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Abstract

The classical sampling theorem permits reconstruction of a bandlimited
function f from its values on a shifted lattice. This work considers sampling
sets which are unions of possibly different shifted lattices, using the follow-
ing basic approach. Assume the Fourier transform of a function f vanishes
outside a set K. Let K admit a disjoint decomposition K = K0∪K1 with a
corresponding decomposition of f , f(x) = f0(x)+P (x)f1(x), such that the
Fourier transform of fi vanishes outside Ki, i = 0, 1, and P is known. Let
M0, M1 be sampling sets such that fi can be reconstructed from its samples
on Mi and P vanishes everywhere on M0 but nowhere on M1. Then f can
be reconstructed from its values on M0 ∪ M1. Two methods to construct
such decompositions are given, subject to K satisfying certain compatibility
conditions. It is demonstrated how the decompositions can be used to con-
struct sampling theorems or recursive reconstruction algorithms. Several
examples and a numerical implementation in two dimensions are presented.
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1 Introduction

The classical sampling theorem permits reconstruction of a bandlimited function
from its values on a set of equidistant points on the real line IR [11, 14]. It is
readily generalized to higher dimensions with the sampling set being a coset
(shifted copy) of a lattice. Periodic sampling, introduced by Kohlenberg [9],
is a further extension and considers sampling sets which are unions of cosets
of a single lattice; see, e.g., [3, 5, 10, 15, 16]. Such sets are periodic in the
sense of being invariant with regard to translations by an element of the lattice.
In this paper we continue work begun in [1, 12, 13] and present an approach
for finding sampling theorems for sampling sets which are unions of cosets of
possibly different lattices. Such sampling sets are not necessarily periodic.

The basic ideas underlying the approach presented here are as follows. As-
sume that the Fourier transform f̂ of a function f vanishes outside a certain set
K. We call K the bandregion of f . Assume K has the form K = K0 ∪K1 with
K0, K1 disjoint and that we have sampling sets M0 and M1 such that functions
whose Fourier transform vanishes outside Ki can be reconstructed from their
samples on Mi, i = 0, 1, respectively. We seek decompositions of the form

f(x) = f0(x) + P (x)f1(x) (1)

where P (x) is a known function vanishing everywhere on M0 but vanishing
nowhere on M1, and f̂0, f̂1 are known to vanish outside K0 and K1, respectively.
Such a decomposition can be used in the following way to reconstruct f from its
samples on M0∪M1. Since P (x) vanishes on M0, f(x) = f0(x) on M0, and so f0

can be reconstructed from the samples of f on M0. Since P (x) 6= 0 on M1, we
have f1(x) = (f(x) − f0(x)) /P (x) for x ∈ M1. Hence we can find the samples
of f1 on M1 and use these to reconstruct f1 everywhere. Then the function f
itself can be found from (1).

In the present paper this approach will be applied in two different ways. The
first arises from choosing M0 = x0 +H, with H a lattice, and K0 ⊆ R, with R a
fundamental domain of the reciprocal lattice H⊥. In this case K1 needs to satisfy
the compatibility conditions K1 − η′ ⊆ K = K0 ∪K1, and K1 ⊆

⋃N−1
j=1 (jη′ + R)

for some non-zero element η′ of H⊥ and some positive integer N . Here jη′

is defined inductively by letting 0 η′ = 0 and jη′ = (j − 1)η′ + η′ for positive
integers j. It will always be assumed that the jη′ are distinct elements of H⊥

for j = 0, . . . , N − 1.

This generalizes the situation considered in [1] where more restrictive condi-
tions were needed. It was shown in [1] how to apply this decomposition recur-
sively to more complicated sets and we show that the recursive reconstruction
algorithm carries over to the generalization presented here.

In the second application a decomposition for the case of a set K of the form
K = K0∪K1 with K0 =

⋃m−1
j=1 (R+ηj), and K1 ⊆ R is given, where 0 6= ηj ∈ H⊥
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and R is again a fundamental domain of H⊥. Here the non-zero elements ηj

need not be multiples of one element. The idea is to first use periodic sampling
with M0 being a union of m cosets of the lattice H to “strip off” the part K0

and then to choose M1 to be a coset of a possibly different lattice in order to
deal with K1.

The paper is organized as follows. In the next section we review some stan-
dard definitions and facts from Fourier analysis. We use a general notation which
encompasses a wide range of settings. In §3 we prove the two basic decompo-
sitions and then show examples and applications in §4. Besides extending the
range of applicability of the recursive reconstruction algorithm of [1], we present
a two-dimensional example for finding sampling sets of minimum density when
the bandregion K is a rectangle with two tabs (Example 4.4), and obtain a
complete answer for sampling functions of one variable when K is an interval
(Example 4.6 combined with Algorithm 4.8). The final section is devoted to a
numerical implementation of Algorithm 4.8 in two dimensions using MATLAB.

2 Standard definitions and facts

The Fourier transform is defined in many different settings, and we will use a
general notation which applies to a large number of these settings. Let ZZ, IR
denote the integers and real numbers, respectively. Let G be the domain of the
function f . For example, G could be IR or IRn. If f is a periodic function of n
variables we can choose G = [0, 1)n = Tn, where we use the interval [0, 1) with
addition modulo 1 as a model for the circle group T. If f is a function of a
discrete variable, then G = ZZ, or in the case of the discrete Fourier transform
we have G = ZZL, that is G = {0, . . . , L − 1} with addition modulo L. In
the general case G is a locally compact abelian group [2, 3, 8]. For each of
these domains integration is defined using a translation invariant measure mG,
the so-called Haar measure on G, which is unique up to normalization by a
multiplicative constant. Lp(G) denotes the space of all functions on G such that

‖ f ‖p= (
∫
G |f(x)|p dmG(x))1/p is finite.

The Fourier transform of a function f ∈ L1(G) is the continuous function f̂
defined by

f̂(ξ) =

∫

G
f(x)e−2πi〈x,ξ〉 dmG(x), (2)

where ξ is an element of the corresponding Fourier space Ĝ. Some examples
of the measures and meaning of 〈x, ξ〉 for different G are given in the following
table, where dx denotes the Lebesgue measure on IRn.

3



G Ĝ
∫
G f(x) dmG(x) 〈x, ξ〉, x ∈ G, ξ ∈ Ĝ

IR IR
∫
IR f(x) dx xξ, x, ξ ∈ IR

IRn IRn ∫
IRn f(x) dx

∑n
i=1 xiξi, x, ξ ∈ IRn

T ZZ
∫ 1
0 f(x) dx xk, x ∈ [0, 1), k ∈ ZZ

ZZ T
∑

l∈ZZ f(l) lt, l ∈ ZZ, t ∈ [0, 1)

Throughout this paper we will assume that the measure mG is given and
then normalize the Haar measure on Ĝ such that the Fourier inversion formula
holds in the form (3) given below.

Theorem 2.1 (Fourier inversion formula) If f ∈ L1(G) is continuous and f̂ ∈
L1(Ĝ), then

f(x) =

∫

Ĝ
f̂(ξ)e2πi〈x,ξ〉 dm

Ĝ
(ξ) = (f̂)∧(−x). (3)

The Fourier transform can be extended to a linear isomorphism of L2(G) onto
L2(Ĝ) by means of the Plancherel Theorem (cf. [6, Sec. 31.18]).

Definition 2.2 1. Let H be a closed subgroup of G. The annihilator of H is
the closed subgroup H⊥ of Ĝ given by

H⊥ = {η ∈ Ĝ : e2πi〈y,η〉 = 1 for all y ∈ H}.

2. A closed discrete subgroup H of G such that H⊥ is also discrete is called
a lattice. H⊥ is sometimes called the reciprocal lattice.

3. A measurable subset R of Ĝ such that every ξ ∈ Ĝ can be uniquely written
as ξ = ρ + η, where ρ ∈ R and η ∈ H⊥ is called a fundamental domain of
H⊥.

4. For H a lattice and R a fundamental domain of H⊥ we define a function
ϕR : G → C by

ϕR(x) =
1

m
Ĝ
(R)

∫

R
e2πi〈x,ξ〉 dm

Ĝ
(ξ), x ∈ G, (4)

where

m
Ĝ
(R) =

∫

R
dm

Ĝ
(ξ).

Remark 2.3 Let χV denote the indicator function of a set V , that is χV (x) = 1
if x ∈ V and χV (x) = 0 otherwise. Note that (4) implies that

ϕ̂R(ξ) =
1

m
Ĝ
(R)

χR(ξ). (5)
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Furthermore it was shown in [8] that ϕR is continuous on G and satisfies

ϕR(0) = 1, ϕR(y) = 0 for 0 6= y ∈ H, ‖ ϕR ‖2 = 1/
√

m
Ĝ
(R), as well as

the orthogonality relation
∫
G ϕR(x)ϕR(x − y) dmG(x) = 0 for 0 6= y ∈ H.

Note also that in the case of G = Ĝ the real line and R an interval we
obtain the familiar sinus cardinalis: With G = IR, H = 1

2bZZ, H⊥ = 2bZZ, and

R = [−b, b), we have m
Ĝ
(R) =

∫ b
−b dx = 2b, and ϕR(x) = 1

2b

∫ b
−b e2πixξ dξ =

sinc(2bx), where sinc(t) = sin(πt)
πt .

The classical sampling theorem now reads as follows [8].

Theorem 2.4 Let H be a lattice and R a fundamental domain of H⊥. Suppose
f ∈ L2(G) and f̂(ξ) = 0 for almost all ξ 6∈ R. Then f is equal almost everywhere
to a continuous function. If f itself is continuous, then

f(x) =
∑

y∈H

f(y)ϕR(x − y) (6)

uniformly on G and in the sense of convergence in L2(G). Furthermore, the
L2-norm of f is given by

‖ f ‖2
2=

1

m
Ĝ
(R)

∑

y∈H

|f(y)|2.

We would like to apply the formula (6) to functions whose Fourier transform
is supported in a set K larger than R. The following corollary to the classical
sampling theorem deals with this case.

Corollary 2.5 Let H be a lattice and R a fundamental domain of H⊥. Let
f ∈ L2(G) be continuous and f̂(ξ) = 0 a.e. outside a measurable subset K of
Ĝ. Assume that there is P < ∞ such that K ⊆

⋃P
j=1(ηj + R) with η1, . . . , ηP

distinct elements of H⊥. Let M = x0 + H be a coset of H. Then the function
SMf defined by

SMf(x) =
∑

y∈H

f(x0 + y)ϕR(x − x0 − y) (7)

is continuous and square integrable on G, and satisfies SMf(z) = f(z) for all
z ∈ M .

For a proof of this corollary see [1].
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3 Two decompositions

As stated in the introduction, our first decomposition applies to sets K of the
form K = K0 ∪ K1 with K0 ⊆ R, K1 − η′ ⊂ K, and K1 ⊆

⋃N−1
j=1 (jη′ + R) for

some non-zero element η′ of H⊥ and some positive integer N . As before, H is a
lattice, R a fundamental domain of H⊥, and jη′ is defined inductively by letting
0 η′ = 0 and jη′ = (j − 1)η′ + η′ for positive integers j. We will always assume
that the jη′ are distinct elements of H⊥ for j = 0, . . . , N − 1. In particular
these conditions imply that K0 and K1 are disjoint. To fix ideas let us consider
a simple example.

Example 3.1 Let G = IR = Ĝ, H = ZZ = H⊥, R = [0, 1), and K = [0, 3). We
decompose K as K = K0 ∪ K1 with K0 = [0, 1) and K1 = [1, 3). With η′ = 1
we see that K1 satisfies the conditions K1 − η′ = K1 − 1 = [0, 2) ⊂ K, and
K1 ⊆ [1, 2) ∪ [2, 3) =

⋃2
j=1(jη

′ + R).

We now give an equivalent statement of the structure of the set K, describing
it in terms of the sets K̃j = K ∩ (jη′ + R). Consider the conditions

K =
N−1⋃

j=0

K̃j with K̃j measurable such that

K̃0 ⊆ R and K̃j ⊆ K̃j−1 + η′ for j = 1, . . . , N − 1, (8)

jη′ distinct for j = 0, . . . , N − 1.

Letting K0 = K̃0 and K1 =
⋃N−1

j=1 K̃j one verifies that this is equivalent to the
original conditions given in the first paragraph of this section. Note that the
conditions (8) imply that K̃j ⊆ R + jη′, and that the K̃j are mutually disjoint
since the jη′ are distinct elements of H⊥.

Theorem 3.2 Let H be a lattice, R a fundamental domain of H⊥, 0 6= η′ ∈ H⊥

and K ⊂ Ĝ such that the conditions (8) hold. Assume that f ∈ L2(G) is
continuous, and that f̂ vanishes a.e. outside K. Then

f(x) = f0(x) +
(
e−2πi〈x,η′〉 − 1

)
f1(x) (9)

with f0, f1 ∈ L2(G) continuous, f̂0(ξ) vanishing outside K0 = K̃0, and f̂1(ξ)
vanishing outside K1 =

⋃N−1
j=1 K̃j .

Proof. If N = 1 then (9) holds trivially with f0 = f and f1 vanishing
everywhere. Assume in the following that N > 1. We define f0 and f1 on the
Fourier transform side as follows.

f̂1(ξ) =

{
−

∑N−1−j
k=0 f̂(ξ + kη′), for ξ ∈ K̃j , j = 1, . . . , N − 1

0 for ξ 6∈ K1.
(10)
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For ξ ∈ K̃0 let
f̂0(ξ) = f̂(ξ) − f̂1(ξ + η′),

and let f̂0(ξ) = 0 otherwise.
We now establish (9) on the Fourier transform side by showing that

f̂(ξ) = f̂0(ξ) + f̂1(ξ + η′) − f̂1(ξ). (11)

First consider the case ξ 6∈ K. Then f̂(ξ) = f̂0(ξ) = f̂1(ξ) = 0. Since ξ + η′ 6∈
K + η′ and by (8)

K + η′ =
N−1⋃

j=0

K̃j + η′ ⊇
N−2⋃

j=0

K̃j + η′ ⊇
N−2⋃

j=0

K̃j+1 = K1,

we have that ξ + η′ 6∈ K1 so that f̂1(ξ + η′) also vanishes and (11) holds.
If ξ ∈ K̃0, then f̂1(ξ) = 0 and (11) holds by definition of f̂0. If ξ ∈ K̃N−1

then ξ + η′ 6∈ K1 since the jη′ are distinct elements. Hence f̂1(ξ + η′) = 0,
f̂0(ξ) = 0, and f̂1(ξ) = −f̂(ξ) by (10), so that (11) holds. Finally, if ξ ∈ K̃j for

j = 1, . . . , N − 2 then f̂0(ξ) = 0 and (8) implies that either ξ + η′ ∈ K̃j+1 or
ξ + η′ 6∈ K. If ξ + η′ ∈ K̃j+1 then (10) gives

f̂1(ξ + η′) = −
N−1−(j+1)∑

k=0

f̂(ξ + η′ + kη′) = −
N−1−j∑

k=1

f̂(ξ + kη′) = f̂1(ξ) + f̂(ξ),

which is what is needed. If ξ + η′ 6∈ K, then it follows from the condition
K̃j ⊆ η′ +K̃j−1 that ξ +kη′ 6∈ K for k = 1, . . . , N −1− j, so that f̂1(ξ) = −f̂(ξ).

Since in this case both f̂0(ξ) and f̂1(ξ + η′) vanish, (11) holds.

Our second decomposition applies to bandregions of the form K = K0 ∪ K1

with K0 =
⋃m−1

j=1 (R + ηj), K1 ⊆ R, and ηj distinct non-zero elements of H⊥. In
particular, the ηj need not be multiples of one element as was the case with the
jη′ in our first decomposition.

Theorem 3.3 Let H be a lattice, R a fundamental domain of H⊥, K = K0∪K1

with K0 =
⋃m−1

j=1 (R + ηj), K1 ⊆ R, η1, . . . , ηm−1 distinct non-zero elements of

H⊥, and

P (x) = 1 +
m−1∑

j=1

cj e2πi〈x,ηj〉. (12)

If f ∈ L2(G) is continuous and f̂ vanishes a.e. outside K then

f(x) = f0(x) + P (x)f1(x) (13)

with fi ∈ L2(G) continuous, and supp(f̂i) ⊆ Ki, i = 0, 1.
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Proof. Let f1 be given on the Fourier transform side by f̂1(ξ) = χK1
(ξ)f̂(ξ).

Recall that χK1
denotes the indicator function of K1. Let g(x) = f0(x) +

P (x)f1(x). Then

ĝ(ξ) = f̂0(ξ) + f̂1(ξ) +
m−1∑

j=1

cj f̂1(ξ − ηj).

The third term is supported in
⋃m−1

j=1 (K1+ηj) ⊆
⋃m−1

j=1 (R+ηj) = K0. Therefore,
define

f̂0(ξ) = f̂(ξ) −
m−1∑

j=1

cj f̂1(ξ − ηj), ξ ∈
m−1⋃

j=1

(R + ηj),

and f̂0(ξ) = 0 otherwise. Then ĝ = f̂ and f0, f1 have the desired properties.

4 Examples and applications.

We begin with an application of our second decomposition. In order to apply
Theorem 3.3 to the construction of sampling theorems, we let M0 be a periodic
sampling set, that is M0 =

⋃m−1
n=1 (xn+H) with the xn chosen such that functions

whose Fourier transform is supported in K0 can be reconstructed from their
samples on M0 according to the method given in [3]. We further assume that
the cj in (12) can be chosen such that

P (xn) = 0, n = 1, . . . ,m − 1. (14)

Since it follows from (12) that P is constant on cosets of H, the equations
(14) imply that P (x) vanishes on M0. Hence f(x) = f0(x) on M0, so that f0

can be found from samples of f on M0. Let M1 be a sampling set permitting
reconstruction of functions whose Fourier transform vanishes outside K1. If in
addition P (x) 6= 0 on M1, then for x ∈ M1, f1(x) = (f(x) − f0(x)) /P (x). Hence
we can find the samples of f1 on M1 and use these to reconstruct f1 everywhere.
Then the function f itself can be found from (13).

Example 4.1 In Theorem 3.3 let m = 3 and η2 = −η1, so that the bandregion
K has the form

K = (R − η1) ∪ K1 ∪ (R + η1), K1 ⊆ R, η1 ∈ H⊥, η1 6= −η1.

According to (12) P (x) has the form

P (x) = 1 + c1 e2πi〈x,η1〉 + c2 e−2πi〈x,η1〉,

and the equations (14) yield

P (x) =
(
1 + e2πi〈x1−x2,η1〉

)−1 (
1 − e−2πi〈x−x1,η1〉

) (
1 − e2πi〈x−x2,η1〉

)
,
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provided that x1, x2 are chosen such that

1 + e2πi〈x1−x2,η1〉 6= 0. (15)

To be specific, let us consider G = IR, 0 < a ≤ b, H = 1
2bZZ, H⊥ = 2bZZ,

R = [−b, b), K1 = [−a, a), and η1 = 2b. Then K = [−3b,−b) ∪ [−a, a) ∪ [b, 3b).
If a < b then K is the interval [−3b, 3b) with two gaps at [−b,−a) and [a, b). The
classical sampling theorem would require sampling with a set at least as dense as
the lattice 1

6bZZ, which is suboptimal. Our goal is to sample with a set M0 ∪ M1

of minimal density, by letting M0 =
⋃2

n=1(xn +H) and M1 = x3 + H̃, with H̃ =
1
2aZZ. The condition (15) now requires that e2πi〈x1−x2,η1〉 = e2πi(x1−x2)2b 6= −1,
i.e., 4b(x1 − x2) may not be an odd integer. However, the property that M0 is
a suitable sampling set for functions with bandregion K0 = [−3b,−b) ∪ [b, 3b)
requires according to [3, Theorem 3.5] the sharper condition 4b(x1 − x2) 6∈ ZZ.
Once we have found f0 in this way, we need to find x3 such that P (x) 6= 0 for
all x ∈ x3 + H̃. This gives the additional requirement

2b(x3 − xi) + nb/a 6∈ ZZ, for all n ∈ ZZ, i = 1, 2.

We now show that our first decomposition, Theorem 3.2, leads to a larger
range of validity of the theory and algorithms developed in [1]. The key is to
use Corollary 4.2 below in place of [1, Lemma 2].

Corollary 4.2 Let H be a lattice and R a fundamental domain of H⊥. Let
K = K0 ∪ (η′ + K ′) with K0, K ′ measurable sets such that K0 ⊆ R, K ′ ⊂
K, K ′ ⊆

⋃N−2
j=0 (jη′ + R), and 0 6= η′ ∈ H⊥ such that jη′ are distinct elements

of H⊥ for j = 0, . . . , N − 1. Assume that f ∈ L2(G) is continuous, vanishes on
the coset x0 + H, and that f̂ vanishes a.e. outside K. Then

f(x) = h(x)
(
1 − e2πi〈x−x0,η′〉

)
(16)

with h ∈ L2(G) continuous and ĥ vanishing a.e. outside K ′.

Proof: We first show that K satisfies the hypothesis of Theorem 3.2. It follows
immediately from the hypothesis that

K = K0 ∪ (η′ + K ′)

⊆ R ∪


η′ +

N−2⋃

j=0

(jη′ + R)


 =

N−1⋃

j=0

(jη′ + R).

Therefore K =
⋃N−1

j=0 K̃j with K̃j = K ∩ (jη′ + R), j = 0, . . . , N − 1.

Since K ′ ⊂ K we have K ′ ∩ (jη′ + R) ⊆ K̃j for j = 0, . . . , N − 1. For
j = 1, . . . , N − 1 we have K0 ∩ (jη′ + R) = ∅ so that

K̃j = (η′ + K ′) ∩ (jη′ + R) = η′ +
(
K ′ ∩

[
(j − 1)η′ + R

])
⊆ η′ + K̃j−1.
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Hence K has the structure (8) required in Theorem 3.2. Furthermore the rela-
tions

η′ + K ′ =
N−1⋃

j=1

K̃j (17)

⊆
N−1⋃

j=1

(jη′ + R) (18)

hold. Since the jη′, j = 0, . . . , N − 1 are distinct, (18) implies that R ∩ (η′ +
K ′) = ∅, so that K̃0 = K ∩ R = K0. Applying Theorem 3.2 to the function
g(x) = f(x + x0) now yields

g(x) = g0(x) +
(
e−2πi〈x,η′〉 − 1

)
g1(x) (19)

with ĝ0 vanishing outside K0 and ĝ1 vanishing outside K1 =
⋃N−1

j=1 K̃j = η′+K ′,
cf. (17).

For x ∈ H equation (19) gives that g(x) = g0(x). Since by hypothesis
g vanishes on H, g0 must vanish identically by the classical sampling theorem
(Theorem 2.4). Now let h(x) = e−2πi〈x−x0,η′〉g1(x−x0). With f(x) = g(x−x0) it
now follows that equation (16) holds and we see that ĥ(ξ) = e−2πi〈x0,ξ〉 ĝ1(ξ +η′)
vanishes outside

K1 − η′ = (
N−1⋃

j=1

K̃j) − η′ = (η′ + K ′) − η′ = K ′.

Next, Corollary 4.2 can be used in the following way to reduce the problem
of reconstructing f to the problem of reconstructing h.

Theorem 4.3 Let H be a lattice and R a fundamental domain of H⊥. Let
K = K0∪(η′+K ′) with K0, K ′ measurable sets such that K0 ⊆ R, K ′ ⊂ K, K ′ ⊆⋃N−2

j=0 (jη′ + R), and 0 6= η′ ∈ H⊥ such that jη′ are distinct elements of H⊥ for

j = 0, . . . , N − 1. Assume that f ∈ L2(G) is continuous, and that f̂ vanishes
a.e. outside K. Let M ′ ⊂ G be such that continuous functions h ∈ L2(G)
whose Fourier transform vanishes a.e. outside K ′ can be reconstructed from
their samples h(z′), z′ ∈ M ′. Let x0 be such that

e2πi〈z′−x0,η′〉 6= 1 for all z′ ∈ M ′. (20)

Then f can be reconstructed from its samples f(z), z ∈ M ∪ M ′, where M =
x0 + H.
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Proof: Note that K = K0 ∪ (K ′ + η′) ⊆ R ∪ (
⋃N−2

j=0 (jη′ + R) + η′) =
⋃N−1

j=0 (jη′+R) where jη′ are distinct elements of H⊥ for j = 0, . . . , N−1. Hence,
Corollary 2.5 applies to f . It follows that the function g(x) = f(x) − SMf(x)
is continuous, square integrable and vanishes on M . It follows from (7) and
(5) that the Fourier transform ŜMf(ξ) vanishes for a.e. ξ outside R. Hence
Corollary 4.2 can be applied to g, yielding a continuous function h(x) ∈ L2(G)
with ĥ vanishing a.e. outside K ′ such that

f(x) = SMf(x) + h(x)
(
1 − e2πi〈x−x0,η′〉

)
. (21)

Since e2πi〈z′−x0,η′〉 6= 1 for z′ ∈ M ′, we can compute the sampled values

h(z′) =
f(z′) − SMf(z′)

1 − e2πi〈z′−x0,η′〉
, z′ ∈ M ′. (22)

By hypothesis, h(x), x ∈ G, can be computed from these samples. Then f(x) is
given by (21).

As a first illustration we apply the theorem to sampling on G = IR2 when the
support of the Fourier transform is a rectangle with two unequal tabs attached.

Example 4.4 Let 0 < r1 < r2 and let ρ = r1 + r2. Consider the set K ⊆ IR2

defined by

K = [−r2, r2]
2 ∪ [−ρ,−ρ + r1] × [−r1, r1] ∪ [ρ − r1, ρ + 2r2] × [−r1, r1].

Thus, K is a square of side length 2r2 with two unequal “tabs” on each side; see
Fig. 2. On the left, we have a rectangle with dimension r1 × 2r1, and on the
right, a rectangle with dimension (2r2 +r1)×2r1. K may be partitioned into two
subsets so that the theorem applies. Let H = 1

2r2
ZZ

2 so that H⊥ = 2r2ZZ
2 and let

η′ = (2r2, 0). Note that a natural choice for a fundamental domain of H⊥ would
be to choose R0 = [−r2, r2]

2. However, we consider a different choice for R,
which is obtained by cutting the rectangle [r2 − r1, r2] × [−r1, r1] from the right
side of R0 and shifting it to the left by the amount 2r2, obtaining the rectangle
[−ρ,−r2] × [−r1, r1]. This gives

R = [−ρ,−r2] × [−r1, r1] ∪
(
[−r2, r2]

2 \ ([r2 − r1, r2] × [−r1, r1])
)

; (23)

see Fig. 1. In the notation of Theorem 4.3 this set would be K0. Let

K ′ = [−ρ, ρ] × [−r1, r1].

Then K ′ ⊆ R∪ (η′ + R) (see Fig. 1), and K = K0 ∪ (η′ + K ′); see Fig. 2. Note
that while K thus satisfies the hypothesis of Corollary 4.2 with N = 3, it is not
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0−r1

−r1

r1

r1

−r2

−r2

r2

r2

−ρ ρ

K ′

R

Figure 1: The fundamental domain R of (23) and the set K ′ = [−ρ, ρ]×[−r1, r1].
With η′ = (2r2, 0) one has K ′ ⊂ R ∪ (η′ + R)

an admissible subset of Ĝ as defined in [1, Def. 2] because clearly K ′ 6⊆ R. Now
let M = x0 + H and M ′ = x1 + H ′, where

H ′ = {(n/(2r1 + 2r2),m/(2r1)) : (n,m) ∈ ZZ
2}.

Since K ′ is a fundamental domain of H ′, any continuous function with Fourier
transform supported in K ′ can be reconstructed from its samples on M ′. Then a
function f with Fourier transform supported in K can be reconstructed from its
samples on M∪M ′ provided the condition (20) is satisfied. If x0 = (x01, x02) and
x1 = (x11, x12), then the condition (20) requires that (x11−x01+ n

2(r1+r2)
)2r2 6∈ ZZ

for all n ∈ ZZ.

A recursive reconstruction algorithm can be defined if the set K has a certain
structure. The appropriate modification to [1, Definition 2] is in condition ii),
which had been Kj ⊆ Rj+1.

Definition 4.5 Let H1, . . . ,HN be lattices with corresponding fundamental do-
mains Ri of H⊥

i . We call K ⊂ Ĝ an admissible subset of Ĝ with respect to
H1, . . . ,HN if there are subsets K1, . . . ,KN of Ĝ such that the following condi-
tions hold:

i) K1 = R1.

ii) Kj ⊂ Kj+1, and there is Pj ∈ IN such that Kj ⊆
⋃Pj−2

l=0 (lηj+1+Rj+1), with
0 6= ηj+1 ∈ H⊥

j+1, and lηj+1 are distinct elements of H⊥
j+1 for l = 0, . . . , Pj − 1.

iii) Kj+1 = Rj+1 ∪ (ηj+1 + Kj) with ηj+1 as in ii).

iv) KN = K.

Observe that because of conditions ii) and iii) each intermediate set Kj+1 has
the structure of the set K in Corollary 4.2 with K = Kj+1, K0 = Rj+1, K ′ = Kj

and η′ = ηj+1. The above conditions imply in particular that K1 ⊂ K2 ⊂ . . . ⊂
KN but not necessarily Kj ⊂ Rj+1, j = 1, . . . , N − 1 as it was required in [1].

Instead the less restrictive condition that Kj ⊆
⋃Pj−2

l=0 (lηj+1 + Rj+1) is used.

12



2r2 + ρ0−r1

−r1

r1

r1

−r2

−r2

r2

r2

−ρ ρ

η′ + K ′

R

Figure 2: K = K0 ∪ (η′ + K ′), K0 = R, η′ = (2r2, 0).

In addition Definition 4.5 does encompass certain cases of periodic sampling
where H1 = . . . = HN . We will give examples of both periodic and nonperiodic
sampling sets for the group G = ZZL × ZZL in the next section.

To illustrate the structure of the sets described in Definition 4.5, consider
the following example.

Example 4.6 Let G = Ĝ = IR, and Hi = 1
2ri

ZZ for i = 1, 2, 3 where r1, r2, and
r3 are positive real numbers. Let ρ = r1 + r2 + r3, define K = [−ρ, ρ), and let
fundamental domains Ri of H⊥

i be given by Ri = [−ρ,−ρ + 2 ri), i = 1, 2, 3.
The Ri thus form three nested intervals with the common left boundary −ρ and
length 2ri as shown in Figure 3.

−ρ

☎

✆R1

☎

✆R2

☎

✆R3 0 r1 r2 r3

Figure 3: Ri = [−ρ,−ρ + 2 ri)

Let ηi ∈ H⊥
i be given by ηi = 2 ri for i = 2, 3. Then K1 = R1 and K2 =

R2 ∪ (η2 + K1) = [−ρ,−ρ + 2 r1 + 2 r2), and K = K3 = R3 ∪ (η3 + K2) =
R3 ∪ (η3 + R2) ∪ (η3 + η2 + K1). Hence

K = R3 ∪ (η3 + K2)

= [−ρ,−ρ + 2 r3) ∪ (2 r3 + [−ρ,−ρ + 2 r1 + 2 r2))

= [−ρ,−ρ + 2 r1 + 2 r2 + 2 r3))

= [−ρ, ρ)

as shown in Figure 4.
0

−ρ

☎

✆
R3 −ρ + 2 r3

☎

✆
ρK2 + 2 r3

Figure 4: K = R3 ∪ (η3 + K2)
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Observe that this example falls under the theory developed in [1] only if r1 ≤ r2

and r1 + r2 ≤ r3. Definition 4.5 does not require these restrictions. As the
example shows, there are in fact no restrictions in case of sampling on the real
line and K being an interval. Indeed, it follows from Definition 4.5 and the
theory developed below that for K = [−ρ, ρ) a sampling set can be obtained
from suitably shifted copies of Hi = 1

2ri
ZZ, i = 1, . . . , N with r1, . . . , rN such

that ri > 0 and
∑N

i=1 ri ≥ ρ.

Theorem 4.7 Suppose that K is an admissible subset of Ĝ with respect to the
lattices H1, . . . ,HN , with Rj,Kj , ηj as in Definition 4.5. Let Mj = xj + Hj,
j = 1, . . . , N be such that if N > 1

e2πi〈z−xj ,ηj〉 6= 1 for z ∈
j−1⋃

k=1

Mk, j = 2, . . . , N. (24)

Let f ∈ L2(G) be continuous and such that f̂ vanishes a.e. outside K. Then
there are continuous functions fj ∈ L2(G) such that f̂j vanishes outside Kj, and
for all x ∈ G:

f1(x) = SM1
f1(x),

fj(x) − SMj
fj(x) = fj−1(x)

(
1 − e2πi〈x−xj ,ηj〉

)
, j = 2, . . . , N,

fN (x) = f(x).

Using this recursion, the function f can be reconstructed from sampled values
f(z), z ∈

⋃N
k=1 Mk.

Proof: The proof is by induction on N . If N = 1, then K = K1 = R1 and f =
SM1

f by the classical sampling theorem. Hence f can be reconstructed from its
samples on M1. Now assume N > 1 and that the theorem holds with N replaced
by N−1. Let fN = f and consider the function g(x) = fN (x)−SMN

fN(x). Since

K ⊆
⋃PN−1−1

l=0 (lηN + RN ), by Corollary 2.5 g is continuous, square-integrable,

and vanishes on MN . Since ŜMN
f vanishes outside RN ⊆ K, ĝ vanishes a.e.

outside K. Since K = RN ∪ (ηN + KN−1) and KN−1 ⊆
⋃PN−1−2

l=0 (lηN + RN ),
we can apply Corollary 4.2 to g, with K0, K ′, x0 and η′ replaced by RN , KN−1,
xN , and ηN , respectively. Hence there is a continuous, square-integrable function
fN−1 such that

g(x) = fN (x) − SMN
fN (x) = fN−1(x)

(
1 − e2πi〈x−xN ,ηN 〉

)
,

and ̂fN−1 vanishes a.e. outside KN−1. Because of (24) the values

fN−1(z) =
f(z) − SMN

f(z)

1 − e2πi〈z−xN ,ηN 〉
, z ∈

N−1⋃

k=1

Mk,
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can be computed. Now the hypothesis of the theorem is satisfied if f , K, and N
are replaced by fN−1, KN−1, and N − 1, respectively. By induction hypothesis
the theorem holds in this case, yielding the functions fj, j = 1, . . . , N − 2, and
the reconstructed function fN−1(x) for all x ∈ G. Now f is reconstructed via

f(x) =
(
1 − e2πi〈x−xN ,ηN 〉

)
fN−1(x) + SMN

f(x), x ∈ G.

The theorem establishes the following recursive algorithm for reconstruction
of f from sampled values f(z), z ∈

⋃N
k=1 Mk:

Algorithm 4.8 :

IF N = 1 THEN f(x) = SM1
f(x).

ELSE

Compute

g(z) =
f(z) − SMN

f(z)

1 − e2πi〈z−xN ,ηN 〉
, z ∈

N−1⋃

k=1

Mk.

Invoke the algorithm to compute g(x), x ∈ G from the computed values
g(z), z ∈

⋃N−1
k=1 Mk.

f(x) = g(x)
(
1 − e2πi〈x−xN ,ηN 〉

)
+ SMN

f(x), x ∈ G.

END

5 A Two-dimensional Numerical Implementation

In this section we implement Algorithm 4.8 for the group G = ZZL × ZZL using
MATLAB.

Let G = ZZL × ZZL, i.e., G = {0, . . . , L − 1} × {0, . . . , L − 1} with addition
modulo L. Then Ĝ = {ν/L, ν = 0, . . . , L − 1} × {ν/L, ν = 0, . . . , L − 1}
with addition modulo 1. Let mG be the counting measure. Then m

Ĝ
equals

1/L2 times the counting measure, where according to our convention the nor-
malization constant 1/L2 is determined by the Fourier inversion formula (3).
We consider lattices H that are tensor products of two subgroups of ZZL, that is

H = H(h1, h2) = {h1m, m = 0, . . . , L/h1 − 1} × {h2n, n = 0, . . . , L/h2 − 1}

where 0 < h1, h2 ≤ L and h1, h2 divide L. The reciprocal lattice can be written
as

H(h1, h2)
⊥ = {µ/h1, µ = 0, . . . , h1 − 1} × {ν/h2, ν = 0, . . . , h2 − 1}.
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A fundamental domain of H(h1, h2)
⊥ is given by

R = R(h1, h2) = {(µ/L, ν/L) : µ = 0, . . . , L/h1−1, ν = 0, . . . , L/h2−1}, (25)

with m
Ĝ
(R) = 1/(h1h2).

The MATLAB code given at the end of this section implements Algorithm 4.8
for this setting. The parameters are specified and explained in the driver routine
bf2d.m. This routine generates the function to be reconstructed by randomly
specifying its non-zero Fourier coefficients, cf. [4]. The function M-file spect.m
computes the support K of the Fourier transform of the function f according to
the formula

K = RN ∪ (ηN + RN−1) ∪ ((ηN−1 + ηN ) + RN−2) ∪ . . . ∪ ((η2 + . . . + ηN ) + R1)

which follows from Definition 4.5 provided the compatibility conditions are met.
This computation requires specification of the Rj and ηj by the user. In order
to keep the code simple the assumption was made that all fundamental domains
are of the form given in (25), so that specifying h1 and h2 determines both
the lattice H and the fundamental domain R of H⊥. Note however that the
price for this convenience is a loss of generality in the code as our theory would
permit other choices for R, a feature that is sometimes advantageous, such as
in Example 4.4 above. Note also that depending on the values of the Rj and
ηj , the set K may or may not be a hypercube, may be connected or have more
than one connected component. The recursive algorithm is implemented in the
function M-file bfmethod.m. The function M-file SM.m computes SMf by first
computing the Fourier transform ŜMf on R and then finding SMf by an inverse
Fourier transform. This computation is based on the following considerations.
It follows from (7) and (5) that

ŜMf(ξ) =
χR(ξ)

m
Ĝ
(R)

e−2πi〈x0,ξ〉
∑

y∈H

f(x0 + y) e−2πi〈y,ξ〉. (26)

Every y ∈ H(h1, h2) can be written as y = ymn = (h1m,h2n) for some m ∈
{0, . . . , L/h1 − 1}, n ∈ {0, . . . , L/h2 − 1}. Let fmn = f(x0 + ymn). Then, for
ξ = ξµν = (µ/L, ν/L) ∈ R, R as in (25), we have

Fµν =
∑

y∈H

f(x0 + y) e−2πi〈y,ξµν 〉

=

L/h1−1∑

m=0

L/h2−1∑

n=0

fmn e−2πi(h1mµ+h2nν)/L

which is just the two-dimensional Discrete Fourier Transform (DFT) of the array
fmn with size L/h1 × L/h2. On the other hand we see from (26) that

Fµν = m
Ĝ
(R) e2πi〈x0,ξµν〉 ŜMf(ξµν).
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Hence extending the array Fµν by zero-padding to size L×L, taking an Inverse
DFT of size L × L, and dividing by m

Ĝ
(R) gives SMf(x0 + x), for x ∈ G.

Reversing the shift by x0 completes the task.

Example 5.1 Our first numerical experiment involves three different subgroups
of G = ZZL ×ZZL with L = 512: H1 = H(8, 8), H2 = H(4, 8), and H3 = H(4, 4).
According to (25) we have

R1 = {µ/512, µ = 0, . . . , 63}2,

R2 = {µ/512 : µ = 0, . . . , 127} × {ν/512 : ν = 0, . . . , 63}

R3 = {µ/512 : µ = 0, . . . , 127}2

Let η2 = (0, 64)/512 and η3 = (384, 0)/512. Then

K = R3 ∪ (η3 + R2) ∪ (η2 + η3 + R1)

is the union of the two contiguous sets R3 and (η3 +R2)∪ (η2 +η3 +R1) depicted
in Figure 5. The shifts xj = (xj1, xj2) need to satisfy the conditions (24) with
N = 3. For the present example these conditions read as follows. For j = 2 we
obtain the condition

e2πi〈z−x2,η2〉 6= 1 for z ∈ M1 = x1 + H1.

Since H1 = H(8, 8), we have z = zmn = (x11 + 8m,x12 + 8n). With η2 =
(0, 64)/512 we obtain the condition

64 (x12 − x22 + 8n) 6∈ 512ZZ for n = 0, . . . , 63,

which is equivalent to (x12 − x22) not being a multiple of 8. For j = 3 we have
the conditions

e2πi〈z−x3,η3〉 6= 1 for z ∈ M1 ∪M2 = (x1 + H1)∪ (x2 + H2), η3 = (384, 0)/512.

For z ∈ M1 this yields

384 (x11 − x31 + 8m) 6∈ 512ZZ for m = 0, . . . , 63,

which is equivalent to x11−x31 not being a multiple of 4. For z ∈ M2 one obtains

384 (x21 − x31 + 4m) 6∈ 512ZZ, ; for m = 0, . . . , 127,

which yields that x21 − x31 should not be a multiple of 4. Hence we see that
the shifts can for example be chosen as x1 = (1, 1), x2 = (1, 0), and x3 = (0, 1).
The driver program bf2d.m given below contains the parameters for this example.
Running the program demonstrates that the function f is recovered accurately.
The relative errors in our numerical tests varied with the random signal, but
stayed below 3 · 10−13.
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Figure 5: K = R3 ∪ (η3 + R2) ∪ ((η2 + η3) + R1). L = 512, R1 = R(8, 8),
R2 = R(4, 8), R3 = R(4, 4), cf. (25). η2 = (0, 64)/L, η3 = (384, 0)/L. K
contains 28,672 elements.

In our final experiment we consider a case of periodic sampling covered by
Theorem 4.7, namely when K has the form

⋃N−1
j=0 (jη + R).

Example 5.2 Let L = 512, N = 4, H1 = H2 = H3 = H4 = H(32, 8), R =
R(32, 8) as in (25), and ηj = (j − 1)η, j = 2, 3, 4 with η = (16, 64)/512 ∈
H(32, 8)⊥. Hence K =

⋃3
j=0(jη + R) is the union of the four contiguous sets

depicted in Figure 6.

Again the shifts xj = (xj1, xj2) have to be chosen such that the sampling
conditions (24) are satisfied. Since the sampling set consists of four cosets of a
single lattice H, and η = η4 = η3 = η2 = (16/L, 64/L), the sampling conditions
(24) are reduced to

e2πi〈xk−xj ,η〉 6= 1 for j = 2, 3, 4 and k = 1, · · · , j − 1. (27)

Conditions (27) are equivalent to (xk1−xj1)+4(xk2−xj2) not being a multiple of
32 for j = 2, 3, 4, and k = 1, · · · , j − 1. For example, one could chose x1 = (0, 0),
x2 = (1, 1), x3 = (2, 2), and x4 = (3, 3). In order to run this example with the
code given below, the parameters in the routine bf2d.m should be set as follows.

L=512; h1=[32 32 32 32]; h2=[8 8 8 8]; x1=[0 1 2 3]; x2=[0 1 2 3];

eta1=[0 16 16 16]/L; eta2=[0 64 64 64]/L;

Finally, note that our sampling theory does of course permit the bandregion
K to be a hypercube. E.g., if in the example above we choose η4 = η3 = η2 =
(16/L, 0/L), we obtain a square region of size 64 × 64 for K.

We conclude this section by giving the MATLAB source code for this two-
dimensional implementation on G = ZZl × ZZL.
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Figure 6: K = R∪ (η4 +R)∪ ((η3 +η4)+R)∪ ((η2 +η3 +η4)+R). R = R(32, 8)
as in (25), ηj = η = (16, 64)/512. K contains 4,096 elements.

% bf2d.m : Driver for nonperiodic/periodic sampling

% on the group G = Z_L X Z_L = {0, ..., L-1} X {0, ..., L-1}

% with addition modulo L.

% Explanation of variables:

% L = number elements in Z_L

% The k-th lattice H_k is H(h1(k),h2(k))

% with h1 and h2 as described below

% h1: vector where h1(k) is the divisor of L which generates

% the points in the horizontal direction with the form <h1(k)>,

% i.e., <h1(k)> = {0,h1(k),2h1(k),...,L-h1(k)}

% h2: vector where h2(k) is the divisor of L which generates the

% points in the vertical direction with the form <h2(k)>, i.e.,

% <h2(k)> = {0,h2(k),2h2(k),...,L-h2(k)}

% x1: vector with shifts in the horizontal direction.

% x2: vector with shifts in the vertical direction.

% eta1: eta1(k) = first component of eta_k. eta1(k) = \eta_{k1}

% eta2: eta2(k) = second component of eta_k

%Input parameters:

%Experiment 1

L=512; % Length of Z_L

h1=[8 4 4]; % Specify horizontal direction of the subgroups

h2=[8 8 4]; % Specify vertical direction of the subgroups
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x1=[1 1 0]; % Specify first component of shifts.

% Need x1(k) in {0,...,h1(k)-1}

x2=[1 0 1]; % Specify second component of shifts;

% Need x2(k) in {0,...,h2(k)-1}

eta1=[0 0 384]/L; % Specify first components of eta_k.

eta2=[0 64 0]/L; % Specify second components of eta_k.

% NOTE: The values of eta1(1) and eta2(1) are

% not used by the code but must be specified.

% End of input section

N = max(size(h1)); % Number of subgroups

% Randomly generate signal to be sampled and reconstructed

fhat=complex(rand(L,L),rand(L,L)); % Random Fourier coefficients

filt = spect(L,h1,h2,N,eta1,eta2); % The bandregion K

spy(filt.’,’k’); axis xy; % Plot bandregion K

fhat=fhat.*filt; % Set frequencies

% outside of K to zero

fexact=ifft2(fhat);

fexact=fexact/norm(fexact); % Normalize signal

% Compute sampled values

f = zeros(L,L);

for k=1:N

Hx1=x1(k)+[0:h1(k):L-h1(k)];

% Hx1 = First components of points in coset M_k = x_k + H_k.

Hx2=x2(k)+[0:h2(k):L-h2(k)];

% Hx2 = Second components of points in coset M_k = x_k + H_k.

f(1+Hx1,1+Hx2) = fexact(1+Hx1,1+Hx2);% Sampled values on M_k

end

% Reconstruct signal

F = bfmethod(f,L,h1,h2,eta1,eta2,x1,x2);

%Compute the l2 relative reconstruction error

relerr = norm(fexact - F) %Note that norm(fexact)=1.

%---------------------------------------------------------------

function filt = spect(L,h1,h2,N,eta1,eta2)

% Computes the spectrum according to Definition 4.3.

% Parameters need to satisfy the conditions of Definition 4.3

M = max(size(eta1));
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ETA1=0;

ETA2=0;

filt=zeros(L,L);

for m=N:-1:1

v=mod((L*ETA1)+(0:L/h1(m)-1),L);

w=mod((L*ETA2)+(0:L/h2(m)-1),L);

filt(v+1,w+1)=1;

ETA1 = ETA1 + eta1(m);

ETA2 = ETA2 + eta2(m);

end

%---------------------------------------------------------------

function F=bfmethod(f,L,h1,h2,eta1,eta2,x1,x2)

N = max(size(h1));

Hx1 = x1(N)+[0:h1(N):L-h1(N)]; % Coset M_N = Hx1 x Hx2

Hx2 = x2(N)+[0:h2(N):L-h2(N)];

fH = f(1+Hx1,1+Hx2); % Sampled values on coset M_N

SMf = SM(fH,L,h1(N),h2(N),x1(N),x2(N));

V=([0:L-1]-x1(N));

W=([0:L-1]-x2(N));

TMP1 = zeros(L,L);

TMP = zeros(L,L);

if N==1

F = SMf;

else

for k = 1:L

for m = 1:L

tmp = 1-exp(2*pi*i*[V(k)*eta1(N)+W(m)*eta2(N)]);

tmp1 = tmp;

% Avoid zero divisions

tmp1(find(abs(tmp1 < 1.e-14)))=1;

TMP(k,m) = tmp;

TMP1(k,m) = tmp1;

end

end

f1 = (f - SMf)./TMP1;

fN1 = bfmethod(f1,L,h1(1:N-1),h2(1:N-1),eta1(1:N-1), ...

eta2(1:N-1), x1(1:N-1),x2(1:N-1));

F = fN1.*TMP + SMf;
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end

%---------------------------------------------------------------

function S = SM(f,L,h1,h2,x1,x2)

%Computes S_Mf(z) for z in G

%G = {0,1,...,L-1} X {0,1,...,L-1} with addition mod L

%H = {0,h1,2h1,...,L-h1} X {0,h2,2h2,...,L-h2}

%f = row vector of length L/h1 X L/h2, with sampled

% values on x+H where x=(x1,x2).

% x = shift. Need x1 in {0,...,h1-1} and x2 in {0,...,h2-1}

chi = zeros(L,L);

chi(1:L/h1,1:L/h2) = fft2(f);

S = h1*h2*ifft2(chi);

if x1 > 0

tmp = S(L-x1+1:L,1:L);

S(x1+1:L,1:L)=S(1:L-x1,1:L);

S(1:x1,1:L) = tmp;

end

if x2 > 0

tmp = S(:,L-x2+1:L);

S(:,x2+1:L) = S(:,1:L-x2);

S(:,1:x2) = tmp;

end
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