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1 Introduction

Transmission Computerized Tomography (CT) is the process of sending energy beams through an
object, measuring the attenuation of the energy beams after they have passed through the object, and
attempting to reconstruct an image of a cross-section of that object from gathered data. This process
can be used to examine a wide variety of objects, such as insects, different portions of a human body, or
even industrial equipment. CT is versatile in the sense that it can be used to construct 2-dimensional
and 3-dimensional images, even without total 360◦ access to the object [1], [2].

There are different beams of energy that can be used in Transmission CT. X-rays are commonly
used in the reconstruction of images of the human body and will be the type referred to in this pa-
per. However, Ultrasound is used when an image is desired but radiation of the object in question is
undesirable. Additionally, Electron Microscopy can be useful when a high resolution image of a small
specimen is desired [1].

CT (also known as: computed axial tomography, computerized tomography, and computerized
axial tomography) with X-rays is the process where a computer creates an image of an object from
data collected after X-rays have been sent through the object. One procedure to gather the necessary
data is to have a single source and detector directly opposite. The source sends X-rays through the
object to the detector while both are moved in a parallel fashion. After the beams are sent through the
length of the object, at predetermined intervals, the source and the detector are rotated and the process
repeated. This is done for a specified number of rotation angles. This is known as Parallel Scanning,
and is the type of scanning geometry that the data throughout this paper is based on. However, another
scan type, Fan-Beam Scanning, is when a single source sends out beams at multiple angles to multiple
detectors. Then both are rotate around the object [1]. Pictorial examples of these scan types are shown
in Figure 1.

Either parallel or fan-beam scanning employed a single time will result in a planar cross-sectional
image of the object. Implementing multiple times at various cross-sections allows reconstruction of a
3-dimensional image from the numerous 2-dimensional cross-sectional images produced.
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Figure 1: Above are basic examples of a cross section of an object with differing density within
(the different shaded shapes). The left depicts parallel beam scanning, the right illustrates fan-beam
scanning.

Behind this image reconstruction is a very interesting part of CT. To successfully create useful
and accurate images, it is necessary to carefully evaluate the data gathered after an X-ray beam has
traveled through the object. This reveals how much energy is lost from the X-ray beam at different
locations of its path through the object, relating information about the density of the object at varying
locations. Suppose some function f represents the X-ray attenuation coefficients at various points of the
object. Thus, if we can figure out what values the function f takes throughout a specific cross-section
of the object, then we know the image of that cross-section.

As with most fields in modern science, there remains plenty to be discovered, improved upon,
and explored in the field of Computerized Tomography. While the development of modern tomography
in the mid- to late-20th century was revolutionary, particularly with regards to medicine, the increased
use of X-rays from CT scans is correlated with adverse affects in patients [3], [4]. This, and the fact
that some of the mathematical algorithms behind image reconstruction sacrifice either accuracy or
computation time during execution, results in continued research into additional mathematical models
that would allow: safer data extraction, better time efficiency, and/or more accurate implementation.

This paper first presents the mathematical background that is useful in two different methods of
image reconstruction. Next, we briefly examine the reconstruction methods Filtered Backprojection and
one type of Fourier reconstruction. Following this brief evaluation, which motivates the later portion of
this paper, we look at several non-uniform/non-equispaced 1- and 2-dimensional Fast Fourier Transform
algorithms and, finally, their applications to Fourier reconstruction in Computerized Tomography.

2 Mathematical Background

To concisely and logically look at how to reconstruct a cross-sectional image of an object from
gathered data, a few mathematical tools are necessary. The following subsections contain the mathe-
matical background needed to examine several image reconstruction methods used in tomography.
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2.1 The Fourier Transform

Let f ∈ L1(Rn). Defining the Fourier Transform (FT) of f , and subsequently the accompanying
Inverse Fourier Transform, can be done in multiple, equivalent ways (see [1] and [2]). This paper utilizes
the following definition for the Fourier Transform. The Fourier Transform of f , denoted f̂ , is defined
as follows,

f̂(ξ) = (2π)−n/2
∫
Rn

f(x) e−ix·ξdx, ξ ∈ Rn. (1)

Theorem 2.1 states the accompanying Inverse Fourier Transform of equation (1) [2].

Theorem 2.1. Fourier Inversion Formula.For f ∈ L1(Rn), if f̂ ∈ L1(Rn) then,

f(x) = (2π)−n/2
∫
Rn

f̂(ξ) eiξ·xdξ, x ∈ Rn. (2)

Notice, f̂(ξ) exist and can be defined in this way because,

|f̂(ξ)| = (2π)−n/2

∣∣∣∣∣
∫
Rn

f(x)e−ix·ξdx

∣∣∣∣∣ ≤ (2π)−n/2
∫
Rn

∣∣∣f(x)e−ix·ξ
∣∣∣dx = (2π)−n/2||f ||1 <∞.

The final inequality follows by definition of f .
The Fourier Transform can be extended to f ∈ L2(Rn) by continuity. Thus, the Inverse Fourier

Transform can be similarly interpreted as in Theorem 2.1 for f, f̂ ∈ L2(Rn).

2.2 Radon Transform

This sections information can be found in [1] and [2]. The purpose of Transmission Computerized
Tomography is to create a 2- or 3-dimensional image from a function representing the desired image.
The Radon Transform is a useful mathematical tool that reveals information about a function along
lines in R2 or along planes in R3. The Radon Transform and the Fourier Transform are particularly
useful when used in conjunction.

The Radon Transform, denoted R, takes a function f ∈ Rn and maps it into the integral of f
over hyperplanes in Rn. For its use in cross-sectional image reconstruction, n is typically equal to 2 (i.e.
2-dimensions). In the 2-dimensional case, the Radon Transform takes f(x) ∈ L1(R2) vanishing outside
some bounded domain, and maps f to the set of line integrals of f in the plane.

Let Sn−1 denote the unit sphere in Rn and θ be any unit vector such that θ ∈ Sn−1 (for example,
S1 is the unit circle in R2 with θ ∈ S1). Consider, f ∈ L1(Rn) with θ ∈ Sn−1, and s ∈ R, then the
Radon Transform of f is

Rf(θ, s) =

∫
x·θ=s

f(x)dx =

∫
θ⊥
f(sθ + t)dt, θ⊥ := hyperplane perpendicular to θ. (3)

In two dimensions,

Rf(θ, s) =

∫
x·θ=s

f(x)dx =

∫ ∞
−∞

f(sθ + tθ⊥)dt, θ⊥ := 90◦counterclockwise rotation of θ. (4)

Thus, for x ∈ R2, Rf(θ, x · θ) = the integral of f over the line through the point x with direction
perpendicular to θ.

Often, the Radon Transform is considered only applied to f(θ, s) for a single fixed θ ∈ Sn−1 at
a time. Thus only s ∈ R varies. The notation used in such instances is

Rθf(s) := Rf(θ, s).
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Hence, the Radon Transform can be viewed as a function of a single variable for fixed θ; this holds for
all θ ∈ Sn−1.

Example. Consider the following example of the Radon Transform of a function f ∈ L1(R2).
Let

f(x) =

{
(1− ‖x‖2)m, ‖x‖2 < 1

0, otherwise.
(5)

Shorthand, equation (5) can be written as follows,

f(x) = (1− ‖x‖2)m+ , (6)

then for s ∈ R and θ ∈ S1 with θ⊥ the 90◦ counter-clockwise rotation of θ,

Rf(θ, s) =

∫ ∞
−∞

f(sθ + tθ⊥)dt.

Let g := Rf . What does g(θ, s) equal when we evaluate the above expression for the given function f?
For x = sθ + tθ⊥, we have ‖x‖2 = s2 + t2. Thus,

g(θ, s) =

∫ ∞
−∞

(1− s2 − t2)m+dt

=

∫ ∞
−∞

(1− s2)m
(
1− t2

1− s2
)m
+
dt

Let u = t√
1−s2 , therefore du = dt√

1−s2 . Then the g(θ, s) can be rewritten

g(θ, s) = (1− s2)m
√

1− s2
(∫ ∞
−∞

(1− u2)m+du
)
,

= (1− s2)m+1/2

∫ 1

−1
(1− u2)mdu.

From Problem 9 (a) in [2], the above can be rewritten

g(θ, s) = (1− s2)m+1/2

(
(22m+1)

(
Γ(m+ 1)

)2
Γ(2m+ 2)

)
, (7)

where Γ(n) = (n − 1)! for n ∈ N. This specific function, f (equation (5)), will be used in numerical
experiments in later sections.

2.3 Projection Slice Theorem

The information in this section is based on [1]. An important theorem quickly follows the
definitions of the Fourier and Radon Transforms. Consider applying the Fourier Transform to the
Radon Transform of a function f ∈ L1(Rn). There exists a neat relationship between the Fourier
Transform of the Radon Transform of a function f and simply the Fourier Transform of f . We state
this theorem for n-dimensions, but present only the 2-dimensional proof.

Theorem 2.2. Projection Slice Theorem (PST). For f ∈ L1(Rn),

(̂Rθf)(σ) = (2π)(n−1)/2f̂(σθ), σ ∈ R. (8)
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Proof. Let f ∈ L1(R2), first consider for σ ∈ R and fixed θ ∈ S1 such that θ⊥ is the 90◦ counterclockwise
rotation of θ,

(̂Rθf)(σ) = (2π)−1/2
∫
R

Rθf(s)e−isσds,

= (2π)−1/2
∫
R

(∫ ∞
−∞

f(sθ + tθ⊥)dt
)
e−isσds.

Let x = sθ + tθ⊥, thus s = θ · x. By Fubini’s Theorem, dx = dt ds and

(̂Rθf)(σ) = (2π)−1/2
∫
R×R

f(x)e−iθ·xσdx,

= (2π)−1/2
∫
R2

f(x)e−ix·σθdx,

= (2π)−1/2(2π)2/2f̂(σθ).

This holds for all θ ∈ S1. Thus

(̂Rθf)(σ) =
√

2πf̂(σθ), σ ∈ R,

as desired.

Theorem 2.2 is very powerful. It shows that given Rf , only a transformation and an inverse transfor-
mation are needed to solve for f .

Another nice result following from Theorem 2.2 is the following. Let g(θ, s) := Rf(θ, s) for
f ∈ L1(Rn), s ∈ R, and θ ∈ Sn−1. Consider

ĝ(θ, σ) = (2π)(n−1)/2f̂(σθ),

= (2π)(n−1)/2f̂
(
(−σ)(−θ)

)
,

= ĝ(−θ,−σ).

Thus, we obtain the equality
ĝ(θ, σ) = ĝ(−θ,−σ). (9)

2.4 Discrete Fourier Transform and Discrete Inverse Fourier Transform

This section follows from Section VII.5 in [1]. A key aspect of the FT and IFT is their ability
to be discretized, which we discuss here. This permits straightforward, numerical computation. The
1-dimensional Discrete Fourier Transform (DFT) of the input data xl ∈ R, l = 0, . . . , p − 1, can be
expressed as

x̂k =

p−1∑
l=0

xle
−2πikl/p, k = 0, . . . , p− 1. (10)

Notice,

p−1∑
l=0

e−2πikl/p =

{
p, k = 0,±p,±2p, . . . ,

0, otherwise.

Thus, the expression for the Discrete Inverse Fourier Transform (DIFT) is,

xl =
1

p

p−1∑
k=0

x̂ke
2πilk/p, k = 0, . . . , p− 1. (11)
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Both of these equations, (10) and (11), require O(p2) operations to evaluate. However, when p is a
power of 2, the number of operations it takes to evaluate these expressions can be lowered to O(p log p)
using Fast Fourier Transform (FFT) techniques. One FFT technique is separating the sum into even
and odd terms and using periodicity properties of the exponential to eliminate repetitive calculations.
A well-known algorithm for this technique is by Cooley and Tukey, [5].

For a more general case, in 1-dimension, suppose there exists a function f ∈ L1(R) such that
f = 0 outside [−b, b] and fl := f(hl) for l = −q, . . . , q − 1 with step-size h = b/q. If f̂ ∈ L1(R) as well,
then for f̂k := f̂(uk) for k = −q, . . . , q − 1, by the trapezoidal rule,

f̂k = (2π)−1/2h

q−1∑
l=−q

fle
−iuklb/q, k = −q, . . . , q − 1. (12)

When u = π/b, equation (12) can be evaluated with one FFT. When u 6= π/b, splitting equation (12)
into multiple parts and evaluating each part via an FFT reduces the operation count to O(q log q). For
u > 0, this expression can be evaluated via an algorithm known as a chirp-z (see VII.5 in [1]). This
separation is done as follows, write

−iuklb/q =
bu

2q
(k − l)2 − bu

2q
(k2 + l2).

Substituting this into (12) results in

f̂k = e−i(bu/2q)k
2
f̂ ′k,

f̂ ′k = (2π)−1/2h

q−1∑
l=−q

ei(bu/2q)(k−l)
2
f ′l , k = −q, . . . , q − 1,

f ′l = e−i(bu/2q)l
2
fl.

This expression for f̂ ′k is a discrete convolution which can be evaluated with 2 FFTs – this above
splitting and evaluation via FFT’s is the chirp-z algorithm (see Chapter VII.5 in [1] for more details).

The default MatLab FFT and IFFT algorithms evaluate expressions of the form of (10) and
(11) (with the slight modification of k, l = 1, . . . , p and (k − 1)(l− 1) in the exponentials). However, in
practice the centered Discrete Fourier Transform, similar to equation (12), often presents itself. MatLab
has a built in command, fftshift, which allows the evaluation of this sum via the built in FFT command.
Suppose we want to evaluate the expression,

N/2−1∑
j=−N/2

uje
−2πikj/N , k = −N/2, . . . , N/2− 1.

This can be done in MatLab with the following command, fftshift
(
fft
(
fftshift(u)

))
. Thus, the fftshift

command corresponds to swapping the first and second half of a vector (1-dimensional), or the first and
third as well as the second and fourth quadrants of a matrix (2-dimensional).

2.5 Convolution of Functions

The information in this section is based on presentations in [1] and [2]. Another tool used in
conjunction with the Fourier Transform is the convolution of functions.

Definition. Let f, g ∈ L2(Rn), then “the convolution of f with g”, denoted f ? g, is defined by(
f ? g

)
(x) =

∫
Rn

f(x− y)g(y)dy, ∀ x ∈ Rn, (13)

=

∫
Rn

f(y)g(x− y)dy =
(
g ? f

)
(x), ∀ x ∈ Rn. (14)
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If f, g ∈ L1(Rn) then
(
f ? g

)
(x) is defined for a.e. x ∈ Rn and f ? g ∈ L1(Rn).

A quick consequence of the definition of the convolution is that f ? g is bounded. Suppose, for example,
g is concentrated near the origin, then

(
f ? g

)
(x) is an average of f near x. Figure 2 shows a graphical,

1-dimensional example of the convolution of two such functions.

? →

Figure 2: The left is a possible function f ; middle is a possible function g, concentrated near the
origin; right is the result of a convolution of f with g at some point x ∈ R, i.e. the “average of f near
x” due to the behavior of g.

Let f, g ∈ L1(Rn), consider a Fourier Transform of the convolution of f with g. The result is the
Convolution Theorem.

Theorem 2.3. Convolution Theorem.Let f, g ∈ L1(Rn), then

(̂f ? g)(ξ) = (2π)n/2f̂(ξ)ĝ(ξ). (15)

Proof. Take f, g ∈ L1(Rn) and the Fourier Transform as defined in equation (1). Consider(̂
f ? g

)
(ξ) = (2π)−n/2

∫
Rn

(
f ? g

)
(x)e−ix·ξdx,

= (2π)−n/2
∫
Rn

(∫
Rn

f(x− y)g(y)dy
)
e−ix·ξdx,

= (2π)−n/2
∫
Rn

∫
Rn

f(x− y)g(y)e−ix·ξdx dy,

= (2π)−n/2
∫
Rn

g(y)e−iy·ξ
(∫

Rn

f(x− y)e−i(x−y)·ξdx
)
dy,

= (2π)−n/2
∫
Rn

g(y)e−iy·ξ
(
(2π)n/2f̂(ξ)

)
dy,

=

∫
Rn

g(y)
(
f̂(ξ)e−iy·ξ

)
dy,

= f̂(ξ)

∫
Rn

g(y)e−iy·ξdy,

= f̂(ξ)(2π)n/2ĝ(ξ).

Therefore, (̂
f ? g

)
(ξ) = (2π)n/2f̂(ξ)ĝ(ξ),

as desired.
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Theorem 2.3 can be found in VII.1 of [1] as R4.

2.6 Additional Useful Mathematical Tools

This section presents a few additional tools which are derived from the previous sections. First,
applying the Radon transform to a convolution of functions gives an interesting result stated in Theorem
2.4 for the 2-dimensional case [1].

Theorem 2.4. Let f, g ∈ L1(R2), then

Rθ(f ? g) = Rθf ?Rθg.

The proof of this theorem utilizes Theorems 2.2 and 2.3 (for more background and/or detail see [1]).

Proof. Take f, g ∈ L1(R2) and fix θ ∈ S1. Consider, for σ ∈ R,

(Rθf ?Rθg)̂ (σ) = (2π)1/2
(
(̂Rθf)(σ)

)(
(̂Rθg)(σ)

)
,

= (2π)1/2
(
(2π)1/2f̂(σθ)

)(
(2π)1/2ĝ(σθ)

)
,

= (2π)1/2
((
f ? g

)̂
(σθ)

)
,

=
(
Rθ(f ? g)

)̂
(σ).

This holds true for all θ ∈ S1. Thus, Rθ(f ? g) = Rθf ?Rθg as well.

The dual of the Radon Transform, denoted R], can can be useful in tomography (see Chapter
II in [1]). Consider f ∈ C∞0 (R2) and let g(θ, s) := Rθf(s). The formulation of R] is such that it is the
formal adjoint of R. Consider,

〈Rf, g〉L2(S1×R) = 〈f,R]g〉L2(R2), (16)

where S1 indicates the unit circle in R2. So, consider for s ∈ R, θ ∈ S1 such that θ =
(
cos(ϕ)
sin(ϕ)

)
,

〈Rf, g〉L2(S1×R) =

∫ 2π

0

∫ ∞
−∞

Rf(θ, s)g(θ, s)ds dϕ,

=

∫ 2π

0

∫ ∞
−∞

(∫ ∞
−∞

f(sθ + tθ⊥)dt
)
g(θ, s)ds dϕ.

Let x = sθ + tθ⊥ then s = x · θ; by Fubini’s Theorem,

〈Rf, g〉L2(S1×R) =

∫ 2π

0

∫
R2

f(x)g(θ, x · θ)dx dϕ,

=

∫
R2

f(x)
(∫ 2π

0
g(θ, x · θ)dϕ

)
dx.

If R]g(x) :=
∫ 2π
0 g(θ, x · θ)dϕ (*) for x ∈ R2, then the desired inner product equality results. Thus, let

R] be defined by (*). Then

〈Rf, g〉L2(S1×R) =

∫
R2

f(x)
(
R]g(x)

)
dx

= 〈f,R]g〉L2(R2).
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Thus the pair of R and R] are duals. R] is called the Back Projection Operator because, for example,
if x ∈ R2, then

R]Rf(x) =

∫ 2π

0
Rf(θ, x · θ)dϕ, θ ∈ S1.

In words, R]Rf(x) sums up the values of the integrals of f over all lines that pass through x.
Finally, again let f be the function corresponding to the image we wish to reconstruct. An

expression for f stated solely in terms of gathered data would be ideal. Through a combination of
the Fourier Inversion Formula, Theorem 2.1, and the Projection Slice Theorem, Theorem 2.2, such an
expression is possible (see [6]).

Take g := Rf for f ∈ L1(R2). Consider the Fourier Transform of f ,

f(x) = (2π)−1
∫
R2

f̂(ξ)eix·ξdξ, x ∈ R2,

such that f̂ ∈ L1(R2). Now, let ξ = σθ, where θ =
(
cosϕ
sinϕ

)
and σ ∈ R, and reparametrize the previous

expression with polar coordinates

f(x) = (2π)−1
∫ 2π

0

(∫ ∞
0

f̂(σθ)eix·σθ|σ| dσ
)
dϕ,

= (2π)−1
∫ 2π

0

(∫ ∞
0

(2π)−1/2R̂f(θ, σ)eix·σθ|σ| dσ
)
dϕ,

= (2π)−3/2
∫ 2π

0

(∫ ∞
0

ĝ(θ, σ)eix·σθ|σ| dσ
)
dϕ.

Recall ĝ(θ, σ) = ĝ(−θ,−σ) (equation (9)), hence we can extend the lower limit of integration over σ to
−∞. Thus

f(x) = (2π)−3/2
∫ 2π

0

1

2

(∫ ∞
−∞

ĝ(θ, σ)eix·σθ|σ| dσ
)
dϕ.

Therefore, an equation for f , solely expressed in terms of g, employing the previously presented math-
ematical tools, is

f(x) =
1

2
(2π)−3/2

∫ 2π

0

(∫ ∞
−∞

ĝ(θ, σ)eix·σθ|σ| dσ
)
dϕ. (17)

3 Two Algorithms for Image Reconstruction

This section’s information follows from presentations found in Chapter V of [1], [2], and lecture
notes from Numerical Analysis: Numerical Harmonic Analysis with Applications to Image Reconstruc-
tion and Processing with Dr. Faridani, Fall ’12.

Here we present the mathematical theory behind two algorithms for image reconstruction. This
presentation is done in 2-dimensions. Following the theory are numerical examples.

3.1 Filtered Backprojection

Section 2 presented sufficient background information and theory to introduce the algorithm
known as Filtered Backprojection (FBP). This reconstruction method combines the Back Projection
Operator, R], with a filter function to reproduce a function, f , from g := Rf sampled in R2; thus
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coining the method’s name.
Consider a function W such that∫

R2

W (x)dx = 1, x ∈ R2.

Define Wb(x) := b2W (bx) , hence Wb → δ as b→∞. Then for f ∈ L1(R2),

lim
b→∞

‖f −Wb ? f‖1 = 0.

We also choose Wb to be a radial function.
Thus, instead of attempting to reconstruct f exactly, we can attempt to reconstruct Wb ? f , an

approximation of f . Therefore, consider

(Wb ? f)(x) = (2π)−1
∫
R2

̂(Wb ? f)(ξ)eix·ξdξ,

= (2π)−1
∫
R2

2π Ŵb(ξ)f̂(ξ)eix·ξdξ,

=

∫
R2

Ŵb(ξ)f̂(ξ)eix·ξdξ.

Take σθ := ξ where σ ∈ R and θ ∈ S1 such that θ =
(
cos(ϕ)
sin(ϕ)

)
; then the previous can be rewritten as

(Wb ? f)(x) =

∫ 2π

0

∫ ∞
0

Ŵb(σθ)f̂(σθ)eix·σθ|σ| dσ dϕ.

For g := Rf , we know ĝ(θ, σ) = ĝ(−θ,−σ). Hence, we have the following equality,∫ 2π

0

∫ ∞
0
|σ| Ŵb(σθ)f̂(σθ)eix·σθdσdϕ =

∫ 2π

0

∫ 0

−∞
|σ| Ŵb(σθ)f̂(σθ)eix·σθdσdϕ.

Thus,

(Wb ? f)(x) =

∫ 2π

0

1

2

∫ ∞
−∞

Ŵb(σθ)f̂(σθ)eix·σθ|σ| dσ dϕ,

=
1

2

∫ 2π

0

∫ ∞
−∞
|σ|
(
(2π)−1/2R̂θWb(σ)

)(
(2π)−1/2R̂θf(σ)

)
eix·σθdσdϕ,

=

∫ 2π

0

∫ ∞
−∞

1

2
(2π)−1|σ|R̂θWb(σ)R̂θf(σ)eix·σθdσdϕ.

By definition, Wb does not depend on θ, thus neither does Ŵb. Therefore, let ŵb(σ) :=
1
2(2π)−3/2|σ|R̂θWb(σ). Then

(Wb ? f)(x) =

∫ 2π

0

∫ ∞
−∞

(2π)1/2ŵb(σ)R̂θf(σ)eix·σθdσdϕ,

=

∫ 2π

0

∫ ∞
−∞

(
wb ?Rθf

)̂
(σ)eix·σθdσdϕ,

=

∫ 2π

0

(
wb ?Rθf

)
(x · θ)dϕ.
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Thus,

(
Wb ? f

)
(x) =

∫ 2π

0

(
wb ?Rθf

)
(x · θ)dϕ

which, by definition of R], is equivalent to(
Wb ? f

)
(x) = R]

((
wb ?Rθf

)
(x)
)
. (18)

Recall, R] is the Back Projection Operator, wb is the “filter”, and Rθf(x) is the data. Equation (18)
is a succinct formula for

(
Wb ? f

)
based on Rf . Discretization is the next step towards numerically

solving for f .
Let Ω := unit disc in R2. Consider f ∈ C∞0 (Ω) and sample g := Rf at (θj , sl) for j = 0, . . . , p−1

and l = −q, . . . , q − 1, where θj =
(
cos(ϕj)
sin(ϕj)

)
with ϕj = 2πj

p , and sl = hl with h = 1
q . This type of

sampling scheme corresponds to Parallel Beam scanning geometry (see Figure 1, Section 1). Utilizing
this sampling scheme, we discretize the convolutions, wb ? g, and represent the discrete versions with a
subscript h: (

wb ? g
)
(θj , s) =

∫ ∞
−∞

wb(s− y)g(θj , y)dy, s ∈ R,

=⇒

(
wb ? g

)
h
(θj , s) = h

q−1∑
l=−q

wb(s− sl)g(θj , sl), s ∈ R. (19)

Next, we discretize the Back Projection Operator with the Trapezoidal Rule for p nodes. Using
the Trapezoidal rule is accurate because g, and thus wb?g, is 2π-periodic with respect to θ. The discrete
version is signified with a subscript p:

R]
(
wb ? g

)
(x) =

∫ 2π

0

(
wb ? g

)
(θ, x · θ)dϕ, x ∈ R2,

=⇒

R]
p

(
wb ? g

)
(x) =

2π

p

p−1∑
j=0

(
wb ? g

)
(θj , x · θj), x ∈ R2. (20)

So, combining these two discretizations, (19) and (20), the expression the discrete Filtered Backprojec-
tion evaluates, is

R]
p

(
wb ? g

)
h
(x) =

2π

p

p−1∑
j=0

h

q−1∑
l=−q

wb(x · θj − sl)g(θj , sl), x ∈ R2.

Thus, for x ∈ R2 and f ∈ L1(R2), (
Wb ? f

)
(x) ' R]

p

(
wb ? g

)
h
(x). (21)

The filtering portion of equation (21), takes O(pq) operations for each x, totaling O(pq3) oper-
ations. The back projection portion takes O(p) operations for each x. Thus, when computed in this
fashion Filtered Backprojection takes O(p4) operations for p ' q.

Computing the convolution first at equidistant points and then using linear interpolation lowers
the convolution operation count. Using FFT’s the number of operations for the convolutions reduces to

13



O(pq log q). However, the backprojection portion still takes O(pq2) operations. Thus, when p ' q the
number of operations is still O(p3). The interpolation step is denoted I h. Thus(

wb ? g
)
(θ, s) ' Ih

(
wb ? g

)
h
(θ, s).

Therefore, the Filtered Backprojection Algorithm computes an approximation of f , which we
denote fFBI ,

fFBI(x) =
(
Wb ? f

)
(x) ' R]

pIh
(
wb ? g

)
h
(θj , x · θj), x ∈ R2. (22)

We briefly outline the steps of the Filtered Backprojection reconstruction algorithm.

• Filtered Backprojection Algorithm Outline:

– Step 1: Compute discrete convolutions, (wb ? g)h(θ, s), for s = sl, l = −q, . . . , q.
– Step 2: For each reconstruction point x find (2π/p)Ih(wb ? g)h(θj , x · θj) using linear interpo-

lation and add this value to the pixel representing x.

Note. The Shepp-Logan Phantom (with one added ellipse along the “skull”) is used in upcoming
Sections 3.2, 3.4, 5.2, and 5.4. It corresponds to a fictional cross-section of a human brain with specific
cross-sectional areas – ellipses – of different sizes within the unit circle. Each ellipse has one of the
following “density values”:

[1, −0.98, −0.02, −0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.03].

These “density values” tell us for x in the unit circle, if x is within multiple ellipses, then the value of x
is equal to the sum of the multiple ellipse values (this is why negative densities are allowed). The first
ellipse with density 1 represents the skull, while the other ellipses are ventricles, “tumors”, and grey
matter.

3.2 Image Reconstruction via Filtered Backprojection

The Filtered Backprojection algorithm executed in MatLab for this section is attributed to Dr.
Faridani; code last revised April 14, 2008. The code follows from the algorithm briefly outlined at the
end of Section 3.1 and is used to reconstruct the 2 dimensional Shepp-Logan phantom. The execution
time, and the relative error are briefly analyzed. The implementation time is what leads us to explore
alternative methods utilizing Fast Fourier Transforms in image reconstruction.

Consider the function f from the example in Section 2.2, equation (6),

f(x) = (1− ‖x‖2)m+ , x ∈ R2 and m > −1 (23)

(see [7] for the negative case). Let g := Rf be sampled at (θj , sl) for j = 0, . . . , p−1 and l = −q, . . . , q−1,

where θj =
(
cos(ϕj)
sin(ϕj)

)
with ϕj = 2πj

p , and sl = hl with h = 1
q . The experimentation is carried out with

multiple values of p, q and m. Figure 3 shows an image of 2q×2q pixels for m = 0, q = 128 and p = 400.
The two tables following figure 3 display the implementation time and the relative error for the varying
values of p and q for m = 0 or m = 3, respectively.

In the reconstructions, we look at the relative error for the m = 3 case. This is because, although
the m = 0 case produces useful images, the error in that case is very high - roughly 25% - due to the
discontinuous changes in density. Thus we use the smoother, m = 3 case to analyze the relative error.
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Figure 3: Filtered Backprojection reconstructed image created in MatLab with a Shepp-Logan filter
(see [1] page 110-111); code attributed to Dr. Faridani.
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Figure 4: Density Profile corresponding to the line through the image in Figure 3. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; code attributed to Dr. Faridani.
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Table 1: Time for m = 0:
(time in seconds)

q 64 128 256 512
p

100 0.08 0.20 0.89 3.82

200 0.16 0.40 1.65 7.59

400 0.30 0.80 3.34 15.16

800 0.60 1.73 7.02 30.45

Table 2: Relative Error for m = 3:
( x10e− 3)

q 64 128 256 512
p

100 6.97 2.92 2.44 2.47
200 6.76 2.19 0.76 0.39
400 6.76 2.16 0.73 0.32
800 6.76 2.16 0.73 0.31

The image produced by the Filtered Backprojection method is a nice clear image (see Figure
3). It is easy to differentiate areas of different density and the borders between the abrupt changes are
clear, as one would expect the border of two actual different physical objects. This differentiation can
really be seen in Figure 4. The reconstructed f density profile aligns with the density profile of the
original function with very minor deviations. There is a slight amount of ringing artifact but this is
mainly outside of the region we are most interested in.

The relative error in the m = 3 case is also satisfactory; the error is below 1% for every pairing
of p and q and below 0.22% for q = 128 and p = 400.

While this method has small error, the time efficiency for certain values of p and q is less than
satisfactory. For small p and q the amount of time the reconstruction takes is reasonable, but the image
quality is too poor to be useful for those values. However, increasing p and q significantly increases the
method’s implementation time. Looking at the high-lighted, lower off-diagonal entries in Table 1, we
see that as p and q increase by a factor of 2 the execution time increases by a factor of about 8. This
is not optimal.

Thus, although Filtered Backprojection produces a clear image, a faster reconstruction method
is desirable. Hence, we look at Fourier reconstruction. Fourier reconstruction attempts to directly
compute f using the Fourier Inversion Formula - Theorem 2.1, the Projection Slice Theorem - Theorem
2.2, and FFTs.

3.3 Fourier Reconstruction

The Fourier reconstruction discussed here follows from the presentation on pages 126-127 in
Chapter V.2 of [1].

Let f ∈ L1(R2) and take g := Rf . Consider

f(x) = (2π)−1
∫
R2

f̂(ξ)eix·ξdξ,

' (2π)−1d̃
∑
k∈Z2

f̂(d̃k)eix·d̃k, d̃ ∈ R.

This requires f̂ on a cartesian grid. Then the summation can be evaluated via a 2-dimensional FFT.
Thus, we must find or approximate f̂(d̃k). This is done by interpolation from ĝ(θj , σ) =

√
2πf̂(σθj). So,

if we know ĝ(θj , σ) and, hence f̂ by Theorem 2.2, on a polar grid, interpolation is required to find f̂ on
a cartesian grid. However, it is known that this interpolation has to be implemented very carefully. A
relatively simple method using nearest neighbor in either the vertical or horizontal direction is suggested
by Natterer (see pages 126-127 [1]). The following is an outline of this basic Fourier reconstruction
algorithm.

Let Ω := unit disc in R2 and take f ∈ C∞0 (Ω), and sample g := Rf at (θj , sl) for j = 0, . . . , p− 1

and l = −q, . . . , q− 1, where θj =
(
cos(ϕj)
sin(ϕj)

)
with ϕj = 2πj

p and sl = hl, where h = π2/(p
√

2), and define
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cj = 1/(max{| sin(ϕj)|, | cos(ϕj)|}) (see Chapter V of [1] for more details on these choices for h and cj).
Then for j = 0, . . . , p− 1,

ĝ(θj , rπcj) ' ĝj,r := (2π)−1/2h

q−1∑
l=−q

g(θj , sl)e
−ilrπcj/q, r = −q, . . . , q − 1.

Thus,
f̂(rπcjθj) ' (2π)−1/2ĝj,r, r = −q, . . . , q − 1. (24)

These approximations of f̂ are on a polar coordinate grid, thus this expression cannot be evaluated via
an FFT. To have an efficient algorithm, we want to use FFTs. Thus, we interpolate f̂ to a cartesian
grid.

Let k ∈ Z2 such that |k| < q. For k in Quadrant I such that |k| < q, if k1 > k2, move that point
horizontally to a point on the nearest ray, ϕj ; if k1 < k2, move that point vertically to a point on the
nearest ray, ϕj . Go through a similar process for the remaining k ∈ Z2 such that |k| < q. This can be
summarize as: for each k ∈ Z2 such that |k| < q, choose r and j such that |πk − rcjθj | is minimized,
i.e. nearest neighbor interpolation in either the horizontal or vertical direction (see Figure 5, depicted
after Figure V.7 on page 126 in [1]). Then, for all k ∈ Z2 such that |k| < q, approximate f̂(πk) by

f̂(πk) := f̂k ' (2π)−1/2ĝj,r.

k⇡/d
�✓

k⇡/d

�✓

Figure 5: Natterer’s Nearest Neighbor interpolation scheme, in either the vertical or horizontal direc-
tion, used in his Fourier reconstruction algorithm.

Finally compute a discrete 2-dimensional Inverse Fourier Transform of f̂k. An IFFT approx-
imates f(hm) for m ∈ Z2, i.e.,

f(hm) := fm '
(π

2

) ∑
|k|<q

f̂ke
iπm·k/q, |m| < q. (25)

The numerical evaluation of equation (25) is one type of reconstruction referred to as Fourier recon-
struction (FR). We briefly outline its algorithmic implementation.

• Fourier Reconstruction Algorithm Outline:
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– Step 1: Approximate ĝj,r on a polar grid via p FFTs with respect to the second variable of g.

– Step 2: Interpolate ĝj,r from Step 1 to a cartesian grid to acquire f̂k .

– Step 3: Finally, take a 2-dimensional IFFT of f̂k from Step 2 for an approximation of f .

The above outline does not produce a useful image, and compared to the later Fourier recon-
struction methods, it is lacking an oversampling factor. Thus, for experimentation, and to allow fair
comparison, we introduce an oversampling factor, d. This is done in Fourier space. Instead of approxi-
mating f̂k for only |k| < q, we approximate f̂k for all k ∈ Z2 such that |k| ≤ dq. The first and last steps
of the outlined algorithm remain the same with the exception of |k| < dq in Step 3.

3.4 Image Reconstruction via Basic Fourier Reconstruction

Similar to Section 3.2, here we apply the algorithm outlined at the end of Section 3.3 to a
2-dimensional image reconstruction of the Shepp-Logan phantom from the Radon Transform of the
function from the example in Section 2.2. The Fourier reconstruction algorithm implemented in MatLab
for this section is based on the algorithm presented on pages 126-127 of [1]. The coding is attributed
to Dr. Faridani; code last revised July 6, 2013. We analyze the execution time, and the relative error
for multiple experiments. The outcomes of this section, yet again, encourage additional exploration of
modified FFTs for Fourier reconstruction methods.

Consider the function f ∈ L1(R2), again, defined by equation (6)/(23). Sample g := Rf at

(θj , sl) for j = 0, . . . , p− 1 and l = −q, . . . , q − 1, where θj =
(
cos(ϕj)
sin(ϕj)

)
with ϕj = 2πj

p and sl = hl with

h = π2/(p
√

2). We evaluate this Fourier Reconstruction algorithm for the same varying values of p, q,
and m as in Section 3.2 to allow quick comparison with Filtered Backprojection. Figure 6 is the 2q×2q
pixel image produced for q = 128, q = 400, and m = 0 with an oversampling factor of 2 in Fourier space.
The tables following Figure 6, however, list the experimental time for m = 0 and the relative error for
m = 3 for varying values of p and q with no oversampling to compare with Filtered Backprojection.
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Fourier recon., Natterer (1986), p. 126−127

pview = 400,  q = 128,  d = 2
with cosine filter

line through y−axis =−0.1
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Figure 6: Basic Fourier reconstruction image reconstructed with a cosine smoothing filter applied to
f̂ in between Steps 2 and 3 and oversampling factor of 2, created in MatLab; code attributed to Dr.
Faridani; last revised: July 6, 2013
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Figure 7: Density Profile corresponding to the line through the image in Figure 6. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; code attributed to Dr. Faridani.
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Fourier recon., Natterer (1986), p. 126−127

pview = 400,  q = 128,  d = 4
with cosine filter

line through y−axis =−0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: Basic Fourier reconstruction image reconstructed with a cosine smoothing filter applied to
f̂ in between Steps 2 and 3 and oversampling factor of 4, created in MatLab; code attributed to Dr.
Faridani; last revised: July 6, 2013
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Natterer Fourier reconstruction Density Profile:
for

f( −0.4q : 0.35 , −0.1q )

 

 
Original Function
Reconstructed f

Figure 9: Density Profile corresponding to the line through the image in Figure 8. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; code attributed to Dr. Faridani.

For comparison with Filtered Backprojection:
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Table 3: Time for m = 0:
no oversampling (time in seconds)

q 64 128 256 512
p

100 0.05 0.09 0.20 0.71

200 0.09 0.13 0.26 0.78

400 0.15 0.20 0.37 0.90

800 0.29 0.35 0.55 1.18

Table 4: Relative Error for m = 3:
( x10e− 3)

q 64 128 256 512
p

100 12.16 12.03 12.03 12.03
200 8.17 7.92 7.92 7.92
400 3.15 2.32 2.32 2.32
800 2.49 1.27 1.26 1.26

For later comparisons:

Table 5: Time for m = 0:
d = 2 (time in seconds)

q 64 128 256
p

200 0.11 0.20 0.56
400 0.20 0.29 0.67
800 0.33 0.49 0.94

Table 6: Relative Error for m = 3:
d = 2 ( x10e− 3)

q 64 128 256
p

200 7.4 4.1 3.7
400 6.6 2.2 1.4
800 6.5 1.4 0.9

Table 7: Time for m = 0:
d = 4 (time in seconds)

q 64 128 256
p

200 0.19 0.49 1.62
400 0.28 0.61 1.82
800 0.46 0.86 2.24

Table 8: Relative Error for m = 3:
d = 4 ( x10e− 3)

q 64 128 256
p

200 6.8 2.6 1.9
400 6.5 2.0 0.9
800 6.4 1.8 0.7

Immediately, it is clear this Fourier reconstruction method is nowhere near comparable with
Filtered Backprojection with regards to producing a useful image, even with an oversampling factor
as large as 4. The image it constructs with an oversampling factor of 2 (see Figure 6), even for large
p and q, is much too blurry and noisy to be serviceable in any real world application. This is even
more evident by the large oscillations in the density profiles; these large oscillations are even after an
additional smoothing filter - cosine; see Figure 7. In a broad sense, the image and the density profile
indicate where different areas of density are, but with nowhere near the precision and accuracy of Fil-
tered Backprojection for the same values of p and q. With the oversampling factor of 4, the image is
better (see Figure 8) but still not as clear as Filtered backprojection.

However, the execution time for larger p and q is better, even with the oversampling factor of 4.
As the sub-diagonal values of p and q increase by a factor of 2 the high-lighted execution time entries
in Table 3 increase by a factor of about 3, less than 1/2 that of Filtered Backprojection.

Another indicator that Fourier Reconstruction methods warrant further exploration, is the size
of the relative error in the m = 3 case even with no oversampling, see Table 4. Particularly for in-
creasing values of p, these errors are only about twice that of the relative error for the same p and q
of Filtered Backprojection, which, recall, were all below 1%. This can particularly be seen in density
profiles of the image reproduced in the m = 3 case. Figure 10 shows the density profiles for this ba-
sic Fourier reconstruction algorithm when m = 3 compared with the same for Filtered Backprojection.
This figure shows clearly that Fourier reconstruction holds promise as a useful reconstruction algorithm.
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Figure 10: The top two figures show the density profile for Filtered Backprojection for p = 400, q = 128
and m = 3 along the same density line as shown in Figure 3. The bottom two show the same plots but
for the basic Fourier reconstruction with no oversampling (and Figure 6).

The issue in Fourier reconstruction is the interpolation that takes place in Fourier space. Over-
sampling helps but is not the most ideal process. From Natterer, [1], straightforward nearest neighbor
interpolation to a cartesian grid is not good enough. He also explains that theoretically, angular inter-
polation is “good enough” to reconstruct a useful image. We see, following these experiments which
utilize an interpolation somewhere in between nearest neighbor and angular interpolation, that to ob-
tain a useful image, some adjustments to the interpolation step must occur. The radial portion of the
interpolation needs to be eliminated.

3.5 Conclusions from Filtered Backprojection and Basic Fourier Reconstruction

An ideal reconstruction method would produce an image as clear as Filtered Backprojection
but execute with the speed of Fourier Reconstruction. This difference in the evaluation times can
particularly be seen in Figure 11. This figure shows the relationship between q, when p ' q, and the
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operation time for Filtered Backprojection,

FBP time ' O(q3),

−→
log(FBP time ) = log(q3),

log(FBP time ) = 3 log(q).

Thus, a plot of log(q) versus log(FBP time) should have a slope of 3. Similarly, for Fourier reconstruc-
tion,

FR time ' O(q2 log(q)),

−→
log(FR time ) = log(q2) + log(log(q))︸ ︷︷ ︸

=small number

,

log(FR time ) = 2 log(q).

Thus, a plot of log(q) versus log(FR time) should have a slope of 2. Figure 11 shows our experiments
support these relationships.
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Figure 11: Plots of the log of q for q = 128, 256, and 512 versus the log of the implementation times
for Filtered Backprojection and Basic Fourier reconstruction with no oversampling (see plot’s key for
more details).

The key issue with Filtered Backprojection is time; the key problem with Fourier reconstruc-
tion is the interpolation step in Fourier space. Thus, we move on and look at some modified Fourier
reconstruction methods that attempt to quickly yet accurately produce a useful image.
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4 Non-Uniform / Non-Equispaced Fast Fourier Transforms

In the upcoming sections, we explore the use of Non-Uniform Fast Fourier Transforms (NUFFTs)
in Fourier reconstruction methods (NUFFTs are also sometimes called Non-Equispaced FFTs). NUFFTs
amend FFTs so evaluation of non-equispaced/non-uniform input or output on a non-equispaced (non-
uniform) grid is possible. Using an NUFFT allows less rigidity on data, but it introduces error (for
additional information on NUFFTs see: [8], [9], [10], [11], and [12]).

The remainder of this paper aligns with Karsten Fourmont’s paper, Non-Equispaced Fast Fourier
Transform with Applications to Tomography [6]; additional background and information can be found
in his dissertation [13]. The following sections present the same ideas as [6].

Fourmont presents two NUFFT methods, their numerical algorithms, and the application of a
2-dimensional method and a 1-dimensional method in Fourier reconstruction. We examine and carry
out these algorithms. Note, the upcoming algorithms come from Fourmont’s paper, [6]. However, the
presentation here differs slightly from Fourmont’s. We attempt to state the algorithms as clearly as
possible, with the hope that algorithm recreation can be done with ease.

4.1 1-Dimensional NUFFTs: The NED and NER Cases

Quick evaluation of non-uniform spaced input data, or quick evaluation of uniform input data
producing non-uniformly spaced output data is the main idea behind these types of Non-Uniform Fast
Fourier Transforms. There are several interesting questions. Can we figure out how the Fourier Trans-
forms of either non-uniform input data or uniform input data evaluated to non-uniform points relate
to FFTs? And, is it possible to manipulate these Fourier Transform expressions to something able to
be evaluated with FFTs? The answer to both of these questions is yes. A little mathematical theory
and algebraic manipulation yield expressions, portions of which, can be evaluated with FFTs for both
instances.

Fourmont discusses two types of NUFFTs. First, consider the two 1-dimensional versions. One
type evaluates the Fourier Transform of equispaced data on a non-equispaced grid generating non-
equispaced results. Fourmont refers to this as the NER case (non-equispaced results). The second
type takes the Fourier Transform of data on a non-equispaced grid. This returns equispaced results;
Fourmont calls this the NED case (non-equispaced data).

First, suppose we know zk for k = −N/2, . . . , N/2 − 1, and we also know the nodes xl ∈
[−N/2, N/2 − 1], for l = 1, . . . ,M , which are not necessarily equispaced (although equispacing is pos-
sible). We evaluate the discrete Fourier Transform of zk at these non-equispaced nodes with

ẑl =

N/2−1∑
k=−N/2

zke
−2πixlk/N , l = 1, . . . ,M, (26)

via the 1-dimensional NER algorithm.
Alternatively, suppose we know zl := z(xl), where the nodes xl ∈ [−N/2, N/2 − 1] are not

necessarily equispaced, and we want the Fourier Transform of zl at equispaced grid points over the set
{−N/2, . . . , N/2− 1}. Hence, we evaluate

ẑk =

M∑
l=1

zle
−2πixlk/N , k = −N/2, . . . , N/2− 1, (27)

via the 1-dimensional NED algorithm. Notice, these 1-dimensional expressions, (26) and (27), are
transposes of one another, and if xl = l and M = N , then both expressions are DFTs.

The NER and the NED cases resemble FFTs. However, the exponentials in expressions (26)
and (27) contain troublesome xl’s. These points are in [−N/2, N/2 − 1], but we do not know if they
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uniformly partition the set. We rectify this issue by rewriting these complex exponentials as a sum
of different complex exponentials. This is done using Fourmont’s Proposition 1 which stems from
Shannon’s Sampling Theorem for finite bandwidth, bandlimited functions oversampled by a factor c
within the bandwidth. The proposition provides a way to rewrite the previous exponentials without
xl’s.

Proposition 1. Fourmont Proposition 1 [6]. Take 0 < π/c < α as well as α < π(2 − 1/c). If φ
is continuous and piecewise continuously differentiable on [−α, α], non-zero on [−π/c, π/c], and zero
outside [−α, α], then for x ∈ R and |ξ| ≤ π/c,

e−ixξ =
(2π)−1/2

φ(ξ)

∑
m∈Z

φ̂(x−m)e−imξ.

The hypotheses of Proposition 1 imply a little more than is immediately apparent. Consider, 0 < π/c <
α and α < π(2− 1/c). This implies,

0 < π/c < 2π − π/c,
0 < 1 < 2c− 1,

1/2 < 1 < c.

Thus, c must be a true oversampling factor. The proof of this proposition utilizes Fourier series as well
as the Poisson Summation Formula [6].

Proof. Let c, α, and φ satisfy the hypotheses of Proposition 1. Take x, ξ ∈ R and consider the 2π-periodic
function,

g(ξ) =
∞∑

k=−∞
φ(ξ + 2πk)e−ix(ξ+2kπ).

Then,

g(ξ) =
∑
m∈Z

ĝme
−imξ (28)

is the Fourier expansion of g with Fourier coefficients ĝm. Consider these Fourier coefficients,

ĝm = (2π)−1
∫ π

−π
g(ξ)eimξdξ,

= (2π)−1
∫ π

−π

∞∑
k=−∞

φ(ξ + 2πk)e−ix(ξ+2kπ)eimξdξ.

Suppose |ξ| ≤ π/c, the smallest ξ + 2πk can be for k 6= 0 is when ξ = ±π/c and k = ∓1, respectively;
in these cases we have ∓π(2− 1/c) which is either less than −α or greater than α, both of which result
in φ(ξ + 2πk) = 0. Note, even if π/c < |ξ| < α and, without loss of generality, suppose ξ > 0, then

ξ + 2π > π/c+ 2π = π(2 + 1/c) > α,

so φ(ξ + 2πk) = 0 for k > 0. Also,

ξ − 2π < π/c− 2π = −π(2− 1/c) < −α,
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so φ(ξ + 2πk) = 0 for k < 0. Thus φ(ξ + 2πk) is only non-zero for k = 0 when |ξ| < α. Therefore for
|ξ| ≤ π/c (|ξ| < α in fact), we have g(ξ) = φ(ξ)e−ixξ. Hence, since φ(ξ) = 0 for ξ > α we can extend
the limits of integration as well,

ĝm = (2π)−1
∫ ∞
−∞

φ(ξ)e−ixξeimξdξ,

= (2π)−1/2φ̂(x−m).

Combining this expression for ĝm and equation (28), we obtain

φ(ξ)e−ixξ =
∑
m∈Z

(2π)−1/2φ̂(x−m)e−imξ, (29)

when |ξ| ≤ π/c, the desired result.

Now we can revisit the 1-dimensional expressions (26) and (27) with the e−2πixlk/N terms. Let
ξ = 2πk/(cN) and x = cxl for |k| ≤ N/2, then rewriting equation (26) with the substitution from
Proposition 1 yields,

ẑl = (2π)−1/2
∑
m∈Z

φ̂(cxl −m)

N/2−1∑
k=−N/2

zk
φ(2πk/(cN))

e−2πimk/(cN), l = 1, . . . ,M. (30)

This inner sum can be evaluated via an FFT, and the outer sum consists of few terms when φ is wisely
chosen. Similarly, equation (27) can be rewritten,

ẑk =
(2π)−1/2

φ(2πk/(cN))

∑
m∈Z

M∑
l=1

zlφ̂(cxl −m)e−2πimk/(cN), k = −N/2, . . . , N/2− 1. (31)

Equation (31) requires some manipulation before evaluation via an FFT is clear. The presentation of
this manipulation will directly precede the 1-dimensional NED algorithm forthcoming in Section 4.2.

Finally, before we move on to numerical implementation, we must choose an appropriate φ func-
tion. This choice for φ must satisfy the hypotheses in Proposition 1, and the Fourier Transform of
φ should be almost negligible outside some bounded interval. This second constraint upon φ permits
truncation of the summation over m in equations (30) and (31). A function that satisfies these stipu-
lations is the Kaiser-Bessel Window [14]. The Kaiser-Bessel Window has compact support on [−α, α]
and φ̂ is insignificant outside an interval [−K,K] (see Section 2 [6] [14]). The Kaiser-Bessel Window is,

φ(ξ) =

{
I0

(
K
√
α2 − ξ2

)
, if |ξ| ≤ α,

0, otherwise,
(32)

φ̂(x) =

√
2

π

sinh
(
α
√
K2 − x2

)
√
K2 − x2

. (33)

This choice of φ enables the summations over m in equations (30) and (31) to be truncated to a small
subset of Z, since for x > K we see that φ̂ is insignificant (see Section 4.4 and Section 4 of [6] for error
analysis).

It appears problems could arise with φ̂ if x2 > K2. However, when this happens both the
numerator as well as the denominator become strictly imaginary. Hence, imag. #

imag. # → real #. Thus, φ̂ is
a continuous real valued function on R.

Dutt and Rokhlin, [8], present a very similar method where they use φ(x) = e−x
2/(4b), i.e.

Gaussian bells, as their window function, of width b. Steidl, [10], and Ware, [11] expound and modify
Dutt and Rokhlin’s error estimations to complete their method. We examined Greengard and Lee’s
presentation of this type of NUFFT in Dr. Faridani’s Fall ’12 Numerical Analysis course [9].

26



4.2 1-Dimensional NER and NED Algorithms

First, notice the 1-dimensional equations, (30) and (31), involve the same evaluations of φ and φ̂.
Hence, the same pre-compuations will be useful. To generate these pre-computations we need to know
α,K, c,N , and the xl’s.

We know c > 1 by Proposition 1, but if c is too large our algorithm will be inefficient; thus we
choose 1 < c ≤ 2 (a particularly convenient choice is c = 2, because then cN is divisible by 2). Then,
define

α := π(2− 1/c)− .01

to satisfy Proposition 1. K is determined by φ; it is the interpolation length and chosen to be 3 or
6. Fourmont’s choice is based on whether single or double precision, respectively, is desired. However,
we use MatLab to evaluate all the algorithms in this paper. MatLab is double precision, so our choice
between 3 and 6 corresponds to the size of the error introduced by truncating the summation over m
(see Section 4.4).

Thus, so long as we know the xl’s and N , the pre-computations are feasible . Typically, N >> K,
i.e. N ≥ 32, otherwise evaluation via FFT is not required. We pre-calculate φ, approximations of xl’s,
and φ̂ as defined below.

• 1-dimensional NER/NED pre-computations:

– for k = −N/2, . . . , N/2− 1,
φk = φ(2πk/(cN)),

– for l = 1, . . . ,M ,
µl = round(cxl),

– for l = 1, . . . ,M ,
for m = −K, . . . ,K,
φ̂l,m = (2π)−1/2φ̂(cxl − (µl +m)),

In the final pre-computation, we only look at φ̂l,m for |m| ≤ K because by definition φ̂(x) is negligible

for |x| > K. This implies φ̂(cxl − (µl +m)) is insignificant for |cxl − µl −m| > K. If |m| ≥ K + 1, then

|cxl − µl −m| ≥ |m| − |cxl − µl|︸ ︷︷ ︸
≤1/2

> K + 1/2 > K.

So, we set φ̂l,m = 0 for |m| > K. Now we are ready to develop the NER and NED algorithms for fast
computation of the 1-dimensional equations, (30) and (31).

First, consider the 1-dimensional expression (30). Since φ was chosen carefully, we may assume
φ̂ is insignificant outside the interval [−K,K], therefore φ̂l,m = 0 for |m| > K. Thus, the 1-dimensional
NER algorithm computes,

ẑl = (2π)−1/2
∑
m∈Z

φ̂(cxl −m)

N/2−1∑
k=−N/2

zk
φ(2πk/(cN))

e−2πimk/(cN), l = 1, . . . ,M,

= (2π)−1/2
∑
m∈Z

φ̂(cxl − (µl +m))

N/2−1∑
k=−N/2

zk
φ(2πk/(cN))

e−πi(µl+m)k/(cN/2), l = 1, . . . ,M.

With our pre-computations and assumptions regarding φ̂, the above can be rewritten,

ẑl '
K∑

m=−K
φ̂l,m

N/2−1∑
k=−N/2

zk
φk
e−πi(µl+m)k/(cN/2), l = 1, . . . ,M. (34)
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Let zk = 0 for k < −N/2 and k > N/2− 1, and define uk = zk/φk for k = −cN/2, . . . , cN/2− 1.
Let j := −cN/2, . . . , cN/2− 1 and consider,

Uj =

cN/2−1∑
k=−cN/2

uke
−πijk/(cN/2), j = −cN/2, . . . , cN/2− 1,

which is equivalent to the inner sum of (34) for j = (µl + m) mod cN , by properties of the complex
exponential; additionally this sum can be evaluated with an FFT. Then, let j := µl + m with µl + m
cN -periodic. Therefore,

ẑl '
K∑

m=−K
φ̂l,mUµl+m, l = 1, . . . ,M,

which interpolates Uµl+m to the non-uniform grid, producing the desired non-equispaced results.

Algorithm 1 1D NER (Section 3 [6]): Fast computation of

ẑl =

N/2−1∑
k=−N/2

zke
−πixlk/(N/2), l = 1, . . . ,M.

Parameters: Oversampling factor c, interpolation length K, and pre-computations: φk, µl, and φ̂l,m
Input: zk for k = −N/2, . . . N/2− 1
.

Step 1: Adjust size of zk and scale to allow utilization of an FFT,

uk =


0, for k = −cN/2, . . .−N/2− 1,

zk/φk, for k = −N/2, . . . , N/2− 1,

0, for k = N/2, . . . , cN/2− 1.

Step 2: Compute an FFT of length cN ,

Uj =

cN/2−1∑
k=−cN/2

uke
−iπkj/(cN/2), j = −cN/2, . . . , cN/2− 1.

Step 3: Interpolate back to the nonequispaced grid,

ẑl =

K∑
m=−K

φ̂l,mUµl+m, l = 1, . . . ,M,

where we use that Uj = Uj±cN in case µl +m is outside [−cN/2, . . . , cN/2− 1].

Next, consider the 1-dimensional expression (31). Again, by choice of φ, we assume φ̂ is insignif-
icant outside [−K,K]. Therefore φ̂l,m = 0 for |m| > K. Obtaining an expression that can be evaluated
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by the 1-dimensional NED algorithm requires reindexing of equation (31). Consider,

ẑk =
(2π)−1/2

φ(2πk/(cN))

∑
m∈Z

M∑
l=1

zlφ̂(cxl −m)e−2πimk/(cN), k = −N/2, . . . , N/2− 1,

=
(2π)−1/2

φ(2πk/(cN))

∑
m∈Z

M∑
l=1

zlφ̂(cxl − (µl +m))e−πi(µl+m)k/(cN/2), k = −N/2, . . . , N/2− 1.

Inserting the pre-computations, and truncating the sum over m,

ẑk '
1

φk

M∑
l=1

K∑
m=−K

zlφ̂l,me
−πi(m+µl)k/(cN/2), k = −N/2, . . . , N/2− 1. (35)

The formulation of this expression, is not yet able to be evaluated with an FFT.
Assume φ̂, zl, and µl zero outside their region of definition. Consider the slightly more general

expression of equation (35), where j := m+ µl,

ẑk =
1

φk

∑
j∈Z

∑
l∈Z

zlφ̂l,j−µle
−πijk/(cN/2), k = −N/2, . . . , N/2− 1,

Now, j ∈ Z so there exists j′ ∈ {−cN/2, . . . , cN/2− 1} such that j = j′ + cm̃N for some m̃ ∈ Z. Thus,

ẑk =
1

φk

cN/2−1∑
j′=−cN/2

∑
m̃∈Z

∑
l∈Z

zlφ̂l,j′+cm̃N−µle
−πi(j′+cm̃N)k/(cN/2), k = −N/2, . . . , N/2− 1,

and by properties of the complex exponential, e−πi(j
′+cm̃N)k/(cN/2) = e−2πij

′k/(cN/2) for any m̃ ∈ Z.
Therefore, recalling zl 6= 0 only when l = 1, . . . ,M , define

uj′ :=

M∑
l=1

∑
m̃∈Z

zlφ̂l,j′+cm̃N−µl , j′ = −cN/2, . . . , cN/2− 1,

=
M∑
l=1

zlφ̂l,(j′−µl) mod cN , j′ = −cN/2, . . . , cN/2− 1.

Hence, if we let mj′,l := (j′ − µl) mod cN , then

uj′ =

M∑
l=1

zlφ̂l,mj′,l , j′ = −cN/2, . . . , cN/2− 1, (36)

where, by definition and previous argument, φ̂l,mj′,l = 0 for |mj′,l| > K, i.e. (|j′ − µl| mod cN) > K.
Then the final discrete 1-dimensional expression the 1-dimensional NED algorithm evaluates for

ẑk is,

ẑk '
1

φk

cN/2−1∑
j′=−cN/2

uj′e
−πikj′/(cN/2), k = −N/2, . . . , N/2− 1, (37)

with uj′ as defined in equation (36). Hence, this sum over j′ can be evaluated via an FFT.
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Algorithm 2 1D NED (Section 3 [6]): Fast computation of

ẑk =

M∑
l=1

zle
−πixlk/(N/2), k = −N/2, . . . , N/2− 1.

Parameters: Oversampling factor c, interpolation length K, and pre-computations: φk, µl, and φ̂l,m
Input: zl for l = 1, . . .M
.

Step 1: Each zl contributes to the 2K + 1 nodes closest by; compute those contributions,
for l = 1, . . . ,M ,

for m = −K, . . . ,K,

uµl+m ← uµl+m + zlφ̂l,m,

where µl +m is cN -periodic.

Step 2: Let j := µl +m, compute an FFT of length cN ,

Uk =

cN/2−1∑
j=−cN/2

uje
−iπkj/(cN/2), k = −cN/2, . . . , cN/2− 1.

Step 3: Scale the result,

ẑk = Uk/φk, k = −N/2, . . . , N/2− 1 ∗.

∗In this final step we only want k = −N/2, . . . , N/2−1 although Step 2 computed Uk for k = −cN/2, . . . , cN/2−1.

4.3 2-Dimensional NED Algorithm

The last type of NUFFT we consider is the 2-dimensional equivalent of the NED type NUFFT.
Fourmont does not fully present this algorithm, but he uses it in one of his applications to tomography.
We present it here.

The extension of the 1-dimensional NED expression to a 2-dimensional equivalent is intuitive.
Take zj on R2 located at non-equispaced node (xj , yj) ∈ [−N/2, N/2−1]×[−N/2, N/2−1], j = 1, . . . ,M .
The Fourier Transform of zj at these points is,

ẑk,l =
M∑
j=1

zje
−2πi(kxj+lyj)/N , l, k = −N/2, . . . , N/2− 1. (38)

Notice, there is only one summation over the single index j despite the fact that we are now in 2-
dimensions. This is because before proceeding with anything else, we vectorize the matrix containing
all the input data point z’s and their corresponding x and y node point matrices.

Vectorization of a matrix is done with the command z(:) in MatLab if z was the matrix containing
the input data. For example, if the first data point z(1, 1) = 0 is located at node (1, 1) ∈ R2, then the
matching vectorized components would be: z(1) = 0, x(1) = 1, and y(1) = 1.

With this done, we return to the 2-dimensional equation (38) and utilize Proposition 1 twice:
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once with ξ := 2πk/cN and x := cxj , and once with ξ := 2πl/cN and x := cyj . Then,

ẑk,l =
M∑
j=1

zje
−2πi(kxj+lyj)/N , k, l = −N/2, . . . , N/2− 1,

=

M∑
j=1

zje
−2πikxj/Ne−2πilyj/N , k, l = −N/2, . . . , N/2− 1,

=
M∑
j=1

[
zj

( (2π)−1/2

φ(2πk/(cN))

∑
m∈Z

φ̂(cxj −m)e−2πikm/(cN)
)( (2π)−1/2

φ(2πl/(cN))

∑
n∈Z

φ̂(cyj − n)e−2πiln/(cN)
)]
,

k, l = −N/2, . . . , N/2− 1.

The pre-computations in 2-dimensions are only slightly more complicated than in 1-dimension. Let, φ,
and thus φ̂, be the same 1-dimensional Kaiser-Bessel Window defined in equations (32) and (33). In
this 2-dimensional type NUFFT, the pre-computed φ is a product of two 1-dimensional φ’s, and the
pre-computed φ̂ is a product of two 1-dimensional φ̂’s.

• 2-dimensional NED pre-computations:

– for k = −N/2, . . . , N/2− 1,
for l = −N/2, . . . , N/2− 1,

φk,l = φ(2πk/(cN)) · φ(2πl/(cN)),

– for j = 1, . . . ,M ,
µj = round(cxj),
νj = round(cyj),

– for j = 1, . . . ,M ,
for m = −K, . . . ,K,
for n = −K, . . . ,K,

φ̂j,m,n = (2π)−1φ̂(cxj − (µj +m)) · φ̂(cyj − (νj + n)).

Notice, by assumptions on φ, that for each j, outside [−K,K]× [−K,K] we may again assume φ̂j,m,n is

insignificant. (Also, it is possible to have the third pre-computation only store: φ̂j,m := (2π)−1/2φ̂(cxj−
(µj +m)), m = −K, . . . ,K and φ̂j,n := (2π)−1/2φ̂(cyj − (νj + n)), n = −K, . . . ,K for each j.)

We now have the tools to present the 2-dimensional algorithm. The 2-dimensional NED algorithm
computes

ẑk,l '
1

φk,l

M∑
j=1

K∑
m=−K

K∑
n=−K

zjφ̂j,m,ne
−2πi(k(µj+m)+l(νj+n))/(cN), k, l = −N/2, . . . , N/2− 1. (39)

Before presenting the algorithm that quickly computes the 2-dimensional equation (39), some
index manipulation, similar to the 1-dimensional case, must take place. Note, z, x, and y are all in
vector form, so the reindexing process is nearly identical to the 1-dimensional case reindexing. Thus,
by the exact some process used to arrive at equation (37) – once with respect to m, where v := µj +m
and once with respect to n, where w := νj + n – we arrive at the 2-dimensional expression, that we
evaluate via the 2-dimensional NED algorithm.

ẑk,l '
1

φk,l

cN/2−1∑
v′=−cN/2

cN/2−1∑
w′=−cN/2

uv′,w′e−2πi(kv
′+lw′)/(cN), k, l = −N/2, . . . , N/2− 1, (40)
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where

uv′,w′ =
M∑
j=1

zjφ̂j,mv′,j ,nw′,j , v′, w′ = −cN/2, . . . , cN/2− 1,

with mv′,j := (v′ − µj) mod cN and nw′,j := (w′ − νj) mod cN where v′, w′ = −cN/2, . . . , cN/2 − 1.

Additionally, φ̂j,mv′,j ,nw′,j 6= 0 only if |mv′,j |, |nw′,j | ≤ K which is if and only if (|v′ − µj | mod cN) and
(|w′ − νj | mod cN) are both ≤ K.

Algorithm 3 2D NED (End of Section 3 [6]): Fast computation of

ẑk,l =
M∑
j=1

zje
−2πi(kxj+lyj)/N , k, l = −N/2, . . . , N/2− 1.

Parameters: Oversampling factor c, interpolation length K, and pre-computations: φk,l, µj , νj , and

φ̂j,m,n
Input: zj for j = 1, . . . ,M
.

Step 1: Each zj contributes to the (2K + 1)2 nodes in the (2K + 1)× (2K + 1) grid in Z2 centered at
zj . Compute these contributions,

for j = 1, . . . ,M ,
for m,n = −K, . . . ,K,

uµj+m,νj+n ← uµj+m,νj+n + zjφ̂j,m,n,

where µj +m and νj + n are cN -periodic.

Step 2: Let v := µj +m and w := νj + n, compute a 2-dimensional FFT,

Uk,l =

cN/2−1∑
v=−cN/2

cN/2−1∑
w=−cN/2

uv,we
−2iπ(kv+lw)/(cN), k, l = −cN/2, . . . , cN/2− 1.

Step 3: Scale the result,

ẑk,l = Uk,l/φk,l, k, l = −N/2, . . . , N/2− 1 ∗.

∗In the final step we only consider k, l = −N/2, . . . , N/2 − 1 whereas Step 2 computed Uk,l for k, l =
−cN/2, . . . , cN/2− 1.

4.4 Error Estimates

Before applying any of the NUFFT algorithms to Computerized Tomography, it is important to
check that the discretization and truncation process did not introduce too much error. We evaluate the
error caused by truncating the expanded version of e−ixξ obtained from Proposition 1 while using the
Kaiser-Bessel Window, equations (32) and (33) [6].
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Proposition 2. Fourmont’s Proposition 2 [6]. Under the same assumptions as in Proposition 1 and φ
and φ̂ defined by equations (32), (33), then∣∣∣∣∣e−ixξ − (2π)−1/2

φ(ξ)

∑
|m−x|≤K

φ̂(x−m) e−imξ

∣∣∣∣∣ ≤ 30

πI0
(
K
√
α2 − (π/c)2

)
holds true for all K ≤ 15.

Proof. By Proposition 1, the approximate error caused by truncating the sum for |m− x| > K is,

error =
(2π)−1/2

φ(ξ)

∣∣∣∣∣ ∑
|m−x|>K

φ̂(x−m) e−imξ

∣∣∣∣∣.
For each term in the summation, the numerator and the denominator of φ̂ become imaginary. Hence,

φ̂(x−m) =

√
2

π

sin
(
α
√

(x−m)2 −K2
)√

(x−m)2 −K2
(41)

which for |x −m| >> K acts like sin(x −m)/(x −m). This does not converge absolutely, but can be
bounded using the following lemma.

Lemma 1. Fourmont Lemma 1. Let 0 < K ≤ 15 and α ≤ 2π, then∣∣∣∣∣ ∑
|l|>K

sin
(
α
√
l2 −K2

)
√
l2 −K2

eitl

∣∣∣∣∣ < 30

for all t ∈ R.

Proof. See [13].

Thus,

error =
(2π)−1/2

φ(ξ)

∣∣∣∣∣ ∑
|m−x|>K

φ̂(x−m) e−imξ

∣∣∣∣∣ ≤ (2π)−1/2

φ(ξ)

√
2

π
30.

Notice, φ(ξ) is minimized by ξ = π/c; hence error is maximized when ξ = π/c. So,

error ≤ (2π)−1/2

φ(π/c)
30 =

30

πI0
(
K
√
α2 − (π/c)2

)

From the graphs of the error estimate in Figure 12, it is clear that increasing K by one results
in noticeable accuracy improvements for each increase. Increasing c from 3/2− 4 improves of the error
estimate as well, but at much higher efficiency costs than increasing K. Thus, we remain with 1 < c ≤ 2
for the oversampling factor. For K, 6 is a good choice; it ensures the truncation error is small (see Figure
12), and keeps the truncated sum to only 13 terms.
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Figure 12: Plot of K = 2 : 1 : 10 versus corresponding error estimates for c = 3/2, 2, and 4 (4 is
included for comparison sake).

5 Application of NUFFTs to Tomography

In the remaining sections, we present two different Fourier reconstruction methods for image
reconstruction of a function f . Each uses a different NUFFT algorithm presented in the preceding
sections. These reconstruction algorithms are presented in Sections 5.1 and 5.2 of Fourmont’s paper [6].
Here, we present these algorithms with a few modifications. Lastly, we implement these algorithms and
examine the images produced, the relative error, and the execution time.

Take f(x), x ∈ R2, such that f(x) = 0 for all |x| ≥ 1. Consider Rf , the Radon Transform of f .
Sample g := Rf using parallel beam scanning with θ = θj and s = sl where

θj =
(
cos(ϕj)
sin(ϕj)

)
, ϕj =

jπ

p
, j = 0, . . . , p,

sl = l/q, and l = −q, . . . , q − 1.

We know if f has an essential bandwidth of b, then we can reasonably reconstruct f from this set of
sampled data, g(θj , sl), so long as p ≥ b and q ≥ b/π (see [1] III.3 for proof). Remember the relationship

the Projection Slice Theorem, Theorem 2.2, gives between ĝ and f̂ ,

ĝ(θ, σ) = (2π)1/2f̂(σθ), θ ∈ S1, σ ∈ R.

First, we consider the application of a 2-dimensional NED to Fourier reconstruction. Second,
we apply p, 1-dimensional NERs to Fourier reconstruction (i.e. we implement the 1-dimensional NER
p times). This first type, is known as “gridding” (for more articles on gridding methods and some
applications to CT please see: Brouw [15], O’Sullivan [16], Kaveh and Soumekh [17], Schomberg and
Timmer [18], and Greengard and Lee [9]). Fourmont, specifically, cites O’Sullivan’s gridding method
[6],[16]. Fourmont claims his second type of Fourier reconstruction is a new approach (at the time
of publication) and states it “is even faster than gridding while still producing good reconstruction
quality”[6].
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5.1 Application of the 2-dimensional NED to Tomography: “Gridding”

Let f(x) = 0 for |x| ≥ 1, x ∈ R2. Consider, using the Fourier Inversion Theorem (Theorem 2.1),
polar reparametrization, and the Projection Slice Theorem (Theorem 2.2),

f(x) = (2π)−1
∫
R2

f̂(ξ)eix·ξdξ,

= (2π)−1
∫ ∞
0

∫ 2π

0
f̂(σθ)eix·σθdϕ |σ| dσ,

= (2π)−1
∫ ∞
0
|σ|
∫ 2π

0
(2π)−1/2ĝ(θ, σ)eix·σθdϕ dσ.

Recall, ĝ(θ, σ) = ĝ(−θ,−σ). Therefore we get the following equation for f ,

f(x) =
1

2
(2π)−3/2

∫ ∞
−∞

∫ 2π

0
ĝ(θ, σ) |σ| eix·σθdϕ dσ (42)

Equation (42) requires careful and accurate discretization before we can move on to a gridding algorithm
(see Section 5.1 [6]).

The integrand in equation (42) is a periodic function in ϕ; thus, the trapezoidal rule is applicable
with minimal error. Consider, ĝ(θj , σr) with θj , j = 0, . . . , p − 1, defined at the start of Section 5 and
σr := πr/d, r = −dq, . . . , dq − 1, with d an oversampling factor, then

∫ ∞
−∞
|σ| . . . dσ → π

d

dq−1∑
r=−dq

∣∣πr
d

∣∣ . . . =
π2

d2

dq−1∑
r=−dq

|r|,

and

∫ 2π

0
. . . dϕ→ 2π

2p

2p−1∑
j=0

. . . =
π

p

2p−1∑
j=0

. . . .

Hence, for x = 1
qk, k ∈ R2 and σ̃r := |r|,

f

(
1

q
k

)
=

1

2(2π)3/2
π3

pd2

dq−1∑
r=−dq

2p−1∑
j=0

σ̃r ĝ(θj , πr/d) ei(k/q)·(θjπ(r/d)).

Define ξj,r := 1
drθj , then the preceding line becomes

f

(
1

q
k

)
=

π3/2

4
√

2pd2

dq−1∑
r=−dq

2p−1∑
j=0

σ̃r ĝ(θj , πr/d) eiπk·ξj,r/q. (43)

With this discretization, terms involved with σ̃0 = 0 would be zero. We do not want this because
these terms contain important information about ĝ(θj , 0) ' f̂(0), that is, the average value of f . If
left zero, this can result in a shift in the output. Fourmont takes “σ̃0 = 1/10, σ̃±1 = 0.98, σ̃r =
|r| for |r| > 1 and [he is] satisfied with the results.” But, he states “a more detailed analysis is
outstanding”[6]. Through numerical experimentation with MatLab, we found σ̃0 = .2 to be a better
choice. Thus, the implementation of the upcoming algorithm for image reconstruction via gridding, uses:
σ̃0 = .2, σ̃±1 = .98, and σ̃r = |r| for all |r| ≥ 2, for the following algorithms for image reconstructions
(for experimentation results see [19]).

This discrete equation for f , equation (43), as well as how the ξj,l’s are defined, enable the
application of the 2-dimensional NED algorithm.
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Algorithm 4 Gridding via 2D NED (Section 5.1 [6]):

Parameters: Parallel Beam scanning geometry p, q, oversampling factor d, and parameters/pre-
computations for the 2-dimensional NED (dependent upon p, q, d and ξj,r from Step 3)

Input: gj,l = g(θj , sl), j = 0, . . . , p− 1 and l = −q, . . . q − 1 for g := Rf
.

Step 1: Compute p, 1-dimensional Fourier Transforms with respect to the second variable of gj,l.
This can be done via an FFT with gj,l := 0 for |l| > q when d > 1,

for j = 0, . . . , p− 1,

ĝj,r = (2π)−1/2
1

q

dq−1∑
l=−dq

gj,l e
−irπl/(dq), r = −dq, . . . , dq − 1.

Extend ĝj,r to j = 0, . . . , 2p− 1 since ĝj+p,r = ĝj,−r in polar coordinates.

Step 2: Filter and scale ĝj,r,
for j = 0, . . . , 2p− 1,

for r = −dq, . . . , dq − 1,

ĝj,r ←
π3/2σ̃r

4
√

2pd2
F
(
r/(dq)

)
ĝj,r.

σ̃0 = 0.2, σ̃±1 = 0.98, and σ̃r = |r| for r > 1. F (σ) is a smoothing function; i.e.

F (σ) :=

{
1, for no additional smoothing,

cos(σπ/2); sinc(σ); sinc3(σ); etc., for additional smoothing.

Step 3: Compute

fk =

2p−1∑
j=0

dq−1∑
r=−dq

ĝj,r e
iπk·ξj,r/q, k ∈ R2 s.t. |k| < q,

via a 2-dimensional NED with the non-equispaced nodes, ξj,r,

ξj,r =
r

d
θj =

r

d

(
cos(πj/p)
sin(πj/p)

)
.

Evaluation of this step via the 2D NED Algorithm, Algorithm 3, is only possible after ĝj,r, ξj,r(1), and
ξj,r(2) are turned into vectors (i.e. for m = 1, . . . , 2p2dq, in MatLab notation: ĝm = ĝj,r(:). Similarly
procure vectors ξ(1) and ξ(2)).
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5.2 Results of Gridding Algorithm

Figure 13: Gridding Method reconstructed image created in MatLab with a sinc filter and oversampling
factors c = 3/2 and d = 2; for code, see Appendix ??.
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Figure 14: Density Profile corresponding to the line through the image in Figure 13. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.
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Figure 15: Gridding Method reconstructed image created in MatLab with a sinc3 filter and oversam-
pling factors c = 3/2 and d = 2; for code, see Appendix ??.
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Figure 16: Density Profile corresponding to the line through the image in Figure 15. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.

38



Table 9: Time for m = 0:
c = 3/2, d = 1 (time in seconds)

q 64 128 256
p

200 0.8 1.30 2.43
400 1.33 2.40 4.62
800 2.49 4.55 8.87

Table 10: Rel. Error for m = 3:
c = 3/2, d = 1 (×10e− 2)

q 64 128 256
p

200 4.94 4.73 4.71
400 4.94 4.73 4.71
800 4.94 4.73 4.71

Table 11: Time for m = 0:
c = 3/2, d = 2 (time in seconds)

q 64 128 256
p

200 1.28 2.41 4.67
400 2.40 4.54 8.68
800 4.49 8.63 17.34

Table 12: Rel. Error for m = 3:
c = 3/2, d = 2 (×10e− 2)

q 64 128 256
p

200 1.65 0.63 0.21
400 1.65 0.63 0.21
800 1.65 0.63 0.21

Immediately, this method proves an improvement on the Fourier reconstruction method in Section
3.4. The images produced by the same p and q, for d = 2 and c = 3/2, have almost the same level
of clarity as Filtered Backprojection. We show the images corresponding to when a sinc filter is used,
Figure 13, and when a sinc3 filter is used, Figure 15, along with their density profiles, Figures 14 and
16. The sinc filtered images have more clear differentiation between the differing densities but more
outside noise, while the sinc3 filtered images have less noise but are more blurred.

With no oversampling, i.e. d = 1, this algorithm is almost as efficient as Filtered Backprojection
time wise, however, it does not produce as useful an image. When d = 2, the time is only comparable
to Filtered Backprojection for large values of p and q, see Table 11.

Thus, we were not able to see the same time efficiency Fourmont achieved. This could be due
to our use of MatLab on a personal MacBook Pro for implementation software and hardware while
Fourmont used C and tested on a 300MHz Sun UltraSPRAC-II [6]. But, Fourmont’s gridding method
achieves equivalent images at no higher cost and with a more optimal asymptotic time increase as q ' p
increase (except for 1 round of pre-computations for each p and q pair). It is interesting to note the
asymptotic behavior of the time increase for both d = 1 and d = 2 (see Figure 17). In both of these
cases, as q ' p increases by a factor of 2 along the diagonal entries of Tables 9 and 11 the corresponding
time increase is around a factor of 4, half that of Filtered Backprojection. Thus, if larger p and q are
required, this gridding method would become a more efficient algorithm than Filtered Backprojection.
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Figure 17: Plots of log (q) versus log of implementation times for the gridding method for d = 1 and
d = 2. The slope plot indicates the number of operations to be around O(p2).

5.3 Application of the 1-dimensional NER to Tomography: “Fast Fourier Recon-
struction”

The last reconstruction method we examine is Fourmont’s “Fast Fourier Reconstruction” and its
algorithm (see Section 5.2 [6]). This method utilizes p, 1-dimensional NERs. Applying the Projection
Slice Theorem, Theorem 2.2, to the Fourier Transform of a function f produced a succinct double integral
(see equation (42)) solely based on the Radon Transform of f . However, the resulting discretized version
of equation (42), equation (43), was in polar coordinates. This is not the ideal case. We now consider
the specific function defined at the beginning of Section 5 in this case.
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Figure 18: Zoomed in view of a portion of the Interpolation Scheme for “Fast Fourier Reconstruction”
in Quadrant I of Fourier space. The circles - ◦ - correspond to cartesian grid points where we want to
know f̂ . The points - • - on the rays (ϕj ’s) from the origin are where we know f̂ . The arcs indicate
which of the points we know contribute to which cartesian grid points under angular interpolation. If
a circle is already on a ray it gets 100% of the contribution of that point.

Natterer discusses why nearest neighbor interpolation is insufficient to produce a usable image [1].
He justifies an inequality to guide choosing reasonable points ξk at which to sample f̂k to approximate
f̂(πk) (see equation (2.4) page 121 [1]). However, as shown in Section 3.4, nearest neighbor interpolation
in the horizontal or vertical direction, which satisfies Natterer’s stipulations, is substandard. Angular
interpolation of the Fourier Transform on a polar grid satisfies the requirements (V.2 [1]), and is shown
to improve upon the previous stipulations in [20]. In actuality, linear interpolation (in strictly the
angular direction) is adequate. Thus f̂ can be approximated at cartesian points via f̂ located at polar
coordinates using angular interpolation, see Figure 18 for the schematic outline.

Consider the point πk, k ∈ Z2. We interpolate f̂(π|k|θj), for θj chosen correctly, to f̂(πk).

Therefore, we accurately approximate f̂(πk) with f̂(π|k|θj). Hence we are left to compute, for k ∈ Z2

such that |k| ≤ q,

f̂(π|k|θj) = (2π)−1/2ĝ(θj , π|k|),

' (2π)−1/2(2π)−1/2
1

q

q−1∑
l=−q

gj,l e
−iπ|k|l/q,

= (2πq)−1
q−1∑
l=−q

gj,l e
−iπ|k|l/q.
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Thus, for j = 0, . . . , p− 1,

f̂(π|k|θj) ' (2πq)−1
q−1∑
l=−q

gj,l e
−πi|k|l/q, k ∈ Z2, |k| ≤ q, (44)

is now in the form of an NER type NUFFT. Following p implementations of the 1-dimensional NER
and angular interpolation, a 2-dimensional Inverse Fourier Transform produces f on a cartesian grid.

Suppose, d is an oversampling factor. Then, instead we have f̂(π(|k|/d)θj). Hence equation (44)
becomes,

f̂
(π
d
|k|θj) = (2πq)−1

q−1∑
l=−q

gj,l e
−πi(|k|/d)l/q, k ∈ Z2, |k| ≤ dq

Completely evaluating this requires the angular interpolation step previously discussed and schemat-
ically depicted in Figure 18. To have Fourmont’s “Fast Fourier Reconstruction” algorithm be at all
“fast,” the linear interpolation coefficients shall be pre-computed. These pre-computations are de-
scribed below. The pre-computations need only be done for k ∈ Z2 in the upper-half plane, because f

is real valued, therefore for k in the lower-half plane f̂(−k) = f̂(k). There are 3 pre-computations for
a cartesian grid point, k ∈ Z2, in the upper-half plane with |k| ≤ dq.

• First, let lk, lk+1 ∈ { pπϕj}
p−1
j=0 denote the two rays closest k; i.e. lk is associated with the nearest

ϕj traveling clockwise from k around the origin and lk + 1 corresponds to the nearest ϕj traveling
counterclockwise from k around the origin (if k is on ϕj then lk = p

πϕj and lk + 1 = p
π (ϕj+1)).

The k and k + 1 indexes are taken p periodic.

• Next, create lists {xlk} and {xlk+1} of evaluation points for the corresponding NER evaluations
by adding |k| to each list.

• Last, compute the appropriate linear interpolation coefficients:

ak = F (|k|/(dq)) |ϕk − (lk + 1)π/p|p/π,
bk = F (|k|/(dq)) |ϕk − lkπ/p|p/π.

Here, ϕk = atan2(k2, k1) and F (σ) is a reasonable smoothing filter (similar to Algorithm 4, F (σ)
can be 1, cos(π2σ), sinc(σ), sinc3(σ), etc).

Note. The ak and bk are mislabeled in Fourmont’s paper [6]. From Step 2 in the upcoming algorithm,
Algorithm 5, it follows that for k on lk, ak should equal 1 and bk should equal 0, while for k on lk + 1,
ak and bk’s values are switched. Consider, if k on lk, then

ak = 1,

= |ϕk −
π

p
lk − π/p|π/p,

= |ϕk − (lk + 1)π/p|π/p.

Similarly, if k on lk + 1 then

bk = 1,

= |ϕk −
π

p
lk + π/p− π/p|π/p,

= |ϕk − lkπ/p|π/p.
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Before beginning this “Fast Fourier Reconstruction” algorithm, recall that the NER algorithm
requires pre-computations as well. Thus, for each θj , j = 0, . . . , p − 1, there is a set of NER pre-
computations that must be made after the interpolation pre-computations. The order is important
because the “xl’s” for the p instances of the NER algorithm correspond to the p lists, {xlk}/d. So, while
the upcoming algorithm itself may be short and compute fairly quickly, it is worthwhile to remember all
the pre-computations necessary for successful fast algorithmic evaluation. In particular, for larger p and
q the NER pre-computations become time consuming. However, in many practical scenarios only one
set of pre-computations is needed for a vast number of experiments. Thus proving this method highly
efficient (i.e. a CT scan machine in a hospital with a preset number of angles, p, and image pixels, q).

Algorithm 5 Fast Fourier Reconstruction via 1D NER (Section 5.2 [6]):

Parameters: Parallel Beam scanning geometry p, q, oversampling factor d, pre-computations: lk, ak,
bk, and parameters/pre-computations for p versions of the 1D NER determined by: {xlk}/d

Input: gj,l = g(θj , sl), j = 0, . . . , p− 1 and l = −q, . . . q − 1 for g := Rf
.

Step 1: Compute an NER evaluation of gj,l for each θj ,
for j = 0, . . . , p− 1,

ĝj,m =

q−1∑
l=−q

gj,l e
−πil(xjm/d)/q ∀ m s.t. xjm ∈ {xlk} for lk =

p

π
ϕj .

Step 2: Linearly interpolate ĝj,m in the angular direction to obtain f̂k,
for k ∈ Z2, |k| ≤ dq,

f̂k = akĝlk,j1k
+ bkĝlk+1,j2k

.

Recall, lk and lk + 1 denote the rays (ϕj ’s) nearest k clockwise and counterclockwise. j1k is the index of
|k| in list {xlk} and j2k is the index of |k| in list {xlk+1}.

Step 3: Finally, compute a standard 2-dimensional Inverse FFT,

fl =
q

(2dq)2

∑
|k|<dq

f̂k e
2πik·l/(2dq), l ∈ Z2 s.t. |l| < q.

where the front constant term on the right hand side is the accumulation of all of the discretization
constants throughout Steps 1-3.
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5.4 Results of Fast Fourier Reconstruction Algorithm

Figure 19: Fast Fourier Reconstruction image reconstructed in MatLab with a sinc filter and over-
sampling factors c = 3/2 and d = 2; for code, see Appendix ??.
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Figure 20: Density Profile corresponding to the line through the image in Figure 19. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.
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Figure 21: Fast Fourier Reconstruction image reconstructed in MatLab with a sinc filter and over-
sampling factors c = 3/2 and d = 4; for code, see Appendix ??.

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

sinc filter
d = 4

Fast Fourier Reconstruction Density Profile
for

f( : , −0.1q )

 

 
Original Function
Reconstructed f

0 10 20 30 40 50 60 70 80 90 100
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Fast Fourier Reconstruction Density Profile
for

f( −0.4q:0.35q , −0.1q )

sinc filter
d=4

 

 
Original Function
Reconstructed f

Figure 22: Density Profile corresponding to the line through the image in Figure 21. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.
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Figure 23: Fast Fourier Reconstruction image reconstructed in MatLab with a sinc3 filter and over-
sampling factors c = 3/2 and d = 2; for code, see Appendix ??.
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Figure 24: Density Profile corresponding to the line through the image in Figure 23. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.
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Figure 25: Fast Fourier Reconstruction image reconstructed in MatLab with a sinc3 filter and over-
sampling factors c = 3/2 and d = 4; for code, see Appendix ??.
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Figure 26: Density Profile corresponding to the line through the image in Figure 25. Left graph is the
density profile from x = −1 to x = 1 at y = −0.1; the right graph is a zoomed-in portion, x = −0.4 to
x = 0.35, of the left graph to show detail. Plots created in MatLab; for code, see Appendix ??.
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Table 13: Time for m = 0:
c = 3/2, d = 2 (time in seconds)

q 64 128 256
p

200 0.14 0.26 0.69
400 0.25 0.54 0.89
800 0.49 0.93 1.83

Table 14: Rel. Error for m = 3:
c = 3/2, d = 2 (×10e− 2)

q 64 128 256
p

200 2.03 0.87 0.36
400 2.03 0.86 0.34
800 2.03 0.85 0.34

Table 15: Time for m = 0:
c = 3/2, d = 4 (time in seconds)

q 64 128 256
p

200 0.29 0.72 2.77
400 0.61 1.20 3.52
800 1.03 2.13 6.57

Table 16: Rel. Error for m = 3:
c = 3/2, d = 4 (sinc filter;×10e− 2)

q 64 128 256
p

200 1.04 0.40 0.18
400 1.03 0.38 0.16
800 1.03 0.38 0.16

This final reconstruction method, immediately yields clearer, more useful images than the Fourier
reconstruction method in Section 3.4. Akin to the gridding method, Figures 19 and 23 and their
accompanying density profiles, Figures 20 and 24, show that a sinc filter results in a sharper image but
with more exterior noise, while a sinc3 filter has less overall error, but is less focused. Additionally, we
only consider this method for d ≥ 2 because otherwise the interpolation step introduces too much error.

However, even with d chosen as large as 4, the execution time for this method is somewhere
between Filtered Backprojection and the first Fourier reconstruction method we examined. When
d = 2 it is almost as efficient the first Fourier reconstruction method and it produces a much better
quality image. The speed up factor is about 3 for p = 400, q = 128 and about 8 for p = 800, q = 256
from Filtered Backprojection! This still is not as good as the speedup Fourmont cites, but it is still
notable [6].

Another important thing to note, is the asymptotic time increase as p ' q increase by a factor of
2. Figure 27 illustrates the relationship between the size of p(' q) and the implementation time. For
both d = 2 and d = 4; the number of operations seems to be right at about O(p2). Thus, indicating
for larger p and q this is an efficient method, provided one set of pre-computations suffices for many
subsequent image reproductions.

Something novel worth mentioning for this method is an interesting shadowing effect that occurs
for small d. It is particularly visible in the d = 2 case and still can be seen when d = 3. However, it is no
longer evident when d = 4. This artifact is unlike any other I have come across in image reconstruction
thus far. It could be something introduced from the weighting of the interpolation coefficients in the
interpolation step; but this is just speculation.
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Figure 27: Plots of log (q) versus log of implementation times for the Fast Fourier Reconstruction
method for d = 2 and d = 4. The slope plot indicates the number of operations to be about O(p2).

6 Conclusion

The applications of these NUFFTs to Fourier reconstruction do greatly improve upon the image
quality of the first Fourier reconstruction method we examined. They produce images on par with
Filtered Backprojection from data FBP could evaluate no faster than on the order of O(p3) operations,
and they do so in the same amount of time, if not faster. In fact, as Figure 28 indicates, the asymptotic
time growth for gridding and, particularly, it confirms that Fast Fourier Reconstruction computes in the
expected O(p2 log p) operations (see the slope of approximately 2 in the plot for d = 2 and 4 in the FFR).
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Figure 28: Plots of log (q) versus log of implementation times for Filtered Backprojection, Fourmont’s
gridding method, and Fourmont’s Fast Fourier Reconstruction method.

It is clear that Fourier reconstruction methods are faster for sufficiently large p and q. Addi-
tionally, in practical applications one set of pre-computations would suffice for a large number of image
reconstructions eliminating concerns over the implementation time for pre-computations. Again, the
difference between our time results and Fourmont’s could be due to the different software and hardware
used for experimentation and, also, there may be slight modifications possible within the code that
would enable even more efficient evaluation times.

Thus, in conclusion, these applications of several Non-Uniform Fast Fourier Transforms to Fourier
reconstruction are comparable with Filtered Backprojection. Additional work with NUFFTs in general
as well as cross-referencing and comparing these specific Fourier reconstruction methods with others
would be an interesting and quite possibly rewarding avenue of further investigation.
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