1.

Now let φ be a low pass filter, i.e. φ(σ) ≈ 1 for |σ| ≤ 1 and φ(σ) ≈ 0 otherwise.

Let (̂Hbv)(σ) = φ(σ/b)(̂Hv)(σ), where b > 0 is a bandwidth. Then if Ĥv(σ) is

essentially bandlimited with bandwidth b we have (̂Hbv)(σ) ≈ (̂Hv)(σ) and thus
(Hbv)(s) ≈ (Hv)(s).

Proposition 4.2. If

kb(s) =
1

2π

∫

R

φ(σ/b)
sgn(σ)

i
eisσ dσ,

then Hbv = kb ∗ v.

Proof. Then

kb ∗ v(s) =

∫

R

kb(s − t)v(t) dt

=
1

2π

∫

R

∫

R

φ(σ/b)
sgn(σ)

i
ei(s−t)σv(t) dσ dt

=
1√
2π

∫

R

φ(σ/b)
sgn(σ)

i
eisσ

[
1√
2π

∫

R

v(t)e−itσ dt

]
dσ

=
1√
2π

∫

R

φ(σ/b)
sgn(σ)

i
eisσ v̂(σ) dσ

=
1√
2π

∫

R

φ(σ/b)(̂Hv)(σ)eisσ dσ

= (Hbv)(s).

Proposition 4.3. If φ is an ideal low pass filer, i.e. φ(s) = 1 for |s| ≤ 1 and
φ(s) = 0 otherwise, then

kb(s) =
1 − cos(bs)

πs
.

Proof. Then

kb(s) =
1

2π

∫

R

φ(σ/b)
sgn(σ)

i
eisσ dσ

=
1

2π

∫ b

−b

sgn(σ)

i
eisσ dσ

=
1

2π

∫ b

−b

sgn(σ)

i
(cos(sσ) + i sin(sσ)) dσ

=
1

2π

∫ b

−b
sgn(σ) sin(sσ) dσ,

26

since sgn(σ) cos(sσ) is odd. Then we have

1

2π

∫ b

−b

sgn(σ) sin(sσ) dσ =
1

2π

[∫ b

0
sin(sσ) dσ −

∫ 0

−b

sin(sσ) dσ

]

=
1

2πs

[
− cos(sσ)|b0 + cos(sσ)|0−b

]

=
1 − cos(bs)

πs
.

Therefore we may use kb ∗ v as an approximation for Hv in our calculation if
Ĥv(σ) is essentially bandlimited with bandwidth b. The bandwidth, b, is subject
to the same restrictions as the bandwidth in the normal filtered backprojection
algorithm. See [6] for details.

5 Numerical Results

I created two different elliptical test phantoms in MATLAB for my numerical exper-
iments. The elliptical test phantoms are contained in a 35 cm by 35 cm square and
their SPECT activities (in thousands) and attenuation coefficients (units cm−1) are
displayed in figures 3 and 5. Data was computed and used to produce images of 128
by 128 pixels using the parallel-beam geometry with 400 projections equispaced in
360 degrees with 128 detectors each. This agrees with the sampling conditions given
in [6] for the filtered backprojection with the modification to 360 degree scanning.
The MATLAB code for the inversion formula is a modification from Faridani’s code
in [2] for the computation of the standard filtered backprojection algorithm.

5.1 Inversion Formula

The first experiment (see figures 3 and 4) reproduces the numerical experiment in
[7]. The same cross section of the reconstruction in [7] was sampled and displayed
in figure 4. Results were almost identical.

The results of the second experiment, whose SPECT activities and attenuation
map are displayed in figure 5, are displayed in figures 5, 6 and 7. Cross sections of
the reconstruction are displayed in figure 6. The location of these cross sections are
shown as horizontal lines in the top two frames of figure 5. These plots were used
to sample the accuracy of the reconstruction. The step function displays the true
activity distribution and the other curve is the reconstruction. I also included a
plot of the reconstruction that used no attenuation correction (assumes attenuation
map is zero) in the top left plot of figures 4 and 6. This is the bottom curve in both
cases. Here, one can see the affect of attenuation on the data and the strength of
accuracy of this new algorithm.

Oftentimes the attenuation map is quite different from the activity distribution.
With this in mind, I created the phantoms for experiment two. In particular, the
boundaries of the regions of varying attenuation and activity are different. As one
can see, not only did the algorithm correct for attenuation, but it did rather well
in detecting the boundaries of the attenuation map, so that they don’t show up

27

in the reconstruction. Of course, the algorithm did not execute this flawlessly. If
one looks closely, they can see a faint boundary from the attenuation map show
up near the bottom of the phantom. Early SPECT reconstructions assumed that
the attenuation map was either zero or constant. From this experiment one can see
that an algorithm that does not take the attenuation into account can be grossly
inaccurate.

I also ran the code with noise on the data. The same cross sections that were
used to display results of the noiseless data were used here. For both experiments,
I plotted results of adding 10% and 17% noise on the SPECT data and 10% noise
on both the SPECT data and the attenuation data. These can be found in figures
4, 6, and 7. As one can see, the results were very good. The algorithm displays
good stability and accuracy in the face of noisy data. Moreover, the attenuation
correction is not affected by such noise for the affect of the attenuation does not
show up in the reconstruction images (see figure 7).

5.2 EM Algorithm

Only the second numerical experiment was tested on the EM algorithm. Figures 8
and 10 show the reconstruction images and figures 9 and 11 show the cross section
plots, where figures 10 and 11 have 10% noise added to the SPECT data. This
algorithm doesn’t seem to handle attenuation correction as well as the inversion
formula. A few shadows from the attenuation can be seen towards to the bottom of
the reconstruction images. One can definitely see that the smoothness of the solution
deteriorates with the number of steps performed. In practice, the smoothness of the
images can be improved slightly with a penalty term which is usually a Bayesian
function.

6 Conclusions

It is difficult to compare the accuracy of these two methods with this numerical
experiment, since they are both sensitive to the model. My programs have assumed
perfect collimation, perfect decay rates, and no scatter. These modeling particulars
will inherently improve the accuracy of the inversion formula, while not exploiting
the power of the EM algorithm’s statistical nature. I should also note that due to
extremely long run times and complexity, the calculation of the matrix of probabil-
ities for the EM algorithm is quite simplistic. Reconstructions using real hospital
data would lead to a more informative and accurate comparison of these SPECT re-
construction algorithms. These modifications could be added to the implementation
of the code given below.

Even after considering the circumstances given above, it seems to me that the
inversion formula produces smoother, more accurate images in a much more timely
manner. I believe that my numerical results show that the inversion formula shows
promise in medical scanners, if work can be done to control the noise and account
for scatter in the reconstruction. It is noteworthy to observe that the two algorithms
performed equally well with noise added to the data (see figures 7 and 11). Not
that the EM algorithm was more accurate with added noise, but that the algorithm
seemed equally as stable.

28

Computation time had a noticeable difference in the two algorithms. Run times
for the EM algorithm experiments were about forty times as long as the inversion
formula. Most of the computation time was spent on the determination of the
matrix of probabilities. The difference in memory usage was extreme because of the
sparse, but very large matrix of probabilities used in the EM algorithm.

7 MATLAB Code
Below we include MATLAB code to reproduce the numerical experiments described
above.

%%%%%%%%% AttRad.m %%%%%%%%%

function [RF] = AttRad(theta, phi, s, centerX, centerY, u, v, alpha, a, f)
%%
% Author: Kyle Champley
% Description: Calculates attenuated Radon transform for phantom ellipses.
% First for loop gathers boundaries. Second for loop sets a’s, and f’s.
% Third for loop carries out the calculation.
%%

phiP = phi + pi/2;
ts = [];
vals = [];
for mu=1:max(size(centerX))

p1 = theta(1)*s - centerX(mu);
p2 = theta(2)*s - centerY(mu);

%one*t^2 + 2*two*t + three <= 0
one = (cos(phiP-alpha(mu))/u(mu))^2 + (sin(phiP-alpha(mu))/v(mu))^2;
temp1 = p1*cos(alpha(mu)) + p2*sin(alpha(mu));
temp2 = -1*p1*sin(alpha(mu)) + p2*cos(alpha(mu));
two = cos(phiP-alpha(mu))*temp1/u(mu)^2 + sin(phiP-alpha(mu))*temp2/v(mu)^2;
three = (temp1/u(mu)).^2 + (temp2/v(mu)).^2 - 1;

one = one*ones(size(two));

vals = [vals one’ two’ three’];

disc = two .* two - one .* three;
ind = disc < 0;
disc(ind) = 1; one(ind) = 1; two(ind) = 11;
t0 = (-two - sqrt(disc))./one; t0 = t0’;
t1 = (-two + sqrt(disc))./one; t1 = t1’;
%Above assumes that the radius of roi is < 10

ts = sort([ts t0 t1],2);
end

[m, n] = size(ts);
midPts = (ts(:,2:n) + ts(:,1:n-1))/2;

fs = zeros(m,n-1);
as = fs;
for mu=1:max(size(centerX))

one = vals(:, 3*mu - 2); one = one(1);
two = vals(:, 3*mu - 1);
three = vals(:, 3*mu);

temp = one * midPts(:,1:n-1).^2 + 2 * (two*ones(1,n-1)) .* midPts(:,1:n-1);
ind = temp + (three*ones(1,n-1)) <= 0;
fs = fs + f(mu)*ind;

29

as = as + a(mu)*ind;
end
vals = [];

tj_m_tjm1 = ts(:,2:n) - ts(:,1:n-1);
temp = as .* tj_m_tjm1;
temp = temp(:,2:n-1);
temp = fliplr(temp);
topSum = cumsum(temp,2);
topSum = fliplr(topSum);

RF = zeros(size(s));
for mu=1:n-1

if mu < n-1
temp1 = fs(:,mu).*exp(-1*topSum(:,mu));

else
temp1 = fs(:,mu);

end

oneA = as(:,mu);
oneT = tj_m_tjm1(:,mu);

ind = oneA == 0;
indNot = ~ind;
temp2 = zeros(size(temp1));
temp2(ind) = oneT(ind);
temp2(indNot) = (1 - exp(-1*oneA(indNot) .* oneT(indNot)))./oneA(indNot);

RF = RF + (temp1.*temp2)’;
end

%%%%%%%%% ConvKernel.m %%%%%%%%%

function u = ConvKernel(t)
%%
% Author: Kyle Champley
% Description: Calculates k_b(s) = (1-cos(bs))(pi*s)
% for the SPECT inversion formula ie (Hg)(s) = k_b*g(s).
%%

u = zeros(size(t));
il = abs(t) <= 1.e-6;
t1 = t(abs(t) > 1.e-6);
v = (1-cos(t1))./t1;
u(abs(t) > 1.e-6) = v;
u = u / pi;

%%%%%%%%% DivBeam.m %%%%%%%%%

function [RF] = DivBeam(phi, x1, x2, centerX, centerY, u, v, alpha, a)
%%%
% Author: Kyle Champley
% Description: Computes the Divergent Beam transform of ellipses.
%%%

m = max(size(x1));
RF = zeros(1, m);
phiP = phi;
for mu=1:max(size(centerX))

p1 = x1 - centerX(mu);
p2 = x2 - centerY(mu);
p1 = p1’;
p2 = p2’;

%one*t^2 + 2*two*t + three <= 0
one = (cos(phiP-alpha(mu))/u(mu))^2 + (sin(phiP-alpha(mu))/v(mu))^2;
temp1 = p1*cos(alpha(mu)) + p2*sin(alpha(mu));
temp2 = -1*p1*sin(alpha(mu)) + p2*cos(alpha(mu));

30

two = cos(phiP-alpha(mu))*temp1/u(mu)^2 + sin(phiP-alpha(mu))*temp2/v(mu)^2;
three = (temp1/u(mu)).^2 + (temp2/v(mu)).^2 - 1;

val1 = zeros(size(RF));
val2 = val1; val = val1;
disc = two .* two - one .* three;
ind = disc > 0;
sqDisc = sqrt(disc(ind));

val1(ind) = (-two(ind) - sqDisc)./one;
val2(ind) = (-two(ind) + sqDisc)./one;
val(ind) = max(val2(ind),0) - max(val1(ind), 0);

RF(ind) = RF(ind) + a(mu)*val(ind);
end

%%%%%%%%% ExpectMax.m %%%%%%%%%

function ExpectMax(p,q,n)
%%
% Author: Kyle Champley
% Description: Main file for EM algorithm experiment.
% p = number of projections
% q = number of detectors
% n = number of iterations
%%

disp(’EM Algorithm’);

if nargin < 3, n = 32; end
if nargin < 2, p = 200; q = 64; end

% Set phantom and window ranges
phanNum = 2;
crossSections = [-.31 floor(q/(64/20)+.5)+q; -.55 floor(q/(64/35)+.5)+q];
Ptrue = trueActivity(phanNum,2*q);
val = crossSections(phanNum,2);
x = [-q:q-1]/q;
[windowLeft,i] = min(x+.75);
[windowRight,i] = min(x-.75);
windowLeft = windowLeft - .5;
windowRight = -windowRight - 1;
ytrue = Ptrue(val,1:2*q);

% General Set up
MX = 2*q; MY = 2*q;
circle = 1;

pmin = -0.05;
pmax = 1;

[retVal, roi] = phantom(phanNum);
centerX = retVal(1,:);
centerY = retVal(2,:);
axisA = retVal(3,:);
axisB = retVal(4,:);
alpha = retVal(5,:);
f = retVal(6,:);
a = retVal(7,:);
alpha = alpha*pi/180;

if MX > 1
hx = (roi(2) - roi(1))/MX;
xrange = roi(1) + hx*[0:MX-1] + hx/2;

else
return;

end
if MY > 1

hy = (roi(4) - roi(3))/MY;

31

yrange = flipud((roi(3) + hy*[0:MY-1] +hy/2)’);
else

return;
end

center = [(roi(1) + roi(2)), (roi(3)+roi(4))]/2;
x1 = ones(MY,1)*xrange; %x-corrdinate matrix
x2 = yrange*ones(1,MX); %y-coordinate matrix
if circle == 1

re = min([roi(2)-roi(1), roi(4)-roi(3)])/2;
chi = ((x1-center(1)).^2 + (x2-center(2)).^2 <= re^2); %char. fcn of roi;

else
chi = isfinite(x1);

end

x1 = x1(chi); x2 = x2(chi);
newQ = max(size(x1));

h = 1/q;
s = h*[-q:q-1];
shiftS = (s + 1/(2*q))’;
g = zeros(p*q,1);
xj = x1’; yj = x2’;
A = sparse(2*p*q,newQ);

disp(’Building Matrix of Probabilities’);
for i=1:p

% set A and g
if mod(i,10) == 0

i
end
phi = (2*pi*(i-1)/p);
theta = [cos(phi); sin(phi)];

%detector coordinates
xdi = -shiftS*theta(2) + center(1);
ydi = shiftS*theta(1) + center(2);

tempx = repmat(xdi,1,max(size(xj))) - repmat(xj,max(size(xdi)),1);
tempy = repmat(ydi,1,max(size(yj))) - repmat(yj,max(size(ydi)),1);

disc = (1/(2*q))^2 - (tempx*theta(2)-tempy*theta(1)).^2;
ind = disc >= 0;
Ai = sparse(2*q,newQ);
Ai(ind) = 1;

scaler = DivBeam(phi+pi/2, x2, flipud(x1), centerX, centerY, axisA, axisB, alpha, a);
scaler = exp(-scaler);
Ai = repmat(scaler, 2*q, 1) .* Ai;

g((i-1)*2*q+1:i*2*q) = AttRad(theta, phi, s, centerX, centerY, axisA, axisB, alpha, a, f);
A((i-1)*2*q+1:i*2*q,:) = Ai;
clear Ai;
clear tempx;
clear tempy;

end

% add noise
g = g + g .* (.1 * 2*(rand(size(g)) - .5));

colSums = sum(A,1);
for i=1:newQ

A(:,i) = A(:,i) ./ colSums(i);
end

ks = [4 8 16 32];
counter = 1;

% Original EM
fk = 2*ones(newQ,1);

32

disp(’Computing Iterates’);
for k=1:n

fk = fk .* (A’*(g ./ (A*fk)));
flag = find(ks-k == 0);
[qw,as] = size(flag);
if as > 0

P = zeros(MY,MX);
P(chi) = (fk ./ colSums’) ./ hx;
P = P’;
P = fliplr(P);
[k min(min(P)) max(max(P))]
figure(1);
subplot(2,2,counter), window3(pmin, pmax, roi, P);
axis off;

yapprox = P(val,1:2*q);
figure(2);
subplot(2,2,counter), plot(x,ytrue,’k’,x,yapprox,’k’);
temp = axis;
temp(1) = windowLeft; temp(2) = windowRight;
if phanNum == 1

temp(3) = -0.1; temp(4) = 1.1;
else

temp(3) = -0.15; temp(4) = 1.05;
end
axis(temp);
axis(’square’);
P = 0;
counter = counter + 1;

end
end

%%%%%%%%% fbp.m %%%%%%%%%

function P=fbp(p,q,phanNum,job,noise)
%%%
% Author: Adel Faridani with
% very small slight modifications by Kyle Champley
% Description: Computes Parallel-beam filtered backprojection
% algorithm for the standard lattice.
% Last revision: Aug 29, 2001
%
% job 1: original calculation
% job 2: SPECT true activity
% job 3: SPECT w/ no attenuation correction
%%%

if nargin < 5, noise = 0; end
if nargin < 4, job = 1; end
if nargin < 3, phanNum = 1; end
if nargin < 2, p = 200; q = 64; end

%specify input parameters here

%p = 200; %number of view angles between 0 and pi
%q = 64; %q=1/d, d = detector spacing
MX = 128; MY = 128; %matrix dimensions
%roi = [-1 1 -1 1]; %roi=[xmin xmax ymin ymax]

%region of interest where
%reconstruction is computed

circle = 1; % If circle = 1 image computed only inside
% circle inscribed in roi

[retVal, roi] = phantom(phanNum);

centerX = retVal(1,:);
centerY = retVal(2,:);
axisA = retVal(3,:);
axisB = retVal(4,:);

33

alpha = retVal(5,:);
f = retVal(6,:);
a = retVal(7,:);

b = pi*q;
rps = 1/b;
alpha = alpha*pi/180;

if MX > 1
hx = (roi(2) - roi(1))/(MX-1);
xrange = roi(1) + hx*[0:MX-1];

else
return;

end

if MY > 1
hy = (roi(4) - roi(3))/(MY-1);
yrange = flipud((roi(3) + hy*[0:MY-1])’);

else
return;

end

center = [(roi(1) + roi(2)), (roi(3)+roi(4))]/2;
x1 = ones(MY,1)*xrange; %x-corrdinate matrix
x2 = yrange*ones(1,MX); %y-coordinate matrix
if circle == 1

re = min([roi(2)-roi(1), roi(4)-roi(3)])/2;
chi = ((x1-center(1)).^2 + (x2-center(2)).^2 <= re^2); %char. fcn of roi;

else
chi = isfinite(x1);

end

x1 = x1(chi); x2 = x2(chi);
P = zeros(MY,MX); Pchi = P(chi);

h = 1/q;
s = h*[-q:q-1];
bs = [-2*q:2*q-1]/(q*rps);
wb = slkernel(bs)/(rps^2); %compute discrete convolution kernel.

for j=1:p
phi = (pi*(j-1)/p);
theta = [cos(phi); sin(phi)];
if job == 3

RF = AttRad(theta, phi, s, centerX, centerY, axisA, axisB, alpha, a, f);
else

RF = Rad(theta, phi, s, centerX, centerY, axisA, axisB, alpha, f);
end
if noise > 0

RF = RF + RF .* (noise * 2*(rand(size(RF)) - .5));
end

% Convolution
C = conv(RF,wb);
Q = h*C(2*q+1:4*q); Q(2*q+1) = 0;

% Interpolation and backprojection
Q = [real(Q)’; 0];
t = theta(1)*x1 + theta(2)*x2;
k1 = floor(t/h);
u = (t/h-k1);
k = max(1,k1+q+1); k = min(k,2*q);
Pupdate = ((1-u).*Q(k)+u.*Q(k+1));
Pchi = Pchi + Pupdate;

end
P(chi) = Pchi*(2*pi/p);

%%%%%%%%% phantom.m %%%%%%%%%

34

function [retVal, roi]=phantom(job)
%%%
% Author: Kyle Champley
% Description: Sets parameters for phantom ellipses.
%%%

if job == 1
% Natterer’s SPECT Phantom
centerX = [0 -.45 .45 .1];
centerY = [0 0 0 -.4];
axisA = [.96 .25 .27 .13];
axisB = [.80 .35 .27 .13];
alpha = [0 0 0 0];
f = [100 -100 -100 900];
a = [0.1 -0.1 -0.1 0];
f = f / 1000;
a = a * 100 * (.5 *.35);

roi = [-1 1 -1 1];
end
if job == 2

% Phantom for experiment 2.
centerX = [0 0 -.1 .2 -.2 .53 -.08 .08];
centerY = [0 0 .4 .1 -.1 -.5 -.55 -.55];
axisA = [.8 .75 .3 .15 .12 .05 .06 .03];
axisB = [.95 .9 .3 .5 .12 .2 .03 .06];
alpha = [0 0 0 -20 0 -29 0 0];
f = [0 0.5 0.5 -0.35 0.25 0.25 -0.15 0.4];
a = [0.1 -0.075 0 0 0 0 0 0];

centerX = [centerX 0 -.25 .27 -.35];
centerY = [centerY -.12 -.54 -.54 .2];
axisA = [axisA .12 .25 .27 .2];
axisB = [axisB .5 .05 .05 .3];
alpha = [alpha 0 0 0 -20];
f = [f 0 0 0 0];
a = [a 0.0350 0.0350 0.0350 0.0250];
a = a * 100 * (.5 * .35);

roi = [-1 1 -1 1];
end

retVal = [centerX; centerY; axisA; axisB; alpha; f; a];

%%%%%%%%% Rad.m %%%%%%%%%

function [RF] = Rad(theta, phi, s, x, y, u, v, alpha, rho)
%%
% Author: Adel Faridani
% Description: This function computes the Radon transform of
% ellipses centered at (x,y) with major axis u, minor axis v,
% rotated through angle alpha, with weight rho.
%%

RF = zeros(size(s));

for mu=1:max(size(x))
a = (u(mu)*cos(phi-alpha(mu)))^2+(v(mu)*sin(phi-alpha(mu)))^2;
test = a-(s-[x(mu); y(mu)]’*theta).^2;
ind = test > 0;
RF(ind) = RF(ind) + rho(mu)*(2*u(mu)*v(mu)*sqrt(test(ind)))/a;

end

%%%%%%%%% slkernel.m %%%%%%%%%

function u = slkernel(t)

35

%%%
% Author: Adel Faridani
% Description: Calculate Shepp-Logan kernel
% for the filtered backprojection algorithm.
%%%

u = zeros(size(t));
i1 = abs(abs(t) - pi/2) <= 1.e-6;
u(i1) = ones(size(u(i1)))/pi;
t1 = t(abs(abs(t) - pi/2) > 1.e-6);
v = (pi/2 - t1.*sin(t1))./((pi/2)^2 - t1.^2);
u(abs(abs(t) - pi/2) > 1.e-6) = v;
u = u / (2*pi^3);

%%%%%%%%% spect.m %%%%%%%%%

function P=spect(p, q, phanNum, noise, both)
%%%
% Author: Kyle Champley
% Description: Calculates SPECT image.
% This code was modified from Adel Faridani’s code to calculate the
% Parallel-beam filtered backprojection algorithm for the standard lattice.
%%%

if nargin < 2, p = 200; q = 64; end
if nargin < 3, phanNum = 1; end
if nargin < 4, noise = 0; end
if nargin < 5, both = 0; end

if noise >= 1
disp(’Please enter 0 <= noise < 1’);
return;

end

%p = 400; %number of view angles between 0 and 2pi
%q = 64; %q=1/d, d = detector spacing
MX = 128; MY = 128;
circle = 1;

[retVal roi] = phantom(phanNum);

% Phantom Ellipses
centerX = retVal(1,:);
centerY = retVal(2,:);
axisA = retVal(3,:);
axisB = retVal(4,:);
alpha = retVal(5,:);
f = retVal(6,:);
a = retVal(7,:);

b = pi*q; rps = 1/b;
alpha = alpha*pi/180;

hx = (roi(2) - roi(1))/(MX-1);
xrange = roi(1) + hx*[0:MX-1];

hy = (roi(4) - roi(3))/(MY-1);
yrange = flipud((roi(3) + hy*[0:MY-1])’);

center = [(roi(1) + roi(2)), (roi(3)+roi(4))]/2;
x1 = ones(MY,1)*xrange;
x2 = yrange*ones(1,MX);
if circle == 1

re = min([roi(2)-roi(1), roi(4)-roi(3)])/2;
chi = ((x1-center(1)).^2 + (x2-center(2)).^2 <= re^2);

else
chi = isfinite(x1);

end

36

x1 = x1(chi); x2 = x2(chi);
P1 = zeros(MY,MX); P1chi = P1(chi);
P2 = zeros(MY,MX); P2chi = P2(chi);
h = 1/q;
s = h*[-q:q-1];

bs = b*[-2*q:2*q-1]/q;
wb = ConvKernel(bs)*b;

deltaTheta = 2*pi/p;

for j=1:p
if mod(j,50) == 0

j
end
phi = (2*pi*(j-1)/p);
theta = [cos(phi); sin(phi)];
Ra = Rad(theta, phi, s, centerX, centerY, axisA, axisB, alpha, a);

% Compute g(theta, theta*x), here s = theta*x
g = AttRad(theta, phi, s, centerX, centerY, axisA, axisB, alpha, a, f);
if noise > 0

g = g + g .* (noise * 2*(rand(size(g)) - .5));
end

% Compute ga(theta, theta*x)
C = conv(Ra, wb);
vRa = h*C(2*q+1:4*q);

cos_vRa = cos(1/2*vRa);
sin_vRa = sin(1/2*vRa);

C = conv(exp(1/2*Ra).*cos_vRa.*g, wb);
part1 = h*C(2*q+1:4*q);
part1 = cos_vRa .* part1;

C = conv(exp(1/2*Ra).*sin_vRa.*g, wb);
part2 = h*C(2*q+1:4*q);
part2 = sin_vRa .* part2;

ga = exp(-1/2*Ra) .* (part1 + part2);
%end compute ga

% Caculate exp((Da)(x,thetaPerp))
Da = DivBeam(phi+pi/2, x1, x2, centerX, centerY, axisA, axisB, alpha, a);
if both == 1 & noise > 0

Da = Da + Da .* (noise * 2*(rand(size(Da)) - .5));
end
eDa = (exp(Da))’;

% Interpolation and backprojection
ga = [real(ga)’; 0; 0];
t = theta(1)*x1 + theta(2)*x2;
k1 = floor(t/h);
u = (t/h-k1);
k = max(1,k1+q+1); k = min(k,2*q);
Pupdate = eDa.*((1-u).*ga(k)+u.*ga(k+1));
P1chi = P1chi + theta(1)*Pupdate;
P2chi = P2chi + theta(2)*Pupdate;

end

P1(chi) = P1chi*deltaTheta;
P2(chi) = P2chi*deltaTheta;

%Calculate Divergence here
x1 = ones(MY,1)*xrange;
x2 = yrange*ones(1,MX);
P = divergence(x1, x2, P1, P2);

P = P/(4*pi);

37

% Clear junk for |x|>1 created
% from divergence calculation.
% Assumes there is nothing for
% x within 0.01 of the boundary.
% Commenting this out doesn’t change much
re = min([roi(2)-roi(1), roi(4)-roi(3)])/2 - .01;
chi = ((x1-center(1)).^2 + (x2-center(2)).^2 > re^2);
P(chi) = 0;

%%%%%%%%% spectMain.m %%%%%%%%%

function spectMain(part, phanNum)
%%
% Author: Kyle Champley
% Description: Performs numerical experiments on the
% exact inversion formula.
%%

if nargin < 2, phanNum = 1; end

disp(’Research Folder’);

[retVal, roi] = phantom(phanNum);

p = 400;
q = 64;

crossSections = [-.31 84; -.55 99];

if part == 1
centerX = retVal(1,:);
centerY = retVal(2,:);
axisA = retVal(3,:);
axisB = retVal(4,:);
alpha = retVal(5,:);
f = retVal(6,:);
a = retVal(7,:);
alpha = alpha*pi/180;

for i=1:max(size(a))
x1 = [-1:.01:1];
x1 = axisA(i)*x1;
x2 = x1;
y1 = axisB(i)/axisA(i)*sqrt(axisA(i)^2-x1.^2);
y2 = -y1;

temp1 = x1*cos(alpha(i)) - y1*sin(alpha(i));
temp2 = x1*sin(alpha(i)) + y1*cos(alpha(i));
x1 = temp1 + centerX(i);
y1 = temp2 + centerY(i);

temp1 = x2*cos(alpha(i)) - y2*sin(alpha(i));
temp2 = x2*sin(alpha(i)) + y2*cos(alpha(i));
x2 = temp1 + centerX(i);
y2 = temp2 + centerY(i);

if f(i) ~= 0
subplot(2,2,1), plot(x1, y1, ’b’, x2, y2, ’b’);
axis(roi);

else
subplot(2,2,1), plot(0,0,’w’);

end
%TITLE(’SPECT Activity’);
axis(’square’);
if (i == 1)

hold on;
end
if a(i) ~= 0

38

subplot(2,2,2), plot(x1, y1, ’b’, x2, y2, ’b’);
axis(roi);

else
subplot(2,2,2), plot(0,0,’w’);

end
%TITLE(’Attenuation Coefficients’);
axis(’square’);
if (i == 1)

hold on;
end

end

x3 = [-2/3:.01:2/3];
y3 = crossSections(phanNum,1)*ones(size(x3));
subplot(2,2,1), plot(x3,y3,’r’);
subplot(2,2,2), plot(x3,y3,’r’);

P2 = spect(p,q,phanNum);
P1 = trueActivity(phanNum);

pmin = min(min(P1) - 0.025);
pmax = max(max(P1));
if phanNum == 1, pmax = 0.5; end
if phanNum == 2, pmin = -0.05; end

subplot(2,2,3), window3(pmin, pmax, roi, P1);
axis off;
%TITLE(’True Activity’);
subplot(2,2,4), window3(pmin, pmax, roi, P2);
axis off;
%TITLE(’Reconstruction’);

end
if part == 2

% Cross-Section Plots
P1 = trueActivity(phanNum,128);
P2a = spect(p,q,phanNum);
P2b = spect(p,q,phanNum,.1);
P2c = spect(p,q,phanNum,.17);
P2d = spect(p,q,phanNum,.1,1);
P3a = fbp(p/2,q,phanNum,3);

val = crossSections(phanNum,2);
x = [-48:48]/64;
y1 = P1(val,16:128-16);
y2a = P2a(val,16:128-16);
y2b = P2b(val,16:128-16);
y2c = P2c(val,16:128-16);
y2d = P2d(val,16:128-16);
y3a = P3a(val,16:128-16);

figure(1);
%clrs = [’r’ ’b’ ’g’];
clrs = [’k’ ’k’ ’k’];
subplot(2,2,1), plot(x,y1,clrs(1),x,y2a,clrs(2),x,y3a,clrs(3));
%TITLE(’Cross Section with No Noise’);
temp = axis;
temp(1) = x(1); temp(2) = x(length(x));
if phanNum == 1

temp(3) = -0.1; temp(4) = 1.1;
else

temp(3) = -0.15; temp(4) = 1.05;
end
axis(temp);
axis(’square’);
subplot(2,2,2), plot(x,y1,clrs(1),x,y2b,clrs(2));
%TITLE(’Cross Section with 10% Noise’);
temp = axis;
temp(1) = x(1); temp(2) = x(length(x));
if phanNum == 1

temp(3) = -0.1; temp(4) = 1.1;

39

else
temp(3) = -0.15; temp(4) = 1.05;

end
axis(temp);
axis(’square’);
subplot(2,2,3), plot(x,y1,clrs(1),x,y2c,clrs(2));
%TITLE(’Cross Section with 17% Noise’);
temp = axis;
temp(1) = x(1); temp(2) = x(length(x));
if phanNum == 1

temp(3) = -0.1; temp(4) = 1.1;
else

temp(3) = -0.15; temp(4) = 1.05;
end
axis(temp);
axis(’square’);
subplot(2,2,4), plot(x,y1,clrs(1),x,y2d,clrs(2));
%TITLE(’Cross Section with 10% Noise on Both Scans’);
temp = axis;
temp(1) = x(1); temp(2) = x(length(x));
if phanNum == 1

temp(3) = -0.1; temp(4) = 1.1;
else

temp(3) = -0.15; temp(4) = 1.05;
end
axis(temp);
axis(’square’);

% Noise Pics (figure 5)
pmin = min(min(P1) - 0.025);
pmax = max(max(P1));
if phanNum == 1, pmax = 0.5; end
if phanNum == 2, pmin = -0.05; end

figure(2);
subplot(2,2,1),window3(pmin, pmax, roi, P3a);
axis off;
subplot(2,2,2),window3(pmin, pmax, roi, P2b);
axis off;
subplot(2,2,3),window3(pmin, pmax, roi, P2c);
axis off;
subplot(2,2,4),window3(pmin, pmax, roi, P2d);
axis off;

end

%%%%%%%%% trueActivity.m %%%%%%%%%

function P=trueActivity(phanNum,numPixels)
%%
% Author: Kyle Champley
% Description: Calculates exact image.
%%

if nargin < 2, numPixels = 256; end
MX = numPixels; MY = numPixels; %matrix dimensions
%roi = [-1 1 -1 1]; %roi=[xmin xmax ymin ymax]

[retVal, roi] = phantom(phanNum);

if MX > 1
hx = (roi(2) - roi(1))/(MX-1);
xrange = roi(1) + hx*[0:MX-1];

else
return;

end

if MY > 1

40

hy = (roi(4) - roi(3))/(MY-1);
yrange = flipud((roi(3) + hy*[0:MY-1])’);

else
return;

end

centerX = retVal(1,:);
centerY = retVal(2,:);
axisA = retVal(3,:);
axisB = retVal(4,:);
alpha = retVal(5,:);
f = retVal(6,:);
a = retVal(7,:);
alpha = alpha*pi/180;

center = [(roi(1) + roi(2)), (roi(3)+roi(4))]/2;
x1 = ones(MY,1)*xrange; %x-corrdinate matrix
x2 = yrange*ones(1,MX); %y-coordinate matrix
chi = isfinite(x1);
x1 = x1(chi); x2 = x2(chi);
P = zeros(MY,MX); Pchi = P(chi);

for mu=1:max(size(centerX))
p1 = x1 - centerX(mu);
p2 = x2 - centerY(mu);
p1 = p1’; p2 = p2’;
A = [cos(alpha(mu))/axisA(mu) sin(alpha(mu))/axisA(mu);

-sin(alpha(mu))/axisB(mu) cos(alpha(mu))/axisB(mu)];
temp = [A(1,1)*p1 + A(1,2)*p2; A(2,1)*p1 + A(2,2)*p2];
ind = temp(1,:).^2+temp(2,:).^2 <= 1;
ind = ind’;
update = zeros(size(P));
update(ind) = f(mu);
Pchi(ind) = Pchi(ind) + update(ind);

end
P(chi) = Pchi;

%%%%%%%%% window3.m %%%%%%%%%

function pic1 = window3(mi, ma, roi, pic);
%%
% Author: Adel Faridani
% Description: Displays image pic with coordinates given by
% roi = [xmin xmax ymin ymax].
%%

x = [roi(1), roi(2)]; y = [roi(3), roi(4)];
colors = 128; co = colors - 1;
pic1 = pic - mi*ones(size(pic));
pic1 = (co/(ma-mi))*pic1;
P = (pic1 >= 0);
pic1 = pic1.*P;
P = (pic1 <= co);
pic1 = pic1.*P + co*(ones(size(pic1)) - P);
colormap(gray(colors));
image(x,fliplr(y), flipud(pic1));
axis(’square’);

41

References

[1] Bukhgeim A and Kazantsev S, Inversion formula for the fan-beam atten-
uated radon transform in a unit disk, Sobolev Institute of Math (2002),
3–33.

[2] Faridani A, Introduction to the mathematics of computed tomography,
Inside Out: Inverse Problems and Applications (2003), 1–46.

[3] Iusem A, Convergence analysis for a multiplicity relaxed em algorithm,
Math Meth Appl Sci 14 (1991), 573–593.

[4] Finch D, The attenuated x-ray transform: Recent developments, Inside
Out: Inverse Problems and Applications (2003), 47–66.

[5] Williams D, Weighing the odds: A course in probability and statistics,
Cambridge University Press, 2001.

[6] Natterer F, The mathematics of computerized tomography, John Wiley &
Sons, Inc., 1986.

[7] , Inversion of the attenuated radon transform, Inverse Problems
17 (2001), 113–119.

[8] Natterer F and Wübbeling F, Mathematical methods in image reconstruc-
tion, Society for Industrial & Applied Mathematics, 2001.

[9] Muskhelishvili N, Singular integral equations, P. Noordhoff N.V., Gronin-
gen, Holland, 1953.

[10] Lewitt R and Matej S, Overview of methods for image reconstruction from
projections in emission computed tomography, Proceedings of the IEEE
10 (2003), 1588–1609.

[11] Cover T, An algorithm for maximizing expected log investment return,
IEEE Trans on Information Theory 2 (1984), 369–373.

42

1

0.1

0 0

0.1

0 0

Figure 3: Inversion formula reconstructions for experiment 1. (top left): SPECT Map,
(top right): Attenuation Map, (bottom left): True Activity, (bottom right): Reconstruc-
tion

43

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4: Cross section plots for inversion formula, experiment 1. (top left): No noise
added to the data. The bottom line plots the cross section of the reconstruction that
does not use attenuation correction. (top right): 10% noise added to the SPECT activity.
(bottom left): 17% noise added to the SPECT data. (bottom right): 10% noise added to
both the SPECT activity and the attenuation map.

44

0.06

0.05

0.1

0.025

0.060.35 0.9

1.0

0.5

0.75

0.15

0.65

0.75

Figure 5: Inversion formula reconstructions for experiment 2. (top left): SPECT Map,
(top right): Attenuation Map, (bottom left): True Activity, (bottom right): Reconstruc-
tion

45

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 6: Cross section plots for inversion formula, experiment 2. (top left): No noise
added to the data. The bottom line plots the cross section of the reconstruction that
does not use attenuation correction. (top right): 10% noise added to the SPECT activity.
(bottom left): 17% noise added to the SPECT data. (bottom right): 10% noise added to
both the SPECT activity and the attenuation map.

46

Figure 7: Inversion formula reconstructions with added noise and one that does not use
attenuation correction for experiment 2. (top left): Reconstruction that does not use
attenuation correction. (top right): 10% noise added to the SPECT activity. (bottom
left): 17% noise added to the SPECT data. (bottom right): 10% noise added to both the
SPECT activity and the attenuation map.

47

Figure 8: EM algorithm reconstructions for experiment 2. (top left): Image after 4
iterations of the EM algorithm. (top right): Image after 8 iterations of the EM algorithm.
(bottom left): Image after 16 iterations of the EM algorithm. (bottom right): Image after
32 iterations of the EM algorithm.

48

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 9: Cross section plots for the EM algorithm, experiment 2. (top left): Plot after 4
iterations of the EM algorithm. (top right): Plot after 8 iterations of the EM algorithm.
(bottom left): Plot after 16 iterations of the EM algorithm. (bottom right): Plot after 32
iterations of the EM algorithm.

49

Figure 10: EM algorithm reconstructions with 10% noise added to the SPECT data for
experiment 2. (top left): Image after 4 iterations of the EM algorithm. (top right): Image
after 8 iterations of the EM algorithm. (bottom left): Image after 16 iterations of the EM
algorithm. (bottom right): Image after 32 iterations of the EM algorithm.

50

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 11: Cross section plots for the EM algorithm with 10% noise added to the SPECT
data, experiment 2. (top left): Plot after 4 iterations of the EM algorithm. (top right):
Plot after 8 iterations of the EM algorithm. (bottom left): Plot after 16 iterations of the
EM algorithm. (bottom right): Plot after 32 iterations of the EM algorithm.

51

