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Abstract We explore the numerical implementation of a view dependent derivative that

occurs in π-line reconstruction formulas for two- and three-dimensional computed tomog-

raphy. Focusing on two-dimensional fan-beam tomography we provide an error analysis and

a common framework for the comparison of several schemes used to discretize this deriva-

tive. The leading error terms for each scheme are determined. The results demonstrate some

advantages and drawbacks of the methods that are confirmed by numerical experiments.

Keywords tomography · fan-beam · π-line · filtered back projection

1 Introduction

In x-ray tomography one measures the attenuation of an x-ray beam that passes through the

object. If scatter can be neglected, the mathematical model is given by the divergent beam

transform

D f (y,θ) =
∫ ∞

0
f (y+ tθ) dt.

The function f is the x-ray attenuation coefficient of the object, the point y is the position

of the x-ray source and the unit vector θ gives the direction of the ray. We assume a mode

of data acquisition where the the x-ray source moves on a curve y = y(s), the most common

choice being a circle. Work on inversion formulas and efficient reconstruction methods goes
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back to the early days of tomography and the standard methods and algorithms developed

in these early decades have been summarized in monographs such as [7,12,14]. A more re-

cently developed class of inversion formulas that are valid in both two and three-dimensions

are π-line reconstruction formulas [1,4,8–10,15,16,21–23]. Fan-beam reconstruction algo-

rithms based on π-line formulas have some advantages over the classical algorithms as they

do not need certain approximations, and such an algorithm has been given as the fan-beam

method of choice in the more recent textbook [8]. These algorithms all include a certain

derivative, taken with respect to the source position while the direction of the ray is held

constant, namely

∂

∂ q
D f (y(q),θ)

∣

∣

∣

∣

q=s

. (1)

In particular the derivative is present in the reconstruction formula

f (x) =
−1

2π2

∫

Iπ (x)

1

|x−y(s)|

∫ 2π

0

∂

∂ q
D f (y(q),θ(s,x,γ))

∣

∣

∣

∣

q=s

dγ

sinγ
ds (2)

found in [10], which is used for the numerical experiments presented below. Here Iπ (x) =
[sb(x),st(x)] is such that y(sb(x)), y(st(x)), and x are collinear. This paper is concerned with

the numerical implementation of (1). Geometrically, the derivative can be understood as the

difference quotient of x-ray data from parallel lines that pass through the object. However

the fan-beam scanning geometry does not directly make measurements over parallel lines.

As a result, a direct implementation of the derivative provides poor results and efforts have

been made to overcome this limitation. Initially the derivative was considered to be unfa-

vorable because it can reduce tangential resolution in the reconstruction [20], and the early

implementation schemes reduced the competitiveness of the π-line reconstruction algorithm

compared to other reconstruction methods. The derivative can be removed by an integration

by parts [5,9]. However this choice increases the computational complexity of the numerical

inversion in the 3D case [17].

The paper is organized as follows. As there is considerable flexibility both with regard to

the choice of source curve and the corresponding detector geometry, we use the next section

to review some common set-ups. In section 3 a number of numerical schemes to implement

(1) are described. Our detailed theoretical analysis is focused on a circular source curve and

curved detector geometry. For this set-up, we compare the schemes in a common framework

and discuss the main results in section 4, deferring the derivations to section 5. Numerical

experiments are presented and discussed as well. Section 5 is devoted to the derivation of

the leading error terms for each scheme and conclusions are presented in section 6.

2 Detector geometries

In this section we briefly describe some fan-beam data acquisition geometries. The available

data are discrete samples of the divergent beam transform D f (y,θ) for certain values of y

and θ . We assume that the source positions y lie on a given curve y(s). In order to describe

some common data acquisition geometries we follow the approach of [17] , while keeping

notation consistent with our own earlier work [3,4], and associate with each given s a pair

eu(s),ev(s) of mutually orthogonal unit vectors. Here ev corresponds to −ew in [17]. Let

D denote the distance of the source position y(s) to the center of the detector array. D is

assumed to be constant. The center of the detector array is at the location y(s)+Dev(s).
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If the detector array is linear (flat detectors) then detectors are positioned along the line at

locations

d f (s,u) = y(s)+Dev(s)+ueu(s), u ∈ R. (3)

In this case u is the signed distance of the detector position to the center of the linear detector

array and the direction θ of a measured ray can be parametrized as

θ = θ(s,u) =
d f (s,u)−y(s)

|d f (s,u)−y(s)| =
ueu(s)+Dev(s)√

D2 +u2
. (4)

If the detectors are located on a circular arc (curved detector array), then detectors are

positioned at

dc(s,u) = y(s) + Dcos(u)ev(s)+Dsin(u)eu(s), −π

2
< u <

π

2
.

The direction θ of the measured ray is then given by

θ = θ(s,u) =
dc(s,u)−y(s)

|dc(s,u)−y(s)| = sin(u)eu(s) + cos(u)ev(s).

Here u denotes the acute angle between the position vector y(s) and the direction θ of the

ray.

In general we assume that θ is parametrized as

θ(s,u) = c1(u)eu(s) + c2(u)ev(s), c2
1(u)+ c2

2(u) = 1 (5)

and that c1(u) is differentiable and admits an inverse function c−1
1 (u) for the relevant interval

of values for u. It follows that u can be expressed in terms of s and θ by

u(s,θ) = c−1
1 (θ · eu(s)). (6)

Let

g(s,u) = D f (y(s),θ(s,u)).

Now the view dependent derivative (1) can be written as

d

dq
D f (y(q),θ)

∣

∣

∣

∣

q=s

=
d

dq
g(q,u(q,θ))

∣

∣

∣

∣

q=s

=
∂ g

∂ s
(s,u(s,θ)) +

∂ g

∂ u
(s,u(s,θ))

∂ u(s,θ)

∂ s
. (7)

Since ‖ eu(s) ‖= 1, eu(s) and its derivative e′u(s) are always mutually orthogonal. Further-

more, the orthogonality of eu(s) and ev(s) for all s implies e′u(s) · ev(s) = −eu(s) · e′v(s).
Together with (5) one obtains

θ · e′u(s) = c2(u(s,θ))e
′
u(s) · ev(s) = −c2(u(s,θ)eu(s) · e′v(s).

Using this and (6) gives

∂ u(s,θ)

∂ s
=

∂

∂ s
c−1

1 (θ · eu(s))

=
θ · e′u(s)

c′1(c
−1
1 (θ · eu(s)))

=
−c2(u(s,θ))

c′1(u(s,θ))
eu(s) · e′v(s) (8)
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y(sk)

y(sk +∆ s/2)

y(sk +∆ s)

θ

θ

θ

θ⊥

Fig. 1 The direction θ = θ(s
k+ 1

2
,ui) used in the direct scheme.

For the curved detector array one has c1(u) = sin(u), c2(u) = cos(u) and (8) reads

∂ u(s,θ)

∂ s
=−eu(s) · e′v(s) (9)

For the flat detector array c1(u) = u/
√

D2 +u2, c2(u) = D/
√

D2 +u2 , and

∂ u(s,θ)

∂ s
=−D2 +(u(s,θ))2

D
eu(s) · e′v(s) (10)

3 Difference schemes

In this section we introduce the difference schemes that we will analyze. We assume that

the data g(s,u) = D f (y(s),θ(s,u)) have been measured at points (sk,ui) with sk = k∆s and

ui = i∆u. We will use the notations gk,i = g(sk,ui), s
k± 1

2
= sk ± 1

2
∆s, and u

i± 1
2
= ui ± 1

2
∆u.

Let g′(s,u) denote the desired view dependent derivative

g′(s,u) =
d

dq
D f (y(q),θ(s,u))

∣

∣

∣

∣

q=s

. (11)

For some schemes linear interpolation of the measured data in u will be used. Through-

out this paper let I g denote linear interpolation of g in the second variable, that is

I g(s,u) = cg(s,ui)+(1− c)g(s,ui+1) (12)

with i such that ui ≤ u < ui+1 and c = (ui+1 −u)/∆u.

3.1 The direct scheme

The direct scheme is a straightforward discretization of (11):

g′(s
k+ 1

2
,ui) ≃ g′dir(sk+ 1

2
,ui)

=
1

∆s

(

D f (y(sk+1),θ(sk+ 1
2
,ui))−D f (y(sk),θ(sk+ 1

2
,ui))

)

= (g(sk+1, ũ1) − g(sk, ũ0))/∆s
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with

ũ0 = c−1
1 (θ(s

k+ 1
2
,ui) · eu(sk)), ũ1 = c−1

1 (θ(s
k+ 1

2
,ui) · eu(sk+1)). (13)

Since the data g(s,u) are in general not measured at the required points (sk+1, ũ1) and

(sk, ũ0), linear interpolation in u is used. So the direct scheme reads

g′dir(sk+ 1
2
,ui) = (I g(sk+1, ũ1) − I g(sk, ũ0))/∆s (14)

with ũ0, ũ1 given by (13).

3.2 The Noo-Pack-Heuscher (NPH) scheme

This scheme was suggested by Noo, Pack, and Heuscher [18] as an improvement over the

direct scheme which had shown in numerical experiments to yield suboptimal resolution

(see, e.g., [17, Fig. 3]). This scheme is a discretization of (7) and reads

g′(s
k+ 1

2
,u

i+ 1
2
)≃ g′NPH(s

k+ 1
2
,u

i+ 1
2
)

=

[

(gk+1,i+1 −gk,i+1) + (gk+1,i −gk,i)
]

2∆s

+
∂ u

∂ s
(s

k+ 1
2
,θ(s

k+ 1
2
,u

i+ 1
2
))

[

(gk+1,i+1 −gk+1,i)+(gk,i+1 −gk,i)
]

2∆u

(15)

with
∂ u

∂ s
(s

k+ 1
2
,θ(s

k+ 1
2
,u

i+ 1
2
)) =

−c2(ui+ 1
2
)

c′1(ui+ 1
2
)

eu(sk+ 1
2
) · e′v(sk+ 1

2
)

where the last equation follows from (8). The NPH scheme was the accepted standard for

a few years but it was observed that it has non-isotropic resolution, see, e.g., [20]. We will

discuss this point further in the next section. The following three schemes are attempts to

remedy this drawback.

3.3 The Noo-Hoppe-Dennerlein-Lauritsch-Hornegger (NHDLH) scheme

This ingenious scheme was proposed in [17] as an improvement over the NPH scheme and is

currently considered the most robust with respect to a variety of data acquisition geometries.

Its starting point is a formula similar to the direct scheme but with a free parameter ε ,

0 < ε < 1. Let θ = θ (sk,ui+ 1
2
). Then

g′(sk,ui+ 1
2
)≃ D f (y(sk + ε∆s),θ)−D f (y(sk − ε∆s),θ)

2ε∆s
. (16)

Interpolation is needed to implement (16) since the required values of D f are in general not

being measured. The following interpolation step is original and a core idea of this scheme.

Approximate

D f (y(sk + ε∆s),θ) ≃ (1− ε)g(sk,ν+)+ εg(sk+1,µ+) (17)

D f (y(sk − ε∆s),θ) ≃ (1− ε)g(sk,ν−)+ εg(sk−1,µ−) (18)
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y(s)

y(s+ ε∆ s)

y(s− ε∆ s)

y(s+∆ s)

y(s−∆ s)

b(s− ε∆ s,θ)

b(s+ ε∆ s,θ)

θ

θ

θ

θ⊥

Fig. 2 The NHDLH scheme. s = sk, θ = θ(sk,ui+ 1
2
), and b(t,θ ) = y(t)− (y(t) · θ)θ . The dashed lines

represent g(s,ν±), g(s+∆ s,µ+), and g(s−∆ s,µ−), respectively.

The idea is to introduce a ‘point of interest’ b(t,θ) = y(t)− (y(t) · θ)θ with θ =
θ(sk,ui+ 1

2
). Then g(sk,ν±) corresponds to the lines connecting y(sk) with b(sk ± ε∆s,θ),

respectively; cf. the dashed lines with vertex y(s) in Figure 2. Similarly, g(sk−1,µ−) cor-

responds to the line connecting y(sk−1) with b(sk − ε∆s,θ), and g(sk+1,µ+) to the line

connecting y(sk+1) with b(sk + ε∆s,θ).
Inserting (17) and (18) into (16) and using linear interpolation in u for the g(sk,ν±) and

g(sk±1,µ±) gives

g′(sk,ui+ 1
2
)≃ g′NHDLH(sk,ui+ 1

2
)

=
I g(sk+1,µ+)−I g(sk−1,µ−)

2∆s
+ (1− ε)

I g(sk,ν+)−I g(sk,ν−)
2ε∆s

(19)

3.4 The Faridani-Hass-Solmon (FHS) scheme

The FHS scheme was suggested in [3] for the curved detector geometry as an improvement

over the NPH scheme and a simple alternative to the NHDLH scheme. Like the NPH scheme

it is based on a discretization of (7). It was observed in [3] that the non-isotropic resolution

of the NPH scheme comes from averaging two slightly rotated images. This effect comes

from averaging the numerical derivatives with respect to u at source positions sk and sk+1

in (15). The FHS scheme avoids this averaging at the cost of increasing the stepsize for the

differentiation in s. The general form of the FHS scheme reads

g′(sk,ui+ 1
2
) ≃ g′FHS(sk,ui+ 1

2
)

=

[

(gk+1,i −gk−1,i) + (gk+1,i+1 −gk−1,i+1)
]

4∆s

+
∂ u

∂ s
(sk,θ(sk,ui+ 1

2
))

gk,i+1 −gk,i

∆u

(20)

with
∂ u

∂ s
(sk,θ(sk,ui+ 1

2
)) =

−c2(ui+ 1
2
)

c′1(ui+ 1
2
)

eu(sk) · e′v(sk) (21)
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where again the last equation follows from (8).

3.5 The Katsevich (K) scheme

Katsevich [11] developed this scheme also as a simpler alternative to the NHDLH scheme

for the curved detector geometry and helical source curves. The scheme does contain a free

parameter ε . Its general form reads

g′(sk,ui+ 1
2
) ≃ g′K(sk,ui+ 1

2
)

= ε
(gk+1,i+1 −gk,i+1) + (gk,i −gk−1,i)

2∆s
+ (1− ε)

(gk+1,i −gk,i)+(gk,i+1 −gk−1,i+1)

2∆s

+
∂ u

∂ s
(sk,θ(sk,ui+ 1

2
))

gk,i+1 −gk,i

∆u
(22)

with ∂u
∂ s
(sk,θ(sk,ui+ 1

2
)) given by (21). Compared to the FHS scheme the free parameter ε

gives the K scheme added flexibility in discretizing the derivative with respect to s. (Here ε
corresponds to r∆s in [11]. ) Katsevich found that ε = 0 gave the highest resolution at the

cost of some undershooting, and that ε = 1/2 provides a good tradeoff between resolution

and noise stability. For this value of ε (i.e., ε = 1/2 ) the K scheme simplifies to the FHS

scheme.

4 Summary of results and discussion

In this section we present and discuss the major results of the analysis of the schemes for

a circular source curve y(s) = R(cos s,sins) with curved detector geometry such that the

center of the detector array is collinear with the origin and the source position y(s). The

derivations are presented in the next section. In this geometry the variable u denotes the

fan angle. In keeping with standard notation we rename u into α when working with this

geometry.

The variables s and α are discretized with stepsizes ∆s and ∆α , respectively. The two

stepsizes are chosen proportional to each other, usually with ∆s being significantly larger

than ∆α . Optimal sampling conditions for this geometry are well known; see, e.g., [2,13]

and the references cited there. This theory relates the two stepsizes by ∆s ≃ (1+R)∆α . In

practice ∆s can often be chosen even larger. Similar sampling conditions hold true for the

flat detector geometry [6].

4.1 A common framework

We note that the schemes are either based on directly discretizing (1) or using the chain

rule equation (7). For a comparison of all schemes it is helpful to rewrite the direct scheme

and the NHDLH scheme such that they appear as schemes based on (7). For the detec-

tor geometry under consideration equation (9) simplifies to
∂α(s,θ)

∂ s
= 1, so that (7) reads

g′(s,α) = gs(s,α)+gα(s,α). For the direct scheme we obtain in this case ũ0 = αi −∆s/2

and ũ1 = αi +∆s/2 so that the direct scheme reads

g′dir(sk+ 1
2
,αi) =

I g(sk+1,αi +
1
2
∆s)−I g(sk,αi − 1

2
∆s)

∆s
.
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Now observe that

2 [I g(sk+1,αi +∆s/2)−I g(sk,αi −∆s/2) ]

= I g(sk+1,αi +∆s/2)−I g(sk+1,αi −∆s/2)

+I g(sk+1,αi −∆s/2)−I g(sk,αi −∆s/2)

+I g(sk+1,αi +∆s/2)−I g(sk,αi +∆s/2)

+I g(sk,αi +∆s/2)−I g(sk,αi −∆s/2)

and therefore the direct scheme can viewed as an approximation for gs +gα by

gs(sk+1/2,αi)≈
1

2∆s
[I g(sk+1,αi +∆s/2)−I g(sk,αi +∆s/2)

+I g(sk+1,αi −∆s/2)−I g(sk,αi −∆s/2)]

gα(sk+1/2,αi)≈
1

2∆s
[I g(sk+1,αi +∆s/2)−I g(sk+1,αi −∆s/2)

+I g(sk,αi +∆s/2)−I g(sk,αi −∆s/2)].

(23)

We see that the partial derivative with respect to α is discretized with step size ∆s ≫ ∆α
instead of ∆α . This indicates that this natural choice for the discretization may be the least

effective method discussed here because of the step size ∆s used for approximating the

partial derivative with respect to α is too large. The error analysis given below will confirm

this finding.

Rewriting the NHDLH scheme is less straightforward. For the case that αi ≤ µ±,ν± ≤
αi+1, equation (54), derived in section 5 below, gives

g′NHDLH(sk,αi+ 1
2
) = (1− c)

gk+1,i −gk−1,i

2∆s
+ c

gk+1,i+1 −gk−1,i+1

2∆s

+

(

µ+−µ−
2∆s

)

gk−1,i+1 −gk−1,i

∆α
+ (1− ε)

(

ν+−ν−
2ε∆s

)

gk,i+1 −gk,i

∆α

with c = µ+−αi

∆α . It is apparent that the approximation of gs will mostly come from the first

two terms and the approximation of gα from the last two terms.
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4.2 Leading error terms

The leading error terms for the schemes that will be derived in the next section are as follows.

FHS: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2 gsss

6
(24)

NPH: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2

(

1

4

gsss

6
+

gssα

8

)

(25)

K: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2 gsss

6
+ ∆s∆α(2ε −1)

gssα

4
(26)

NHDLH: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2 gsss

6

+ (∆s)2

((

d(ε ,α)+
ε2

2
(ε −1)

)

gα − (ε −1)2

2
tanα gsα +

ε

2
gssα

)

(27)

d(ε ,α) = O((1− ε)2 sec2 α), α = α
i+ 1

2

Direct : (∆α)2 c

2
(1− c)

(

gsαα +

(

1+
2(1−2c)

3

∆α

∆s

)

gααα

)

+ (∆s)2
(gααα

24
+

gsαα

8
+

gssα

8
+

gsss

24

)

(28)

c = (αi +∆s/2−αi+J)/∆α , with J such that αi+J ≤ αi +∆s/2 < αi+J+1

In each expression the partial derivatives of g are evaluated at the point where the respec-

tive scheme approximates the view dependent derivative. The expressions for the NHDLH

schemes are derived under the assumption that αi ≤ µ±,ν± ≤αi+1 which promises the high-

est resolution but requires ε and ∆s to be sufficiently small, as will be further explained in

section 5 below.

The leading error terms of the FHS scheme are shared by the K and NHDLH schemes

which have also additional terms. However, this by itself does not imply that the FHS scheme

must always be more accurate since there is the possibility of some cancellation when the

error terms are added together, as well as during the subsequent filtering and back projection

steps of the image reconstruction.

Further aspects will now be discussed in the context of numerical experiments.

4.3 Numerical experiments and discussion

For each of the following experiments we use a reconstruction algorithm based on the inver-

sion formula (2) with numerical implementation as described in [4, §7] and choice of Iπ(x)
corresponding to orthogonal-long π-lines, also described in [4]. Unless specified otherwise,

the source radius R equals 3 and the reconstructions are computed inside the unit circle on a

grid of 256 by 256 pixels.

The mathematical phantoms are linear combinations of functions of the form

f (x) = bm(T(x−x0)) (29)

with

bm(x) =
(

1−|x|2
)m

+
=

{(

1−|x|2
)m

if 1−|x|2 > 0

0 if 1−|x|2 ≤ 0
. (30)
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P direct scheme error γ NPH error γ
128 0.13237 0.010073

256 0.035998 1.8786 0.0025395 1.9879

512 0.0092159 1.9657 0.00063654 1.9962

1024 0.0023187 1.9908 0.00015921 1.9993

2048 0.00058064 1.9976 3.9792×10−5 2.0004

4096 0.00014522 1.9994 9.9485×10−6 1.9999

Table 1 Convergence study for the direct and NPH schemes for the phantom (29) with parameters m = 3,

x0 = (0.2,0.3),u = .35,v = .25,ψ = 25π/180, ∆ s = 2π/P and ∆ α = 4arcsin(1/R)/P where R = 3 is the

radius of the source circle.

P FHS error γ NHDLH error γ K error γ
128 0.0055806 0.0064163 0.0042778

256 0.0013914 2.0039 0.0016050 1.9991 0.0010613 2.0111

512 0.00034813 1.9988 0.00040178 1.9981 0.00026550 1.9990

1024 8.6974×10−5 2.0010 0.00010041 2.0005 6.6293×10−5 2.0018

2048 2.1713×10−5 2.0020 2.5077×10−5 2.0015 1.6532×10−5 2.0036

4096 5.4282×10−6 2.0000 6.2695×10−6 2.0000 4.1330×10−6 2.0000

Table 2 Convergence study for difference schemes FHS, NHDLH with ε = ∆ α/(4∆ s), and K with ε = 0

for the phantom (29) with the same parameters as in Table 1.

The matrix

T =

[

cos(ψ)/u sin(ψ)/u

−sin(ψ)/v cos(ψ)/v

]

allows for dilation and rotation so that the support of f is an elliptical disk with center x0 and

half axes u and v. The parameter m controls the smoothness of the function. For m = 0 one

obtains the characteristic function of the support. The well known Shepp-Logan phantom

can be expressed as a linear combination of such functions.

The relative l2 error of the reconstructions is calculated by

(

∑i, j( f̄ (xi, j)− f (xi, j))
2

∑i, j f (xi, j)2

)1/2

, (31)

where f̄ is the numerical reconstruction and f is the exact function.

1. Order of convergence. The first experiment, presented in Tables 1 and 2, is a conver-

gence study. It also provides an indication of the relative accuracy of the schemes when

reconstructing a sufficiently smooth function, in this case f as in (29) with m = 3. We

use P = 2 j source positions so that ∆s = 2π/P and choose ∆α proportional to ∆s in

such a way that the condition ∆s ≥ (1+R)∆α is satisfied, i.e., R = 3 and ∆s/∆α =
π/(2arcsin(1/R)) ≃ 4.62. In these reconstructions the convolutions are computed on a

denser grid with spacing ∆α/8 in order to suppress the errors from the interpolation in

the backprojection step of the algorithm.

The leading error terms (24)–(28) give second order accuracy for all schemes. The dis-

cretizations used for the two integrations in (2) also have second order accuracy, so that

the reconstruction error (31) can be expected to decay as O(P−γ) with γ = 2. The tables

show numerically computed values of γ which are indeed very close to 2, confirming the

expectation from the leading error terms. This rate of convergence is the same as that for

the parallel-beam filtered back projection algorithm with the Shepp-Logan convolution

kernel [19, Example 5.1].
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Fig. 3 Reconstructions of the smooth function (29) with parameters as in the first row of Table 2.

For the FHS, NHDLH and K schemes the errors are quite close to each other, with the

K scheme (with ε = 0) having the lowest error. The errors for the NPH scheme are

somewhat larger while the errors for the direct scheme are an order of magnitude larger.

When inspecting the error terms (28) for the direct scheme one finds that the terms

(gααα/24+gsαα/8) are multiplied by (∆s)2 instead of (∆α)2 as for the other schemes.

This is a consequence of the approximation for gα in (23) being computed with a step

size of ∆s instead of ∆α . Since (∆s)2 is much larger than (∆α)2 this confirms the

numerical experience that the direct scheme is significantly less accurate.

For the FHS, NHDLH, and K schemes we also present the images of the reconstructions

for the case P = 128 in Figure 3.

2. Non-isotropy of the NPH scheme. When comparing the error terms (24), (25) for the

NPH and FHS schemes one sees that the main difference appears to be the additional

term (∆s)2gssα/8, and the question arises if this term is mainly responsible for the non-

isotropic resolution of the NPH scheme. The following numerical experiment indicates

that this seems indeed to be the case.

The top left image in Figure 4 shows the original function (29) and the top right image

its reconstruction using the NPH scheme. The nonisotropy is clearly visible. The bottom

left image shows a reconstruction of the error term (∆s)2 gssα
8

and the bottom right shows

difference between the top right and bottom left images, that is, the reconstruction using

the NPH scheme but with the error term subtracted. The non-isotropy is less pronounced.

It is intriguing that both the NHDLH and the K scheme also have an error term propor-

tional to gssα but are not known to show the non-isotropic resolution of the NPH scheme.

In the case of the NHDLH scheme the choice ε = 1/4 would make the term ε
2
gssα equal

to the corresponding term for the NPH scheme and for this choice of ε one indeed ob-

tains a very similar result to that shown in the top right of Figure 4 for the NPH scheme.

However, ε = 1/4 or even larger is simply not a good choice in this case. It is too large

for our assumption that αi ≤ µ±,ν± ≤αi+1 to hold and the user is free to choose a much

smaller value which makes the error term insignificant and gives good results. Similar

findings hold true for the K scheme. On the one hand, for the K scheme with 0 ≤ ε ≤ 1

and ∆s ≫ ∆α the factor ∆s∆α(2ε −1)/4 multiplying gssα is significantly smaller than

the corresponding factor (∆s)2/8 for the NPH scheme, so this error term is unlikely to

have an observable effect . On the other hand, if ε in the K scheme is chosen excessively

large such that ∆s∆α(2ε −1)/4 ≃ (∆s)2/8, then non-isotropy can be observed for the

K scheme as well.
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Fig. 4 Non-isotropy of the NPH scheme. Top left: Original function (29) with m = 3, ψ = 0, u = v = 0.1,

x0 = (0.4,0.7). Top right: Reconstruction using the NPH scheme. Bottom left: Reconstruction of the error

term (∆ s)2 gssα
8

. Bottom right: Reconstruction using NPH scheme but with error term subtracted. All recon-

structions performed with ∆ s = 2π/101 and ∆ α = π/600.

3. Additional error terms of the NHDLH scheme. The NHDLH scheme has additional

error terms that depend on tan(α) and sec2(α) which can become large for |α | very

close to π/2. This case can occur when the source radius R is very close to 1, so that

rays with fan angle α close to π/2 pass through the object. However, in our experiments

for such cases we did not find any significant additional errors caused by these terms.

4. Flat detectors and elliptical source curves. The theory presented here does not cover

flat detectors or elliptical source curves. It appears that the case of flat detectors and

circular source curve could be worked out with the methods presented here, while the

analysis for an elliptical source curve, in particular for the NHDLH scheme, is more

complex. We did, however, perform preliminary numerical experiments for flat detectors

and for an elliptical source curve. For a circular source curve the results for flat detectors

mirrored those for curved detectors. For an elliptical source curve the results for the FHS

and K schemes turned out to be dependent on the particular detector alignment. The

errors and visual images for the FHS, NHDLH, and K schemes remained very close to

each other when the vector eu(s) defined at the beginning of section 2 was chosen to be

perpendicular to the source position vector y(s). Figure 5 shows reconstructions of the

Shepp-Logan phantom for flat detectors with this alignment. The three schemes lead to

very comparable images and errors. The corresponding results for curved detectors are

very similar and therefore not shown here. On the other hand, in the case of an elliptical

source curve and flat detectors aligned such that eu(s) is parallel to d
ds

y(s) the FHS and

K schemes produced significant artifacts while our experiments confirmed the findings

of [17] that the NHDLH scheme continues to perform very well in this situation. A

theoretical explanation for this difference in performance will be subject of our future

research.
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Fig. 5 Reconstructions of the Shepp-Logan phantom with a flat detector array for the FHS, NHDLH (with

ε = 0.125) and K (with ε = 0) schemes. The source curve is the ellipse y(s) = (3.6 cos(s), 2.4 sin(s)), s ∈
[0,2π]. Detectors are aligned such that eu(s) is perpendicular to y(s) . The reconstruction grid has 512×512

pixels, ∆ s = 2π/501, ∆ u = 0.01, D = 3. The gray scale is compressed on the interval [1.012,1.032].

5 Error analysis of the schemes for the curved detector geometry and circular source

curve

We consider a circular source curve y(s) = R(cos s,sins) with curved detector geometry

aligned such that the center of the detector array is collinear with the origin and the source

position y(s). This gives

ev(s) =−y(s)/|y(s)|=−(cos s,sins), eu(s) = (−sins,coss).

As mentioned above, we rename u into α when working with this geometry. Now equation

(9) simplifies to

∂ α(s,θ)

∂ s
= 1, (32)

so that (7) reads

d

dq
D f (y(q),θ)

∣

∣

∣

∣

q=s

=
∂ g

∂ s
(s,α(s,θ)) +

∂ g

∂ α
(s,α(s,θ)).

or equivalently,

g′(s,α) = gs(s,α)+gα(s,α).

Equation (5 ) reads

θ(s,α) = sinα eu(s)+ cosα ev(s)

which implies the two relations

α(s,θ) = arcsin(θ · eu(s))

= arctan

(

θ · eu(s)

θ · ev(s)

)

. (33)



14 Adel Faridani, Ryan Hass

5.1 Error analysis for the direct scheme

For this geometry (13) reads ũ0 = αi − 1
2
∆s, ũ1 = αi +

1
2
∆s, hence

g′dir(sk+ 1
2
,αi) =

I g(sk+1,αi +
1
2
∆s)−I g(sk,αi − 1

2
∆s)

∆s

Proposition 1 (Error for the direct scheme) Let g(s,α) be C4 on R× [−π,π), sk = k∆s and

αi = i∆α . Then

g′dir(sk+ 1
2
,αi)−g′(s

k+ 1
2
,αi) = (∆α)2 c

2
(1− c)

(

gsαα +

(

1+
2(1−2c)

3

∆α

∆s

)

gααα

)

+ (∆s)2
(gsss

24
+

gssα

8
+

gsαα

8
+

gααα

24

)

+O(∆s3 +∆α2∆s)

(34)

where c=(αi+∆s/2−αi+J)/∆α , J is such that αi+J ≤αi+∆s/2<αi+J+1, and the partial

derivatives of g in (34) are evaluated at the point (s
k+ 1

2
,αi).

In the proof of Proposition 1 we will use the following observation about the error of

linear interpolation.

Lemma 1 Let f ∈C4(R), αi = i∆α , αi < t < αi+1 and

I f (t) = (1− c) f (αi)+ c f (αi+1) with c = (t −αi)/∆α . (35)

Then

I f (t)− f (t) =
c(1− c)∆α2

2
f ′′(t)+

c(1− c)(1−2c)∆α3

6
f ′′′(t)+O(∆α4).

Proof The assertion follows directly from replacing f (αi) and f (αi+1) in (35) by their Tay-

lor expansions about t.

Proof (Proposition 1 for the direct scheme) We write the error as the sum of a discretization

error and an interpolation error.

g′dir(sk+ 1
2
,αi)−g′(s

k+ 1
2
,αi)

=

(

g(sk+1,αi +∆s/2)−g(sk,αi −∆s/2)

∆s
−g′(s

k+ 1
2
,αi)

)

+
(I g−g)(sk+1,αi +∆s/2)− (I g−g)(sk,αi −∆s/2)

∆s
(36)

Let αi = i∆α and αi+J ≤ αi+∆s/2 < αi+J+1. Then αi +∆s/2 = (1−c)αi+J +cαi+J+1

with c=(αi+∆s/2−αi+J)/∆α , and I g(sk+1,αi+∆s/2)= (1−c)g(sk+1,αi+J)+cg(sk+1,αi+J+1).
Likewise αi−∆s/2= cαi−J−1+(1−c)αi−J so that I g(sk,αi−∆s/2)= (1− c̃)g(sk,αi−J−1)+
c̃g(sk,αi−J) with c̃ = 1− c. Note that

c̃(1− c̃) = c(1− c) while c̃(1− c̃)(1−2c̃) =−c(1− c)(1−2c).
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It then follows from Lemma 1 that

(I g−g)(sk+1,αi +∆s/2)− (I g−g)(sk,αi −∆s/2)

=
c(1− c)

2
∆α2 (gαα(sk+1,αi +∆s/2)−gαα (sk,αi −∆s/2))

+
c(1− c)(1−2c)

6
∆α3 (gααα(sk+1,αi +∆s/2)+gααα (sk,αi −∆s/2)) +O(∆α4)

The 2D Taylor expansions of gαα(sk+1,αi +∆s/2) and gαα(sk,αi −∆s/2) about the point

(s
k+ 1

2
,αi) yield

gαα(sk+1,αi +∆s/2)−gαα (sk,αi −∆s/2)

= ∆sgααα(sk+1/2,αi)+∆sgsαα(sk+1/2,αi)+O(∆s3).

Similarly one obtains for the third order error terms

gααα(sk+1,αi +∆s/2)+gααα (sk,αi −∆s/2) = 2gααα(sk+1/2,αi)+O(∆s2).

Therefore the interpolation error satisfies

1

∆s
[(I g−g)(sk+1,αi +∆s/2)− (I g−g)(sk,αi −∆s/2)]

=
c

2
(1− c)∆α2

(

gsαα(sk+1/2,αi) +

(

1+
2(1−2c)∆α

3∆s

)

gααα(sk+1/2,αi)

)

+O(∆α2∆s)

(37)

where we have used that O

(

∆α2
(

∆s2 +∆s∆α + ∆α2

∆s

))

=O

(

∆α2∆s

(

∆s+∆α +
(

∆α
∆s

)2
))

=

O(∆α2∆s) since we assume that ∆α < ∆s and ∆α/∆s is bounded away from zero as ∆s

and ∆α approach zero.

Recalling that g′(sk+1/2,αi) = gs(sk+ 1
2
,αi)+ gα(sk+ 1

2
,αi), the expression for the dis-

cretization error follows directly from Taylor expansions of g(sk+1,αi+∆s/2) and g(sk,αi−
∆s/2) about the point (s

k+ 1
2
,αi). This gives

g(sk+1,αi +∆s/2)−g(sk,αi −∆s/2)

∆s
−g′(s

k+ 1
2
,αi)

=
∆s2

24
(gsss +3gssα +3gsαα +gααα)+O(∆s3) (38)

where the partial derivatives of g are evaluated at the point (s
k+ 1

2
,αi). The Proposition now

follows from inserting (37) and (38) into (36).

Because of (32) the NPH scheme reads in our current detector geometry as follows.

g′NPH(s
k+ 1

2
,α

i+ 1
2
)

=

[

(gk+1,i+1 −gk,i+1) + (gk+1,i −gk,i)
]

2∆s
+

[

(gk+1,i+1 −gk+1,i)+(gk,i+1 −gk,i)
]

2∆α

where the first term approximates gs(sk+ 1
2
,α

i+ 1
2
) and the second gα (sk+ 1

2
,α

i+ 1
2
).
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Proposition 2 (Error for the NPH scheme) Let g(s,α) be C4 on R× [−π,π), sk = k∆s and

αi = i∆α . Then

g′NPH(s
k+ 1

2
,α

i+ 1
2
)−g′(s

k+ 1
2
,α

i+ 1
2
)

=
∆α2

24
(gααα +3gsαα) +

∆s2

24
(gsss +3gssα ) + O((∆s+∆α)3) (39)

where the partial derivatives of g are evaluated at the point (s
k+ 1

2
,α

i+ 1
2
).

The proof consists of a routine 2D Taylor expansion of g about the point (s
k+ 1

2
,α

i+ 1
2
).

Proposition 3 (Error for the K scheme) Let g(s,α) be C4 on R× [−π,π), sk = k∆s and

αi = i∆α . Then

gs(sk,αi+ 1
2
) −

(

ε
(gk+1,i+1 −gk,i+1) + (gk,i −gk−1,i)

2∆s
+ (1− ε)

(gk+1,i −gk,i)+(gk,i+1 −gk−1,i+1)

2∆s

)

= −
(

∆α2 gsαα

8
+ ∆s2 gsss

6
+ ∆s∆α(2ε −1)

gssα

4

)

+O
(

(∆s+∆α)3
)

and

gα(sk,αi+ 1
2
) − gk,i+1 −gk,i

∆α
= −∆α2

24
gααα + O(∆α3).

Therefore

g′K(sk,αi+ 1
2
)−g′(sk,αi+ 1

2
)

= ∆α2
(gααα

24
+

gsαα

8

)

+ ∆s2 gsss

6
+ ∆s∆α(2ε −1)

gssα

4

+ O
(

(∆s+∆α)3
)

, (40)

where the partial derivatives of g are evaluated at the point (sk,αi+ 1
2
).

As before the proposition follows from a 2D Taylor expansion of g, this time about the

point (sk,αi+ 1
2
).

The corresponding result for the FHS scheme is obtained by setting ε = 1/2 in Proposi-

tion 3, since in this case the K-scheme equals the FHS scheme.

Corollary 1 (Error for the FHS scheme) Let g(s,α) be C4 on R× [−π,π), sk = k∆s and

αi = i∆α . Then

g′FHS(sk,αi+ 1
2
)−g′(sk,αi+ 1

2
)

= ∆α2
(gααα

24
+

gsαα

8

)

+ ∆s2 gsss

6
+ O

(

(∆s+∆α)3
)

, (41)

where the partial derivatives of g are evaluated at the point (sk,αi+ 1
2
).

Proposition 4 (Error for the NHDLH scheme) Let g(s,α) be C4 on R× [−π,π), sk = k∆s

and αi = i∆α . If the µ± and ν± all lie in [αi,αi+1], then

g′NHDLH(sk,αi+ 1
2
)−g′(sk,αi+ 1

2
)

= (∆s)2

((

d(ε ,α
i+ 1

2
) +

ε2

2
(ε −1)

)

gα − (ε −1)2

2
tanα

i+ 1
2

gsα +
ε

2
gssα +

gsss

6

)

+ (∆α)2
(gααα

24
+

gsαα

8

)

+ O
(

(∆s+∆α)3
)

(42)
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with

d(ε ,α) =−1

4
(ε −1)2 sec2(α) [(ε −1)cos(2α)+ ε +1] . (43)

The partial derivatives of g are evaluated at the point (sk,αi+ 1
2
).

Remark 1 Proposition 4 treats the situation of potentially highest resolution, where the ν±
and µ± deviate by at most by ∆α/2 from α

i+ 1
2

and thus the derivatives are discretized with

smaller step sizes. While this assumption does require ε and ∆s to be sufficiently small, this

requirement is usually met with commonly used parameters. Sufficient conditions for this

assumption to be valid are given in the proof of Proposition 4; see inequality (48) below.

Proof We first need analytical expressions for the ν± and µ±. Let η(t,s,θ) denote the

unit vector in the direction of the ray from y(t) to b(s,θ) = y(s)− (y(s) · θ)θ , cf. sec-

tion 3.3. Let ν̃(s,u,α) be such that D f (y(s),η(s,s+ u,θ(s,α)) = g(s, ν̃(s,u,α)). Then

ν± = ν̃(sk,±ε∆s,α
i+ 1

2
), cf. Figure 2. It follows from (33) that

ν̃(s,u,α) = arctan

(

η(s,s+u,θ(s,α)) · eu(s)

η(s,s+u,θ(s,α)) · ev(s)

)

= arctan

(

2cos(α) sin(α +u))

2− cos(u)+ cos(2α +u)

)

= ν(u,α) (44)

A Taylor expansion with respect to u about u = 0 yields

ν(u,α) = α + u − u2

2
tanα − u3

2
+ O(u4) (45)

Similarly, let µ̃(s,u,α ,ε) be such that D f (y(s+ u),η(s+ u,s+ εu,θ(s,α)) = g(s+
u, µ̃(s,u,α ,ε)). Then µ± = µ̃(sk,±∆s,α

i+ 1
2
,ε) and

µ̃(s,u,α ,ε) = arctan

(

η(s+u,s+ εu,θ(s,α)) · eu(s+u)

η(s+u,s+ εu,θ(s,α)) · ev(s+u)

)

= arctan

(

2cos(α +u) sin(α + εu)

cos(2α +u+ εu)− cos(u− εu)+2

)

= µ(u,α ,ε) (46)

The Taylor expansion of µ(u,α ,ε) with respect to u about u = 0 gives

µ(u,α ,ε) = α + ε u − (ε −1)2

2
tan(α)u2 + d(ε ,α)u3 + O(u4) (47)

with d(ε ,α) as in (43).

The Taylor expansions allow to examine further the validity of the assumption that the

ν± and µ± lie in [αi,αi+1]. For example, since ν± = ν(±ε∆s,α
i+ 1

2
), one has

|ν±−α
i+ 1

2
|= ε∆s+

(ε∆s)2

2

∂ 2ν

∂ u2
(t,α

i+ 1
2
)

for some t ∈ [0,ε∆s]. Let Mν = max0≤t≤ε∆s

∣

∣

∣

∂ 2ν
∂u2 (t,αi+ 1

2
)
∣

∣

∣
. Then |ν± − α

i+ 1
2
| ≤ ∆α/2

if 2ε∆s + (ε∆s)2Mν ≤ ∆α . Similarly one obtains that |µ± − α
i+ 1

2
| ≤ ∆α/2 if 2ε∆s +
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(∆s)2Mµ ≤ ∆α with Mµ = max0≤t≤∆s

∣

∣

∣

∂ 2µ
∂u2 (t,αi+ 1

2
,ε)
∣

∣

∣
. The two conditions can be com-

bined into one by using (ε∆s)2 ≤ (∆s)2 and defining M = max(Mµ ,Mν) to yield 2ε∆s+
(∆s)2M ≤ ∆α , or equivalently

0 < ε ≤ ∆α −∆s2M

2∆s
. (48)

By subtracting and adding back the term I g(sk−1,µ+) in the numerator of the first

fraction in (19) the NHDLH scheme can be written equivalently as

g′NHDLH(sk,αi+ 1
2
) =

I g(sk+1,µ+)−I g(sk−1,µ+)

2∆s
+

I g(sk−1,µ+)−I g(sk−1,µ−)
2∆s

+ (1− ε)
I g(sk,ν+)−I g(sk,ν−)

2ε∆s
(49)

We next address the effect of the linear interpolation. Since αi < µ± < αi+1 it follows

that

I g(sk+1,µ+)−I g(sk−1,µ+)

2∆s
=

1

2∆s
[(1− c)g(sk+1,αi)+ cg(sk+1,αi+1)

− (1− c)g(sk−1,αi)− cg(sk−1,αi+1)]

= (1− c)
g(sk+1,αi)−g(sk−1,αi)

2∆s

+ c
g(sk+1,αi+1)−g(sk−1,αi+1)

2∆s

(50)

where c = µ+−αi

∆α .

For the remaining terms we will use the following observation about linear interpolation.

Lemma 2 Let f be a function, xi = i∆x and a,b ∈ (xi,xi+1). Let I f (a) and I f (b) be

the approximations of f (a) and f (b) obtained by linear interpolation between f (xi) and

f (xi+1). Then
I f (b)−I f (a)

b−a
=

f (xi+1)− f (xi)

∆x
. (51)

Proof We observe that (a,I f (a)) and (b,I f (b)) lie on the line segment from (xi, f (xi))
to (xi+1, f (xi+1)). The slope of the line is given by either side of (51).

By Lemma 2 we have

I g(sk−1,µ+)−I g(sk−1,µ−)
2∆s

=

(

µ+−µ−
2∆s

)

I g(sk−1,µ+)−I g(sk−1,µ−)
µ+−µ−

=

(

µ+−µ−
2∆s

)

g(sk−1,αi+1)−g(sk−1,αi)

∆α

, (52)

as well as

I g(sk,ν+)−I g(sk,ν−)
2ε∆s

=

(

ν+−ν−
2ε∆s

)

I g(sk,ν+)−I g(sk,νi)

ν+−ν−

=

(

ν+−ν−
2ε∆s

)

g(sk,αi+1)−g(sk,αi)

∆α

. (53)
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Combining (49 ) with (50), (52) and (53) the NHDLH scheme can be written as

g′NHDLH(sk,αi+ 1
2
) = (1− c)

g(sk+1,αi)−g(sk−1,αi)

2∆s

+ c
g(sk+1,αi+1)−g(sk−1,αi+1)

2∆s

+

(

µ+−µ−
2∆s

)

g(sk−1,αi+1)−g(sk−1,αi)

∆α

+(1− ε)

(

ν+−ν−
2ε∆s

)

g(sk,αi+1)−g(sk,αi)

∆α

(54)

with c = µ+−αi

∆α . Recalling that µ± = µ(±∆s,α
i+ 1

2
,ε) we obtain from (47) with u = ±∆s

and α = α
i+ 1

2
that

c =
µ+−αi

∆α
=

1

2
+

ε∆s

∆α
− ∆s2

2∆α
(ε −1)2 tanαi+1/2 +

∆s3

∆α
d(ε ,αi+1/2)+O

(

∆s4

∆α

)

(55)

as well as
µ+−µ−

2∆s
= ε +d(ε ,αi+1/2)∆s2 +O(∆s3). (56)

Similarly, using (45) with u =±ε∆s and α = α
i+ 1

2
, one obtains

ν+−ν−
2ε∆s

= 1− 1

2
ε2∆s2 +O(ε3∆s3). (57)

Combining (55) with Taylor expansions of the values of g about the point (sk,αi+ 1
2
) yields

(1− c)
g(sk+1,αi)−g(sk−1,αi)

2∆s
+ c

g(sk+1,αi+1)−g(sk−1,αi+1)

2∆s

= gs +(2c−1)
∆α

2
gsα +

1

8
∆α2gsαα +

1

6
∆s2gsss

+
2c−1

12
∆s2∆αgsssα +O(∆α3 +∆s2∆α2 +∆s4)

= gs + ε∆sgsα − 1

2
∆s2(ε −1)2 tan(αi+1/2)gsα +

1

6
∆s2gsss +

1

8
∆α2gsαα

+O(∆s3 +∆α3).

(58)

were the partial derivatives of g are evaluated at the point (sk,αi+ 1
2
). Similarly we obtain

with (56)
(

µ+−µ−
2∆s

)

g(sk−1,αi+1)−g(sk−1,αi)

∆α

=

(

µ+−µ−
2∆s

)

[gα(sk−1,αi+1/2)+
1

24
∆α2gααα(sk−1,αi+1/2)]+O(∆α4)

=

(

µ+−µ−
2∆s

)

[gα −∆sgsα +
1

2
∆s2gssα +

1

24
∆α2gααα(sk−1,αi+1/2)]

+O(∆s3 +∆α2∆s+∆α4)

= εgα − ε∆sgsα +d(ε ,αi+1/2)∆s2gα +
ε

2
∆s2gssα +

ε

24
∆α2gααα

+O(∆s3 +∆α2∆s).

(59)
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Finally we compute with the help of (57)

(1− ε)

(

ν+−ν−
2ε∆s

)

g(sk,αi+1)−g(sk,αi)

∆α

= (1− ε)

(

ν+−ν−
2ε∆s

)

[gα +
1

24
∆α2gααα +O(∆α4)]

= (1− ε − 1

2
(1− ε)ε2∆s2)gα +(1− ε)

1

24
∆α2gααα +O(∆s3 +∆s2∆α2 +∆α4)

(60)

Combining the terms (58), (59), and (60) shows that under the hypotheses of Proposi-

tion 4 the NHDLH scheme, given by (54) equals

g′NHDLH(sk,αi+ 1
2
)

= gs +gα +∆s2

[

1

6
gsss −

1

2
(ε −1)2 tan(αi+1/2)gsα +(d(ε ,αi+1/2)+

1

2
(ε −1)ε2)gα +

ε

2
gssα

]

+∆α2

[

1

24
gααα +

1

8
gsαα

]

+O(∆s3 +∆α2∆s+∆α3).

6 Conclusions

This work explored the numerical implementation of a view dependent derivative that occurs

in π-line reconstruction formulas for computed tomography. For two-dimensional fan-beam

tomography a general description for various data acquisition geometries was reviewed. A

detailed analysis was carried out for the specific case of a circular source curve and curved

detector array. It included casting all schemes in a common framework and determining

their leading error terms. The error terms provided an explanation for the lower accuracy of

the direct scheme as well as the non-isotropic resolution of the NPH scheme. Conclusions

drawn from the leading error terms were tested and confirmed with numerical experiments.

The FHS, K, and NHDLH schemes yielded very similar reconstructions. While the K and

NHDLH schemes do have additional error terms compared to the FHS scheme, these addi-

tional terms do not appear to be of practical concern.

The theory presented here does not cover flat detectors or elliptical source curves, which

are subject of our future research. In our numerical experiments with a circular source curve

the results for flat detectors were very similar to those for curved detectors. For an elliptical

source curve the performance of the FHS and K schemes in our experiments was dependent

on the particular alignment of the detector array. The FHS, K, and NHDLH schemes all

gave good results when the detectors were oriented such that eu(s) was perpendicular to

y(s), while only the NHDLH scheme performed well when eu(s) was oriented parallel to
d
ds

y(s).
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